Search results for: efficiency coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8579

Search results for: efficiency coefficient

2249 Crops Cold Stress Alleviation by Silicon: Application on Turfgrass

Authors: Taoufik Bettaieb, Sihem Soufi

Abstract:

As a bioactive metalloid, silicon (Si) is an essential element for plant growth and development. It also plays a crucial role in enhancing plants’ resilience to different abiotic and biotic stresses. The morpho-physiological, biochemical, and molecular background of Si-mediated stress tolerance in plants were unraveled. Cold stress is a severe abiotic stress response to the decrease of plant growth and yield by affecting various physiological activities in plants. Several approaches have been used to alleviate the adverse effects generated from cold stress exposure, but the cost-effective, environmentally friendly, and defensible approach is the supply of silicon. Silicon has the ability to neutralize the harmful impacts of cold stress. Therefore, based on these hypotheses, this study was designed in order to investigate the morphological and physiological background of silicon effects applied at different concentrations on cold stress mitigation during early growth of a turfgrass, namely Paspalum vaginatum Sw. Results show that silicon applied at different concentrations improved the morphological development of Paspalum subjected to cold stress. It is also effective on the photosynthetic apparatus by maintaining stability the photochemical efficiency. As the primary component of cellular membranes, lipids play a critical function in maintaining the structural integrity of plant cells. Silicon application decreased membrane lipid peroxidation and kept on membrane frontline barrier relatively stable under cold stress.

Keywords: crops, cold stress, silicon, abiotic stress

Procedia PDF Downloads 123
2248 Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production

Authors: Andra Blumberga, Armands Gravelsins, Haralds Vigants, Dagnija Blumberga

Abstract:

The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles.

Keywords: bioenergy, biotechonomy, system dynamics modelling, wood pellets

Procedia PDF Downloads 410
2247 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 155
2246 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning

Authors: Shayla He

Abstract:

Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.

Keywords: homeless, prediction, model, RNN

Procedia PDF Downloads 121
2245 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management

Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang

Abstract:

Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.

Keywords: construction supply chain management, BIM, data exchange, artificial intelligence

Procedia PDF Downloads 26
2244 An Improved Multiple Scattering Reflectance Model Based on Specular V-Cavity

Authors: Hongbin Yang, Mingxue Liao, Changwen Zheng, Mengyao Kong, Chaohui Liu

Abstract:

Microfacet-based reflection models are widely used to model light reflections for rough surfaces. Microfacet models have become the standard surface material building block for describing specular components with varying roughness; and yet, while they possess many desirable properties as well as produce convincing results, their design ignores important sources of scattering, which can cause a significant loss of energy. Specifically, they only simulate the single scattering on the microfacets and ignore the subsequent interactions. As the roughness increases, the interaction will become more and more important. So a multiple-scattering microfacet model based on specular V-cavity is presented for this important open problem. However, it spends much unnecessary rendering time because of setting the same number of scatterings for different roughness surfaces. In this paper, we design a geometric attenuation term G to compute the BRDF (Bidirectional reflection distribution function) of multiple scattering of rough surfaces. Moreover, we consider determining the number of scattering by deterministic heuristics for different roughness surfaces. As a result, our model produces a similar appearance of the objects with the state of the art model with significantly improved rendering efficiency. Finally, we derive a multiple scattering BRDF based on the original microfacet framework.

Keywords: bidirectional reflection distribution function, BRDF, geometric attenuation term, multiple scattering, V-cavity model

Procedia PDF Downloads 116
2243 Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production

Authors: Tie-Qing Zhang, Seunghun Jung, Young-Bae Kim

Abstract:

This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained.

