Search results for: pigment–protein complexes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2657

Search results for: pigment–protein complexes

2657 Reversibility of Photosynthetic Activity and Pigment-protein Complexes Expression During Seed Development of Soybean and Black Soybean

Authors: Tzan-Chain Lee

Abstract:

Seeds are non-leaves green tissues. Photosynthesis begins with light absorption by chlorophyll and then the energy transfer between two pigment-protein complexes (PPC). Most studies of photosynthesis and PPC expression were focused on leaves; however, during seeds’ development were rare. Developed seeds from beginning pod (stage R3) to dried seed (stage R8), and the dried seed after sowing for 1-4 day, were analyzed for their chlorophyll contents. Thornber and MARS gel systems analysis compositions of PPC. Chlorophyll fluorescence was used to detect maximal photosynthetic efficiency (Fv/Fm). During soybean and black soybean seeds development (stages R3-R6), Fv/Fm up to 0.8, and then down-regulated after full seed (stage R7). In dried seed (stage R8), the two plant seeds lost photosynthetic activity (Fv/Fm=0), but chlorophyll degradation only occurred in soybean after full seed. After seeds sowing for 4 days, chlorophyll drastically increased in soybean seeds, and Fv/Fm recovered to 0.8 in the two seeds. In PPC, the two soybean seeds contained all PPC during seeds development (stages R3-R6), including CPI, CPII, A1, AB1, AB2, and AB3. However, many proteins A1, AB1, AB2, and CPI were totally missing in the two dried seeds (stage R8). The deficiency of these proteins in dried seeds might be caused by the incomplete photosynthetic activity. After seeds germination and seedling exposed to light for 4 days, all PPC were recovered, suggesting that completed PPC took place in the two soybean seeds. This study showed the reversibility of photosynthetic activity and pigment-protein complexes during soybean and black soybean seeds development.

Keywords: light-harvesting complex, pigment–protein complexes, soybean cotyledon, grana development

Procedia PDF Downloads 118
2656 Hydration of Protein-RNA Recognition Sites

Authors: Amita Barik, Ranjit Prasad Bahadur

Abstract:

We investigate the role of water molecules in 89 protein-RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein-RNA interfaces are hydrated less than protein-DNA interfaces, but more than protein-protein interfaces. Majority of the waters at protein-RNA interfaces makes multiple H-bonds; however, a fraction does not make any. Those making Hbonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein-DNA interfaces, mainly due to the presence of the 2’OH, the ribose in protein-RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein-RNA interfaces is hydrated more than the major groove, while in protein-DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein-RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein-RNA recognition and should be carefully treated while engineering protein-RNA interfaces.

Keywords: h-bonds, minor-major grooves, preserved water, protein-RNA interfaces

Procedia PDF Downloads 258
2655 LHCII Proteins Phosphorylation Changes Involved in the Dark-Chilling Response in Plant Species with Different Chilling Tolerance

Authors: Malgorzata Krysiak, Anna Wegrzyn, Maciej Garstka, Radoslaw Mazur

Abstract:

Under constantly fluctuating environmental conditions, the thylakoid membrane protein network evolved the ability to dynamically respond to changing biotic and abiotic factors. One of the most important protective mechanism is rearrangement of the chlorophyll-protein (CP) complexes, induced by protein phosphorylation. In a temperate climate, low temperature is one of the abiotic stresses that heavily affect plant growth and productivity. The aim of this study was to determine the role of LHCII antenna complex phosphorylation in the dark-chilling response. The study included an experimental model based on dark-chilling at 4 °C of detached chilling sensitive (CS) runner bean (Phaseolus coccineus L.) and chilling tolerant (CT) garden pea (Pisum sativum L.) leaves. This model is well described in the literature as used for the analysis of chilling impact without any additional effects caused by light. We examined changes in thylakoid membrane protein phosphorylation, interactions between phosphorylated LHCII (P-LHCII) and CP complexes, and their impact on the dynamics of photosystem II (PSII) under dark-chilling conditions. Our results showed that the dark-chilling treatment of CS bean leaves induced a substantial increase of phosphorylation of LHCII proteins, as well as changes in CP complexes composition and their interaction with P-LHCII. The PSII photochemical efficiency measurements showed that in bean, PSII is overloaded with light energy, which is not compensated by CP complexes rearrangements. On the contrary, no significant changes in PSII photochemical efficiency, phosphorylation pattern and CP complexes interactions were observed in CT pea. In conclusion, our results indicate that different responses of the LHCII phosphorylation to chilling stress take place in CT and CS plants, and that kinetics of LHCII phosphorylation and interactions of P-LHCII with photosynthetic complexes may be crucial to chilling stress response. Acknowledgments: presented work was financed by the National Science Centre, Poland grant No.: 2016/23/D/NZ3/01276