Keywords: hydrogen production, auto thermal reforming, membrane, fuel cell

Procedia PDF Downloads 105
2242 Home Environment and Peer Pressure as Predictors of Disruptive Behaviour and Risky Sexual Behaviour of Secondary School Class Two Adolescents in Enugu State, Nigeria

Authors: Dorothy Ebere Adimora

Abstract:

The study investigated the predictive power of home environment and peer pressure on disruptive behaviour and risky sexual behaviour of Secondary School Class Two Adolescents in Enugu State, Nigeria. The design of the study is a cross sectional survey of correlational study. The study was carried out in the six Education zones in Enugu state, Nigeria. Enugu State is divided into six education zones, namely Agbani, Awgu, Enugu, Nsukka, Obollo-Afor and Udi. The population for the study was all the 31,680 senior secondary class two adolescents in 285 secondary schools in Enugu State, Nigeria in 2014/2015 academic session. The target population was students in SSS.2 senior secondary class two. They constitute one-sixth of the entire student population in the state. The sample of the study was 528, a multi stage sampling technique was employed to draw the sample. Four research questions and four null hypotheses guided the study. The instruments for data collection were an interview session and a structured questionnaire of four clusters, they are; home environment, peer pressure, risky sexual behaviour and disruptive behaviour disorder questionnaires. The instruments were validated by 3 experts, two in psychology and one in measurement and Evaluation in Faculty of Education, University of Nigeria, Nsukka. The reliability coefficient of the instruments was ascertained by subjection to field trial. The adolescents were asked to complete the questionnaire on their home environment, peer pressure, disruptive behaviour disorder and risky sexual behaviours. The risky sexual behaviours were ascertained based on interview conducted on their actual sexual practice within the past 12 months. The research questions were analyzed using Pearson r and R-square, while the hypotheses were tested using ANOVA and multiple regression analysis at 0.05 level of significance. The results of this survey revealed that the adolescents are sexually active in very young ages. The mean age at sexual debut for the adolescents covered in this survey is a pointer to the fact that some of them started engaging in sexual activities long ago. It was also found that the adolescents engage in disruptive behaviour as a result of their poor home environment factors and association with negative peers. Based on the findings, it was recommended that the adolescents should be exposed to enhanced home environment such as parents’ responsiveness, organization of the environment, availability of appropriate learning materials, opportunities for daily stimulation and to offer a proper guidance to these adolescents to avoid negative peer influence which could result in risky sexual behaviour and disruptive behaviour disorder.

Keywords: parenting, peer group, adolescents, sexuality, conduct disorder

Procedia PDF Downloads 480
2241 July 15 Coup Attempt and the Use of New Communication Technologies

Authors: Yasemin Gulsen Yilmaz, Suleyman Hakan Yilmaz, Muhammet Erbay

Abstract:

The new communication technologies have gradually improved its efficiency in all fields of life and made its presence irreplaceable. These technologies which appear in every aspect of life differently showed itself during the failed coup attempt in Turkey too. The evening of July 15, 2016, have already taken its place in the Turkish political history. In the evening of July 15, Turkish nation confronted to a coup attempted by a group within the Turkish Armed Forces. That evening, the scene of the confrontation between the coup attempters and the resisting civilians were watched minute-by-minute by the people using the new communication technologies. Pro-coup soldiers and the resisting groups that came face to face in the streets of metropolitan cities, made their in-group communications by using new media tools very actively. New media turned into the most important weapon both for coup plotters and for those who resisted. In the morning of next day, whoever used these tools better had the upper hand. The civilians were successful in protecting democracy not only by resisting against tanks and bullets but also by following the internet, organising in social media, sharing information-photos on the net and telling large masses their experiences through these technologies. In this study, we focused on and analysed the use of new media both by coup soldiers and resisting civilians during the failed coup attempt in July 15. Within the scope of this study, coup attempt news that took place in printed media within one week were examined; the information about the use of new media tools during the night of failed coup were compiled; and it was determined how, to what extend and what for these tools were used and how effective they were.

Keywords: communication, July 15, new media, media

Procedia PDF Downloads 245
2240 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst

Authors: Peikun Zhang, Chunhua Cui

Abstract:

Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.

Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting

Procedia PDF Downloads 123
2239 Fuzzy Approach for the Evaluation of Feasibility Levels of Vehicle Movement on the Disaster-Streaking Zone’s Roads

Authors: Gia Sirbiladze

Abstract:

Route planning problems are among the activities that have the highest impact on logistical planning, transportation, and distribution because of their effects on efficiency in resource management, service levels, and client satisfaction. In extreme conditions, the difficulty of vehicle movement between different customers causes the imprecision of time of movement and the uncertainty of the feasibility of movement. A feasibility level of vehicle movement on the closed route of the disaster-streaking zone is defined for the construction of an objective function. Experts’ evaluations of the uncertain parameters in q-rung ortho-pair fuzzy numbers (q-ROFNs) are presented. A fuzzy bi-objective combinatorial optimization problem of fuzzy vehicle routine problem (FVRP) is constructed based on the technique of possibility theory. The FVRP is reduced to the bi-criteria partitioning problem for the so-called “promising” routes which were selected from the all-admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in real-time computing. For the numerical solution of the bi-criteria partitioning problem, the -constraint approach is used. The main results' support software is designed. The constructed model is illustrated with a numerical example.

Keywords: q-rung ortho-pair fuzzy sets, facility location selection problem, multi-objective combinatorial optimization problem, partitioning problem

Procedia PDF Downloads 134
2238 Computational Fluid Dynamics Simulation of a Nanofluid-Based Annular Solar Collector with Different Metallic Nano-Particles

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

Motivation- Solar energy constitutes the most promising renewable energy source on earth. Nanofluids are a very successful family of engineered fluids, which contain well-dispersed nanoparticles suspended in a stable base fluid. The presence of metallic nanoparticles (e.g. gold, silver, copper, aluminum etc) significantly improves the thermo-physical properties of the host fluid and generally results in a considerable boost in thermal conductivity, density, and viscosity of nanofluid compared with the original base (host) fluid. This modification in fundamental thermal properties has profound implications in influencing the convective heat transfer process in solar collectors. The potential for improving solar collector direct absorber efficiency is immense and to gain a deeper insight into the impact of different metallic nanoparticles on efficiency and temperature enhancement, in the present work, we describe recent computational fluid dynamics simulations of an annular solar collector system. The present work studies several different metallic nano-particles and compares their performance. Methodologies- A numerical study of convective heat transfer in an annular pipe solar collector system is conducted. The inner tube contains pure water and the annular region contains nanofluid. Three-dimensional steady-state incompressible laminar flow comprising water- (and other) based nanofluid containing a variety of metallic nanoparticles (copper oxide, aluminum oxide, and titanium oxide nanoparticles) is examined. The Tiwari-Das model is deployed for which thermal conductivity, specific heat capacity and viscosity of the nanofluid suspensions is evaluated as a function of solid nano-particle volume fraction. Radiative heat transfer is also incorporated using the ANSYS solar flux and Rosseland radiative models. The ANSYS FLUENT finite volume code (version 18.1) is employed to simulate the thermo-fluid characteristics via the SIMPLE algorithm. Mesh-independence tests are conducted. Validation of the simulations is also performed with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation achieved. The influence of volume fraction on temperature, velocity, pressure contours is computed and visualized. Main findings- The best overall performance is achieved with copper oxide nanoparticles. Thermal enhancement is generally maximized when water is utilized as the base fluid, although in certain cases ethylene glycol also performs very efficiently. Increasing nanoparticle solid volume fraction elevates temperatures although the effects are less prominent in aluminum and titanium oxide nanofluids. Significant improvement in temperature distributions is achieved with copper oxide nanofluid and this is attributed to the superior thermal conductivity of copper compared to other metallic nano-particles studied. Important fluid dynamic characteristics are also visualized including circulation and temperature shoots near the upper region of the annulus. Radiative flux is observed to enhance temperatures significantly via energization of the nanofluid although again the best elevation in performance is attained consistently with copper oxide. Conclusions-The current study generalizes previous investigations by considering multiple metallic nano-particles and furthermore provides a good benchmark against which to calibrate experimental tests on a new solar collector configuration currently being designed at Salford University. Important insights into the thermal conductivity and viscosity with metallic nano-particles is also provided in detail. The analysis is also extendable to other metallic nano-particles including gold and zinc.

Keywords: heat transfer, annular nanofluid solar collector, ANSYS FLUENT, metallic nanoparticles

Procedia PDF Downloads 143
2237 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution

Authors: Peter G. Hollis, Kim G. Clarke

Abstract:

Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.

Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag

Procedia PDF Downloads 266
2236 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization

Authors: Hebberly Ahatlan

Abstract:

The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, IT/OT convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.