Keywords: LHCII, phosphorylation, chilling stress, pea, runner bean

Procedia PDF Downloads 106
2654 Comparative Study of Stability of Crude and Purified Red Pigments of Pokeberry (Phytolacca Americana L.) Fruits

Authors: Nani Mchedlishvili, Nino Omiadze, Marine Abutidze, Jose Neptuno Rodriguez-Lopez, Tinatin Sadunishvili, Nikoloz Pruidze, Giorgi Kvesitadze

Abstract:

Recently, there is an increased interest in the development of food natural colorants as alternatives to synthetic dyes because of both legislative action and consumer concern. Betalains are widely used in the food industry as an alternative of synthetic colorants. The interest of betalains are caused not only by their coloring effect but also by their beneficial properties. The aim of the work was to study of stability of crude and purified red pigments of pokeberry (Phytolacca america L.). The pokeberry fruit juice was filtrated and concentrated by rotary vacuum evaporator up to 25% and the concentrated juice was passed through the Sepadex-25(fine) column (20×1.1 cm). From the column the pigment elution rate was 18 ml/hr. 1.5ml fractions of pigment were collected. In the fractions the coloring substances were determined using CuS04 x 7 H2O as a standard. From the Sephadex G-25 column only one fraction of the betalain red pigment was eluted with the absorption maximum at 538 nm. The degree of pigment purification was 1.6 and pigment yield from the column was 15 %. It was shown that thermostability of pokeberry fruit red pigment was significantly decreased after the purification. For example, during incubation at 100C for 10 min crude pigment retained 98 % of its color while under the same conditions only 72% of the color of purified pigment was retained. The purified pigment was found to be characterized by less storage stability too. The storage of the initial crude juice and the pigment fraction obtained after the gelfiltration for 10 days at 4°C showed the lost of color by 29 and 74 % respectively. From the results obtained, it can be concluded that during the gelfiltration the pokeberry fruit red pigment gets separated from such substances that cause its stabilization in the crude juice.

Keywords: betalains, gelfiltration, pokeberry fruit, stability

Procedia PDF Downloads 244
2653 Wt1 and FoxL2 Genes Expression Pattern in Mesonephros-Gonad Complexes of Green Sea Turtle (Chelonia mydas) Embryos Incubated in Feminization and Masculinization Temperature

Authors: Fitria D. Ayuningtyas, Anggraini Barlian

Abstract:

Green turtle (Chelonia mydas) is one of TSD (Temperature-dependent Sex Determination, TSD) animals which sex is determined by the egg’s incubation temperature. GSD (Genotypic Sex Determination) homologous genes such as Wilms’ Tumor (Wt1) and Forkhead Box L2 (FoxL2) play a role in TSD animal sex determination process. Wt1 plays a role in both male pathway, as a transcription factor for Sf1 gene and in female pathway, as a transcription factor for Dax1. FoxL2 plays a role specifically in female sex determination, and known as transcriptional factor for Aromatase gene. Until now, research on the pattern of Wt1 and FoxL2 genes expression in C.mydas has not been conducted yet. The aim of this research is to know the pattern of Wt1 and FoxL2 genes expression in Mesonephros-Gonad (MG) complexes of Chelonia mydas embryos incubated in masculinizing temperature (MT) and feminizing temperature (FT). Eggs of C.mydas incubated in 3 different stage of TSP (Thermosensitive Period) at masculinizing temperature (26±10C, MT) and feminizing temperature (31±10C FT). Mesonefros-gonad complexes were isolated at Pre-TSP stage (FT at days 14th, MT at days 24th), TSP stage (FT at days 24th, MT at days 36th) and differentiated stage (FT at days 40th, MT at days 58th). RNA from mesonephros-gonad (MG) complexes were converted into cDNA by RT-PCR process, and the pattern of Wt1 and FoxL2 genes expression is analyzed by quantitative Real Time PCR (qPCR) method, β-actin gene is used as an internal control. The pattern of Wt1 gene expression in Pre-TSP stage was almost the same between MG complexes incubated at MT or FT, while TSP and differentiation stage, the pattern of Wt1 gene expression in MG complexes incubated at MT or FT was increased. Wt1 gene expression of MG complexes that incubated at FT was higher than at MT. There was a difference pattern between Wt1 gene expression in this research compared to the previous research in protein level. It could be assumed that the difference caused by post-transcriptional regulation mechanisms before mRNA of Wt1 gene translated into protein structure. The pattern of FoxL2 gene expression in Pre-TSP stage was almost the same between MG complexes that incubated at MT and FT, and increased in both TSP and differentiated stage. The FoxL2 gene expression in MG complexes that incubated in FT is higher than MT on TSP and differentiated stage. Based on the results of this research, it can be assumed that Wt1 and FoxL2 gene were expressed in MG complexes that incubated both at MT and FT since Pre-TSP stage. The pattern of Wt1 gene expression was increased in every stage of gonadal development, and so do the pattern of FoxL2 gene expression. Wt1 and FoxL2 gene expressions were higher in MG complexes incubated at FT than MT.

Keywords: chelonia mydas, FoxL2, gene expression, TSD, Wt1

Procedia PDF Downloads 377
2652 Synthesis, Investigation, DFT Study and Biologically Activity of Zirconium (IV) Complexes with Diammie Complexes

Authors: Salem El Ashoor, Fathia M. El-Meheishi, Ibtisam M. Diab

Abstract:

Zirconium diammin and triammin complexes can be possess biological activities, these complexes were synthesized via the reaction equimolar quantity of (1:10-phenanthroline){NC3H3(C6H2)NC3H3} (L1) or 4-4-amino phenazone {ONC6H5(NH)CH(NH2} (L2) or diphenyl carbizon {HNNCO(NH)2(C6H5)} (L3) with Zirconium Salt {ZrOCl2} in ratio (1:1) to form complexes [{NC3H3(C6H2)NC3H3}ZrOCl2}] [ZrOCl2L1], [{(O2NC6H4(NH)(NH2)}ZrOCl2] [ZrOCl2L2] and [{HNNCO(NH)2(C6H5)ZrOCl2}] [ZrOCl2L3] respectively. The characterization of these complexes were follow by using Fourier Transform Infrared (FT-IR) and UV-Visible spectroscopy. Also a variable temperature study of these complexes has been followed by using UV-Visible spectroscopy to follow electronic transform behaviors under temperature control also DFT study calculation was follow these complexes via the information from FT-IR and UV-Visible spectroscopy. A coordination number of these complexes of types five and six of the geometry can be suggested. These complexes were found to shown deferent inhibition to the growth of bacterial strains of Bacillus spp & Klebsiella spp & E.coli & proteus spp & pseudomona spp) while all complexes were in deferent's concentration (0.001, 0.2 and 1M) and the result as evidenced from the presence. For better understanding these complexes were examined by using Density functional theory (DFT) calculation.

Keywords: (1:10-phenanthroline) (L1), 4-4-amino phenazone (L2), diphenyl carbizon (L3), DFT study, antibacterial

Procedia PDF Downloads 386
2651 Encapsulation and Protection of Bioactive Nutrients Based on Ligand-Binding Property of Milk Proteins

Authors: Hao Cheng, Yingzhou Ni, Amr M. Bakry, Li Liang

Abstract:

Functional foods containing bioactive nutrients offer benefits beyond basic nutrition and hence the possibility of delaying and preventing chronic diseases. However, many bioactive nutrients degrade rapidly under food processing and storage conditions. Encapsulation can be used to overcome these limitations. Food proteins have been widely used as carrier materials for the preparation of nano/micro-particles because of their ability to form gels and emulsions and to interact with polysaccharides. The mechanisms of interaction between bioactive nutrients and proteins must be understood in order to develop protein-based lipid-free delivery systems. Beta-lactoglobulin, a small globular protein in milk whey, exhibits an affinity to a wide range of compounds. Alfa-tocopherol, resveratrol and folic acid were respectively bound to the central cavity, the outer surface near Trp19–Arg124 and the hydrophobic pocket in the groove between the alfa-helix and the beta-barrel of the protein. Beta-lactoglobulin could thus bind the three bioactive nutrients simultaneously to form protein-multi-ligand complexes. Beta-casein, an intrinsically unstructured but major milk protein, could also interact with resveratrol and folic acid to form complexes. These results suggest the potential to develop milk-protein-based complex carrier systems for encapsulation of multiple bioactive nutrients for functional food application and also pharmaceutical and medical uses.

Keywords: milk protein, bioactive nutrient, interaction, protection

Procedia PDF Downloads 382
2650 Synthesis, Characterization and Biological Properties of Half-Sandwich Complexes of Ruthenium(II), Rhodium(II) and Iridium(III)

Authors: A. Gilewska, J. Masternak, K. Kazimierczuk, L. Turlej, J. Wietrzyk, B. Barszcz

Abstract:

Platinum-based drugs are now widely used as chemotherapeutic agents. However the platinum complexes show the toxic side-effects: i) the development of platinum resistance; ii) the occurrence of severe side effects, such as nephro-, neuro- and ototoxicity; iii) the high toxicity towards human fibroblast. Therefore the development of new anticancer drugs containing different transition-metal ions, for example, ruthenium, rhodium, iridium is a valid strategy in cancer treatment. In this paper, we reported the synthesis, spectroscopic, structural and biological properties of complexes of ruthenium, rhodium, and iridium containing N,N-chelating ligand (2,2’-bisimidazole). These complexes were characterized by elemental analysis, UV-Vis and IR spectroscopy, X-ray diffraction analysis. These complexes exhibit a typical pseudotetrahedral three-legged piano-stool geometry, in which the aromatic arene ring forms the seat of the piano-stool, while the bidentate 2,2’-bisimidazole (ligand) and the one chlorido ligand form the three legs of the stool. The spectroscopy data (IR, UV-Vis) and elemental analysis correlate very well with molecular structures. Moreover, the cytotoxic activity of the complexes was carried out on human cancer cell lines: LoVo (colorectal adenoma), MV-4-11 (myelomonocytic leukaemia), MCF-7 (breast adenocarcinoma) and normal healthy mouse fibroblast BALB/3T3 cell lines. To predict a binding mode, a potential interaction of metal complexes with calf thymus DNA (CT-DNA) and protein (BSA) has been explored using UV absorption and circular dichroism (CD). It is interesting to note that the investigated complexes show no cytotoxic effect towards the normal BALB/3T3 cell line, compared to cisplatin, which IC₅₀ values was determined as 2.20 µM. Importantly, Ru(II) displayed the highest activity against HL-60 (IC₅₀ 4.35 µM). The biological studies (UV-Vis and circular dichroism) suggest that arene-complexes could interact with calf thymus DNA probably via an outside binding mode and interact with protein (BSA).

Keywords: ruthenium(II) complex, rhodium(III) complex, iridium(III) complex, biological activity

Procedia PDF Downloads 105
2649 Effect of Whey Proteins and Caffeic Acid Interactions on Antioxidant Activity and Protein Structure

Authors: Tassia Batista Pessato, Francielli Pires Ribeiro Morais, Fernanda Guimaraes Drummond Silva, Flavia Maria Netto

Abstract:

Proteins and phenolic compounds can interact mainly by hydrophobic interactions. Those interactions may lead to structural changes in both molecules, which in turn could affect positively or negatively their functional and nutritional properties. Here, the structural changes of whey proteins (WPI) due to interaction with caffeic acid (CA) were investigated by intrinsic and extrinsic fluorescence. The effects of protein-phenolic compounds interactions on the total phenolic content and antioxidant activity were also assessed. The WPI-CA complexes were obtained by mixture of WPI and CA stock solutions in deionized water. The complexation was carried out at room temperature during 60 min, using 0.1 M NaOH to adjust pH at 7.0. The WPI concentration was fixed at 5 mg/mL, whereas the CA concentration varied in order to obtain four different WPI:CA molar relations (1:1; 2:1; 5:1; 10:1). WPI and phenolic solutions were used as controls. Intrinsic fluorescence spectra of the complexes (mainly due to Trp fluorescence emission) were obtained at λex = 280 nm and the emission intensities were measured from 290 to 500 nm. Extrinsic fluorescence was obtained as the measure of protein surface hydrophobicity (S0) using ANS as a fluorescence probe. Total phenolic content was determined by Folin-Ciocalteau and the antioxidant activity by FRAP and ORAC methods. Increasing concentrations of CA resulted in decreasing of WPI intrinsic fluorescence. The emission band of WPI red shifted from 332 to 354 nm as the phenolic concentration increased, which is related to the exposure of Trp residue to the more hydrophilic environment and unfolding of protein structure. In general, the complexes presented lower S0 values than WPI, suggesting that CA hindered ANS binding to hydrophobic sites of WPI. The total phenolic content in the complexes was lower than the sum of two compounds isolated. WPI showed negligible AA measured by FRAP. However, as the relative concentration of CA increased in the complexes, the FRAP values enhanced, indicating that AA measure by this technique comes mainly from CA. In contrast, the WPI ORAC value (82.3 ± 1.5 µM TE/g) suggest that its AA is related to the capacity of H+ transfer. The complexes exhibited no important improvement of AA measured by ORAC in relation to the isolated components, suggesting complexation partially suppressed AA of the compounds. The results hereby presented indicate that interaction of WPI and CA occurred, and this interaction caused a structural change in the proteins. The complexation can either hide or expose antioxidant sites of both components. In conclusion, although the CA can undergo an AA suppression due to the interaction with proteins, the AA of WPI could be enhanced due to protein unfolding and exposure of antioxidant sites.

Keywords: bioactive properties, milk proteins, phenolic acids, protein-phenolic compounds complexation

Procedia PDF Downloads 510
2648 Physicochemical Properties of Pea Protein Isolate (PPI)-Starch and Soy Protein Isolate (SPI)-Starch Nanocomplexes Treated by Ultrasound at Different pH Values

Authors: Gulcin Yildiz, Hao Feng

Abstract:

Soybean proteins are the most widely used and researched proteins in the food industry. Due to soy allergies among consumers, however, alternative legume proteins having similar functional properties have been studied in recent years. These alternative proteins are also expected to have a price advantage over soy proteins. One such protein that has shown good potential for food applications is pea protein. Besides the favorable functional properties of pea protein, it also contains fewer anti-nutritional substances than soy protein. However, a comparison of the physicochemical properties of pea protein isolate (PPI)-starch nanocomplexes and soy protein isolate (SPI)-starch nanocomplexes treated by ultrasound has not been well documented. This study was undertaken to investigate the effects of ultrasound treatment on the physicochemical properties of PPI-starch and SPI-starch nanocomplexes. Pea protein isolate (85% pea protein) provided by Roquette (Geneva, IL, USA) and soy protein isolate (SPI, Pro-Fam® 955) obtained from the Archer Daniels Midland Company were adjusted to different pH levels (2-12) and treated with 5 minutes of ultrasonication (100% amplitude) to form complexes with starch. The soluble protein content was determined by the Bradford method using BSA as the standard. The turbidity of the samples was measured using a spectrophotometer (Lambda 1050 UV/VIS/NIR Spectrometer, PerkinElmer, Waltham, MA, USA). The volume-weighted mean diameters (D4, 3) of the soluble proteins were determined by dynamic light scattering (DLS). The emulsifying properties of the proteins were evaluated by the emulsion stability index (ESI) and emulsion activity index (EAI). Both the soy and pea protein isolates showed a U-shaped solubility curve as a function of pH, with a high solubility above the isoelectric point and a low one below it. Increasing the pH from 2 to 12 resulted in increased solubility for both the SPI and PPI-starch complexes. The pea nanocomplexes showed greater solubility than the soy ones. The SPI-starch nanocomplexes showed better emulsifying properties determined by the emulsion stability index (ESI) and emulsion activity index (EAI) due to SPI’s high solubility and high protein content. The PPI had similar or better emulsifying properties at certain pH values than the SPI. The ultrasound treatment significantly decreased the particle sizes of both kinds of nanocomplex. For all pH levels with both proteins, the droplet sizes were found to be lower than 300 nm. The present study clearly demonstrated that applying ultrasonication under different pH conditions significantly improved the solubility and emulsify¬ing properties of the SPI and PPI. The PPI exhibited better solubility and emulsifying properties than the SPI at certain pH levels