Keywords: digitalization, IT/OT convergence, semantic interoperability, VPP, energy blockchain

Procedia PDF Downloads 183
2235 Insights into Child Malnutrition Dynamics with the Lens of Women’s Empowerment in India

Authors: Bharti Singh, Shri K. Singh

Abstract:

Child malnutrition is a multifaceted issue that transcends geographical boundaries. Malnutrition not only stunts physical growth but also leads to a spectrum of morbidities and child mortality. It is one of the leading causes of death (~50 %) among children under age five. Despite economic progress and advancements in healthcare, child malnutrition remains a formidable challenge for India. The objective is to investigate the impact of women's empowerment on child nutrition outcomes in India from 2006 to 2021. A composite index of women's empowerment was constructed using Confirmatory Factor Analysis (CFA), a rigorous technique that validates the measurement model by assessing how well-observed variables represent latent constructs. This approach ensures the reliability and validity of the empowerment index. Secondly, kernel density plots were utilised to visualise the distribution of key nutritional indicators, such as stunting, wasting, and overweight. These plots offer insights into the shape and spread of data distributions, aiding in understanding the prevalence and severity of malnutrition. Thirdly, linear polynomial graphs were employed to analyse how nutritional parameters evolved with the child's age. This technique enables the visualisation of trends and patterns over time, allowing for a deeper understanding of nutritional dynamics during different stages of childhood. Lastly, multilevel analysis was conducted to identify vulnerable levels, including State-level, PSU-level, and household-level factors impacting undernutrition. This approach accounts for hierarchical data structures and allows for the examination of factors at multiple levels, providing a comprehensive understanding of the determinants of child malnutrition. Overall, the utilisation of these statistical methodologies enhances the transparency and replicability of the study by providing clear and robust analytical frameworks for data analysis and interpretation. Our study reveals that NFHS-4 and NFHS-5 exhibit an equal density of severely stunted cases. NFHS-5 indicates a limited decline in wasting among children aged five, while the density of severely wasted children remains consistent across NFHS-3, 4, and 5. In 2019-21, women with higher empowerment had a lower risk of their children being undernourished (Regression coefficient= -0.10***; Confidence Interval [-0.18, -0.04]). Gender dynamics also play a significant role, with male children exhibiting a higher susceptibility to undernourishment. Multilevel analysis suggests household-level vulnerability (intra-class correlation=0.21), highlighting the need to address child undernutrition at the household level.

Keywords: child nutrition, India, NFHS, women’s empowerment

Procedia PDF Downloads 33
2234 Web-Based Alcohol Prevention among Iranian Medical University Students: A Randomized Control Trail

Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh

Abstract:

Background: E-interventions as a universal approach to prevent a high-risk behavior, such as alcohol drinking. This study was conducted to evaluate web-based alcohol drinking preventative intervention efficiency among medical university students in Iran. Methods: Overall, 150 freshman and sophomore male student’s college students participated in this study as intervention and control group. This was a longitudinal randomized pre- and post-test series control group design panel study to implement a behavior modification based intervention to alcohol drinking prevention among college students. Cross-tabulation, t-test, repeated measures, and GEE by using SPSS statistical package, version 21 was used for the statistical analysis. The participants were followed up for 6 months with data collection scheduled at baseline, 3 and 6 months. The primary outcomes are attitude, self-control, and sensation seeking. Furthermore, the secondary outcome is comparing alcohol drinking among the study groups. Results: It was found significant reduce in average response for an attitude towards alcohol drinking and sensation seeking among intervention group (P < 0.05). But after intervention not significant difference between intervention and control group of improve self-control and reduce alcohol drinking (P > 0.05). Conclusion: Our intervention has been accompanied with reducing alcohol use rate. These findings indicate that e-intervention may be effectiveness approach to address the alcohol prevention among college students.