Keywords: emulsifying properties, pea protein isolate, soy protein isolate, ultrasonication

Procedia PDF Downloads 280
2647 Synthesis, Characterization and Catalytic Applications of Divalent Schiff Base Metal Complexes Derived from Amino Coumarins and Substituted Benzaldehydes and Acetophenones

Authors: Srinivas Nerella

Abstract:

A series of new heterodentate N, O-donor ligands derived from condensing 3-amino Coumarins with hydroxy benzaldehydes and acetophenones were used to afford new mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) coordination compounds. All the complexes were characterized by IR, 1H-NMR, 13C-NMR, Mass, ESR, Electronic spectra, Conductance, Magnetic and Thermal studies. The ligands show hexa coordination in Mn(II), Co(II), Ni(II), and Pd(II) complexes resulting octahedral geometries, while the ligands in Zn(II) and Cu(II) complexes show tetra coordination resulting tetrahedral and square planar geometries respectively. These mononuclear complexes were investigated as catalysts in the hydrothiolation of aromatic and aliphatic alkynes with thiols. These metal complexes were acted as versatile catalysts and gave good yields.

Keywords: schiff bases, divalent metal complexes of schiff bases, Catalytic activity, hydrothiolation

Procedia PDF Downloads 390
2646 Zinc (II) Complexes of Nitrogen, Oxygen and Sulfur Coordination Modes: Synthesis, Spectral Studies and Antibacterial Activities

Authors: Ayodele Odularu, Peter Ajibade, Albert Bolhuis

Abstract:

This study aimed at assessing the antibacterial activities of four zinc (II) complexes. Zinc (II) complexes of nitrogen, oxygen and sulfur coordination modes were synthesized using direct substitution reaction. The characterization techniques involved physicochemical properties (molar conductivity) and spectroscopic techniques. The molar conductivity gave the non-electrolytic nature of zinc (II) complexes. The spectral studies of zinc (II) complexes were done using electronic spectra (UV-Vis) and Fourier Transform Infra-red Spectroscopy (FT-IR). Spectral data from the spectroscopic studies confirmed the coordination of the mixed ligands with zinc (II) ion. The antibacterial activities of zinc(II) complexes of were all in supportive of Overtone’s concept and Tweedy’s theory of chelation for bacterial strains of S. aureus MRSA252 and E coli MC4100 because the zones of inhibition were greater than the corresponding ligands. In summary, all zinc (II) complexes of ZEPY, ZE1PH, ZE1PY and ZE135PY all have potentials for antibacterial activities.

Keywords: antibacterial activities, spectral studies, syntheses, zinc(II) complexes

Procedia PDF Downloads 243
2645 Investigations of Inclusion Complexes of Imazapyr with 2-Hydroxypropyl(β/γ) Cyclodextrin Experimental and Molecular Modeling Approach

Authors: Abdalla A. Elbashir, Maali Saad Mokhtar, FakhrEldin O. Suliman

Abstract:

The inclusion complexes of imazapyr (IMA) with 2-hydroxypropyl(β/γ) cyclodextrins (HP β/γ-CD), have been studied in aqueous media and in the solid state. In this work, fluorescence spectroscopy, electrospray-ionization mass spectrometry (ESI-MS), and HNMR were used to investigate and characterize the inclusion complexes of IMA with the cyclodextrins in solutions. The solid-state complexes were obtained by freeze-drying and were characterized by Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD). The most predominant complexes of IMA with both hosts are the 1:1 guest: host complexes. The association constants of IMA-HP β-CD and IMA-HP γ -CD were 115 and 215 L mol⁻¹, respectively. Molecular dynamic (MD) simulations were used to monitor the mode of inclusion and also to investigate the stability of these complexes in aqueous media at atomistic levels. The results obtained have indicated that these inclusion complexes are highly stable in aqueous media, thereby corroborating the experimental results. Additionally, it has been demonstrated that in addition to hydrophobic interactions and van der Waals interactions the presence of hydrogen bonding interactions of the type H---O and CH---O between the guest and the host have enhanced the stability of these complexes remarkably.