Keywords: e-interventions, alcohol drinking, students, Iran

Procedia PDF Downloads 414
2233 Effect of Bank Specific and Macro Economic Factors on Credit Risk of Islamic Banks in Pakistan

Authors: Mati Ullah, Shams Ur Rahman

Abstract:

The purpose of this research study is to investigate the effect of macroeconomic and bank-specific factors on credit risk in Islamic banking in Pakistan. The future of financial institutions largely depends on how well they manage risks. Credit risk is an important type of risk affecting the banking sector. The current study has taken quarterly data for the period of 6 years, from 1st July 2014 to 30 Jun 2020. The data set consisted of secondary data. Data was extracted from the websites of the State Bank and World Bank and from the financial statements of the concerned banks. In this study, the Ordinary least square model was used for the analysis of the data. The results supported the hypothesis that macroeconomic factors and bank-specific factors have a significant effect on credit risk. Macroeconomic variables, Inflation and exchange rates have positive significant effects on credit risk. However, gross domestic product has a negative significant relationship with credit risk. Moreover, the corporate rate has no significant relation with credit risk. Internal variables, size, management efficiency, net profit share income and capital adequacy have been proven to influence positively and significantly the credit risk. However, loan to deposit-has a negative insignificance relationship with credit risk. The contribution of this article is that similar conclusions have been made regarding the influence of banking factors on credit risk.

Keywords: credit risk, Islamic banks, macroeconomic variables, banks specific variable

Procedia PDF Downloads 17
2232 Green Closed-Loop Supply Chain Network Design Considering Different Production Technologies Levels and Transportation Modes

Authors: Mahsa Oroojeni Mohammad Javad

Abstract:

Globalization of economic activity and rapid growth of information technology has resulted in shorter product lifecycles, reduced transport capacity, dynamic and changing customer behaviors, and an increased focus on supply chain design in recent years. The design of the supply chain network is one of the most important supply chain management decisions. These decisions will have a long-term impact on the efficacy and efficiency of the supply chain. In this paper, a two-objective mixed-integer linear programming (MILP) model is developed for designing and optimizing a closed-loop green supply chain network that, to the greatest extent possible, includes all real-world assumptions such as multi-level supply chain, the multiplicity of production technologies, and multiple modes of transportation, with the goals of minimizing the total cost of the chain (first objective) and minimizing total emissions of emissions (second objective). The ε-constraint and CPLEX Solver have been used to solve the problem as a single-objective problem and validate the problem. Finally, the sensitivity analysis is applied to study the effect of the real-world parameters’ changes on the objective function. The optimal management suggestions and policies are presented.

Keywords: closed-loop supply chain, multi-level green supply chain, mixed-integer programming, transportation modes

Procedia PDF Downloads 80
2231 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore

Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska

Abstract:

— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.

Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis

Procedia PDF Downloads 25
2230 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: composite, fuzzy, tool life, wear

Procedia PDF Downloads 295
2229 Fluorescent Analysis of Gold Nanoclusters-Wool Keratin Addition to Copper Ions

Authors: Yao Xing, Hong Ling Liu, Wei Dong Yu

Abstract:

With the increase of global population, it is of importance for the safe water supply, while, the water-monitoring method with the capability of rapidness, low-cost, green and robustness remains unsolved. In this paper, gold nanoclusters-wool keratin is added into copper ions measured by fluorescent method in order to probe copper ions in aqueous solution. The fluorescent results show that gold nanoclusters-wool keratin exhibits high stability of pHs, while it is sensitive to temperature and time. Based on Gauss fitting method, the results exhibit that the slope of gold nanoclusters-wool keratin with pH resolution under acidic condition is higher compared to it under alkaline solutions. Besides, gold nanoclusters-wool keratin added into copper ions shows a fluorescence turn-off response transferring from red to blue under UV light, leading to the dramatically decreased fluorescent intensity of gold nanoclusters-wool keratin solution located at 690 nm. Moreover, the limited concentration of copper ions tested by gold nanoclusters-wool keratin system is around 1 µmol/L, which meets the need of detection standards. The fitting slope of Stern-Volmer plot at low concentration of copper ions is larger than it at high concentrations, which indicates that aggregated gold nanoclusters are from small amounts to large numbers with the increasing concentration of copper ions. It is expected to provide novel method and materials for copper ions testing with low cost, high efficiency, and easy operability.

Keywords: gold nanoclusters, copper ions, wool keratin, fluorescence

Procedia PDF Downloads 252
2228 Pedestrian Areas, Development Stimulus in Urban Old Fabrics; Analyzing Stroget, Pedestrian Street in Copenhagen

Authors: Kiomars Habibi, Mostafa Behzadfar, Airin Jaberi

Abstract:

Designing appropriate places for the comfort of pedestrians is one of the most important aspects of modern urbanization and renovation and rehabilitation stimulus of urban old fabrics. So, that special cities designed for pedestrians with a complete network of streets without cars, can be considered as one of the best habitations in the world. The number of these cities with a network of streets and squares in which beauty, enjoyment and comfort are mostly concerned for the pedestrians designed regions is increasing around the world, such as Stockholm, Copenhagen, Munich, Frankfurt, Venice, Rome, etc. In this paper, we are going to explain the influential factors regarding the efficiency of these cities by identifying one of the most important pedestrian ways of the world; Strøget is a car free zone in Copenhagen, Denmark. This popular tourist attraction in the center of town is the longest pedestrian shopping area in Europe. Analyses indicate that world-wide experience concerning the renovation and rehabilitation of old fabrics has many advantages in exploiting the idea of pedestrian way for regeneration of old fabrics. Transforming the streets to appropriate places for the comfort of pedestrians, expanding the public spaces such as city squares, and decreasing the masses of building alongside the brought comfort and peace is the main reason in the success of Strøget pedestrian street in urban old fabrics of Copenhagen. Hypothesis: The Strøget pedestrian street has been the development stimulus in Copenhagen and the urban old fabrics development as a result

Keywords: development, stimulus, pedestrian street, urban landscape, Stroget

Procedia PDF Downloads 107
2227 Carbon Supported Silver Nanostructures for Electrochemical Carbon Dioxide Reduction

Authors: Sonali Panigrahy, Manjunatha K., Sudip Barman

Abstract:

Electrocatalytic reduction methods hold significant promise in addressing the urgent need to mitigate excessive greenhouse gas emissions, particularly carbon dioxide (CO₂). A highly effective catalyst is essential for achieving the conversion of CO₂ into valuable products due to the complex, multi-electron, and multi-product nature of the CO₂ reduction process. The electrochemical reduction of CO₂, driven by renewable energy sources, presents a valuable opportunity for simultaneously reducing CO₂ emissions while generating valuable chemicals and fuels, with syngas being a noteworthy product. Silver-based electrodes have been the focus of extensive research due to their low overpotential and remarkable selectivity in promoting the generation of carbon monoxide (CO) in the electrocatalytic carbon dioxide reduction reaction (CO₂RR). In this study, we delve into the synthesis of carbon-supported silver nanoparticles (Ag/C), which serve as efficient electrocatalysts for the reduction of CO₂. The as-prepared catalyst, Ag/C, is not only cost-effective but also highly proficient in facilitating the conversion of CO₂ and H₂O into syngas, which is a customizable mixture of hydrogen (H₂) and carbon monoxide (CO). The highest faradic efficiency for the production of CO on Ag/C was calculated to be 56.4% at -1.4 V vs Ag/AgCl. The maximum partial current density for the generation of CO was determined to be -9.4 mA cm-2 at a potential of -1.6 V vs Ag/AgCl. This research demonstrates the potential of Ag/C as an electrocatalyst to enable the sustainable production of syngas, contributing to the reduction of CO₂ emissions and the synthesis of valuable chemical precursors and fuels.

Keywords: CO₂, carbon monooxide, electrochemical, silver

Procedia PDF Downloads 70
2226 The Impact of Institutional and Organizational Change on Social Housing Organizations and Their Stakeholders

Authors: Farnoosh Faal

Abstract:

Institutional and organizational change in social housing organizations can have a significant impact on both the organizations themselves and their stakeholders. This paper provides an overview of the impact of institutional and organizational change on social housing organizations and their stakeholders, including tenants, employees, and other community members. The paper examines the different types of institutional and organizational change that can occur in social housing organizations, such as changes in management structure, funding models, and service delivery methods. It also explores the potential benefits and drawbacks of these changes, including changes in efficiency, service quality, and tenant satisfaction. The paper further discusses the impact of institutional and organizational change on social housing organization stakeholders, including the effects on employee morale, tenant engagement, and community relationships. The paper highlights the importance of effective stakeholder engagement and communication in ensuring a smooth transition to new organizational models and systems. Finally, the paper discusses the challenges and opportunities presented by institutional and organizational change in social housing organizations and provides recommendations for organizations looking to navigate these changes successfully. These recommendations include prioritizing stakeholder engagement, investing in staff training and development, and maintaining a focus on the needs and priorities of tenants and communities. Overall, this paper emphasizes the importance of considering the impact of institutional and organizational change on social housing organizations and their stakeholders and highlights strategies for managing these changes in a way that maximizes benefits and minimizes negative impacts.

Keywords: social housing organizations, stakeholder engagement, institutional change, challenges, opportunities

Procedia PDF Downloads 86
2225 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang

Abstract:

Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.

Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing

Procedia PDF Downloads 70
2224 Full-Spectrum Photo-thermal Conversion of Point-mode Cu₂O/TiN Plasmonic Nanofluids

Authors: Xiaoxiao Yu, Guodu He, Zihua Wu, Yuanyuan Wang, Huaqing Xie

Abstract:

Core-shell composite structure is a common method to regulate the spectral absorption of nanofluids, but there occur complex preparation processes, which limit the applications in some fields, such as photothermal utilization and catalysis. This work proposed point-mode Cu₂O/TiN plasmonic nanofluids to regulate the spectral capturing ability and simplify the preparation process. Non-noble TiN nanoparticles with the localized surface plasmon resonance effect are dispersed in Cu₂O nanoparticles for forming a multi-point resonance source to enhance the spectral absorption performance. The experimental results indicate that the multiple resonance effect of TiN effectively improves the optical absorption and expands the absorption region. When the radius of Cu₂O nanoparticles is equal to 150nm, the optical absorption of point-mode Cu₂O/TiN plasmonic nanoparticles is best. Moreover, the photothermal conversion efficiency of Cu₂O/TiN plasmonic nanofluid can reach 97.5% at a volume fraction of 0.015% and an optical depth of 10mm. The point-mode nanostructure effectively enhances the optical absorption properties and greatly simplifies the preparation process of the composite nanoparticles, which can promote the application of multi-component photonic nanoparticles in the field of solar energy.

Keywords: solar energy, nanofluid, point-mode structure, Cu₂O/TiN, localized surface plasmon resonance effect

Procedia PDF Downloads 61
2223 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform

Authors: Jie Zhao, Meng Su

Abstract:

Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.

Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab

Procedia PDF Downloads 90
2222 Variation among East Wollega Coffee (Coffea arabica L.) Landraces for Quality Attributes

Authors: Getachew Weldemichael, Sentayehu Alamerew, Leta Tulu, Gezahegn Berecha

Abstract:

Coffee quality improvement program is becoming the focus of coffee research, as the world coffee consumption pattern shifted to high-quality coffee. However, there is limited information on the genetic variation of C. Arabica for quality improvement in potential specialty coffee growing areas of Ethiopia. Therefore, this experiment was conducted with the objectives of determining the magnitude of variation among 105 coffee accessions collected from east Wollega coffee growing areas and assessing correlations between the different coffee qualities attributes. It was conducted in RCRD with three replications. Data on green bean physical characters (shape and make, bean color and odor) and organoleptic cup quality traits (aromatic intensity, aromatic quality, acidity, astringency, bitterness, body, flavor, and overall standard of the liquor) were recorded. Analysis of variance, clustering, genetic divergence, principal component and correlation analysis was performed using SAS software. The result revealed that there were highly significant differences (P<0.01) among the accessions for all quality attributes except for odor and bitterness. Among the tested accessions, EW104 /09, EW101 /09, EW58/09, EW77/09, EW35/09, EW71/09, EW68/09, EW96 /09, EW83/09 and EW72/09 had the highest total coffee quality values (the sum of bean physical and cup quality attributes). These genotypes could serve as a source of genes for green bean physical characters and cup quality improvement in Arabica coffee. Furthermore, cluster analysis grouped the coffee accessions into five clusters with significant inter-cluster distances implying that there is moderate diversity among the accessions and crossing accessions from these divergent inter-clusters would result in hetrosis and recombinants in segregating generations. The principal component analysis revealed that the first three principal components with eigenvalues greater than unity accounted for 83.1% of the total variability due to the variation of nine quality attributes considered for PC analysis, indicating that all quality attributes equally contribute to a grouping of the accessions in different clusters. Organoleptic cup quality attributes showed positive and significant correlations both at the genotypic and phenotypic levels, demonstrating the possibility of simultaneous improvement of the traits. Path coefficient analysis revealed that acidity, flavor, and body had a high positive direct effect on overall cup quality, implying that these traits can be used as indirect criteria to improve overall coffee quality. Therefore, it was concluded that there is considerable variation among the accessions, which need to be properly conserved for future improvement of the coffee quality. However, the variability observed for quality attributes must be further verified using biochemical and molecular analysis.

Keywords: accessions, Coffea arabica, cluster analysis, correlation, principal component

Procedia PDF Downloads 166
2221 Reversibility of Photosynthetic Activity and Pigment-protein Complexes Expression During Seed Development of Soybean and Black Soybean

Authors: Tzan-Chain Lee

Abstract:

Seeds are non-leaves green tissues. Photosynthesis begins with light absorption by chlorophyll and then the energy transfer between two pigment-protein complexes (PPC). Most studies of photosynthesis and PPC expression were focused on leaves; however, during seeds’ development were rare. Developed seeds from beginning pod (stage R3) to dried seed (stage R8), and the dried seed after sowing for 1-4 day, were analyzed for their chlorophyll contents. Thornber and MARS gel systems analysis compositions of PPC. Chlorophyll fluorescence was used to detect maximal photosynthetic efficiency (Fv/Fm). During soybean and black soybean seeds development (stages R3-R6), Fv/Fm up to 0.8, and then down-regulated after full seed (stage R7). In dried seed (stage R8), the two plant seeds lost photosynthetic activity (Fv/Fm=0), but chlorophyll degradation only occurred in soybean after full seed. After seeds sowing for 4 days, chlorophyll drastically increased in soybean seeds, and Fv/Fm recovered to 0.8 in the two seeds. In PPC, the two soybean seeds contained all PPC during seeds development (stages R3-R6), including CPI, CPII, A1, AB1, AB2, and AB3. However, many proteins A1, AB1, AB2, and CPI were totally missing in the two dried seeds (stage R8). The deficiency of these proteins in dried seeds might be caused by the incomplete photosynthetic activity. After seeds germination and seedling exposed to light for 4 days, all PPC were recovered, suggesting that completed PPC took place in the two soybean seeds. This study showed the reversibility of photosynthetic activity and pigment-protein complexes during soybean and black soybean seeds development.

Keywords: light-harvesting complex, pigment–protein complexes, soybean cotyledon, grana development

Procedia PDF Downloads 149
2220 The Impact of Artificial Intelligence on Torism Ouputs

Authors: Nancy Ayman Kamal Mohamed Mehrz

Abstract:

As the economies of other countries in the Mediterranean Basin, the tourism sector in our country has a high denominator in economics. Tourism businesses, which are building blocks of tourism, sector faces with a variety of problems during their activities. These problems faced make business efficiency and competition conditions of the businesses difficult. Most of the problems faced by the tourism businesses and the information of consumers about consumers’ rights were used in this study, which is conducted to determine the problems of tourism businesses in the Central Anatolia Region. It is aimed to contribute the awareness of staff and executives working at tourism sector and to attract attention of businesses active concurrently with tourism sector and legislators. E-tourism is among the issues that have recently been entered into the field of tourism. In order to achieve this type of tourism, Information and Communications Technology (or ICT) infrastructures as well as Co-governmental organizations and tourism resources are important. In this study, the opinions of managers and tourism officials about the e-tourism in Leman city were measured; it also surveyed the impact of level of digital literacy of managers and tourism officials on attracting tourists. This study was conducted. One of the environs of the Esfahan province. This study is a documentary – survey and the sources include library resources and also questionnaires. The results obtained indicate that if managers use ICT, it may help e-tourism to be developed in the region, and increasing managers’ beliefs on e-tourism and upgrading their level of digital literacy may affect e-tourism development.

Keywords: financial problems, the problems of tourism businesses, tourism businesses, internet, marketing, tourism, tourism management economic competitiveness, enhancing competitiveness

Procedia PDF Downloads 72