Keywords: imazapyr, inclusion complex, herbicides, 2-hydroxypropyl-β/γ-cyclodextrin

Procedia PDF Downloads 139
2644 Comparative DNA Binding of Iron and Manganese Complexes by Spectroscopic and ITC Techniques and Antibacterial Activity

Authors: Maryam Nejat Dehkordi, Per Lincoln, Hassan Momtaz

Abstract:

Interaction of Schiff base complexes of iron and manganese (iron [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) chloride, [Fe Salen]Cl, manganese [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) acetate) with DNA were investigated by spectroscopic and isothermal titration calorimetry techniques (ITC). The absorbance spectra of complexes have shown hyper and hypochromism in the presence of DNA that is indication of interaction of complexes with DNA. The linear dichroism (LD) measurements confirmed the bending of DNA in the presence of complexes. Furthermore, isothermal titration calorimetry experiments approved that complexes bound to DNA on the base of both electrostatic and hydrophobic interactions. Furthermore, ITC profile exhibits the existence of two binding phases for the complex. Antibacterial activity of ligand and complexes were tested in vitro to evaluate their activity against the gram positive and negative bacteria.

Keywords: Schiff base complexes, ct-DNA, linear dichroism (LD), isothermal titration calorimetry (ITC), antibacterial activity

Procedia PDF Downloads 444
2643 Synthesis and Biological Activity Evaluation of U Complexes

Authors: Mohammad Kazem Mohammadi

Abstract:

The use of anticancer agents forms an important part of the treatment of cancer of various types. Uranyl Complexes with DPHMP ligand have been used for the prevention and treatment of cancers. U(IV) metal complexes prepared by reaction of uranyl salt UO2 (NO3)2.6H2O with DPHMP in dry acetonitrile. Characterization of the ligand and its complexes was made by microanalyses, FT-IR, 1H NMR, 13C NMR and UV–Visible spectroscopy. These new complex showed excellent antitumor activity against two kinds of cancer cells that that are HT29:Haman colon adenocarcinoma cell line and T47D:human breast adenocarcinoma cell line.

Keywords: uranyl complexes, DPHMP ligand, antitumor activity, HT29, T47D

Procedia PDF Downloads 434
2642 Synthesis, Characterization and in vitro DNA Binding and Cleavage Studies of Cu(II)/Zn(II) Dipeptide Complexes

Authors: A. Jamsheera, F. Arjmand, D. K. Mohapatra

Abstract:

Small molecules binding to specific sites along DNA molecule are considered as potential chemotherapeutic agents. Their role as mediators of key biological functions and their unique intrinsic properties make them particularly attractive therapeutic agents. Keeping in view, novel dipeptide complexes Cu(II)-Val-Pro (1), Zn(II)-Val-Pro (2), Cu(II)-Ala-Pro (3) and Zn(II)-Ala-Pro (4) were synthesized and thoroughly characterized using different spectroscopic techniques including elemental analyses, IR, NMR, ESI–MS and molar conductance measurements. The solution stability study carried out by UV–vis absorption titration over a broad range of pH proved the stability of the complexes in solution. In vitro DNA binding studies of complexes 1–4 carried out employing absorption, fluorescence, circular dichroism and viscometric studies revealed the binding of complexes to DNA via groove binding. UV–vis titrations of 1–4 with mononucleotides of interest viz., 5´-GMP and 5´-TMP were also carried out. The DNA cleavage activity of the complexes 1 and 2 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents and the cleavage mechanism involved a hydrolytic pathway. Furthermore, in vitro antitumor activity of complex 1 was screened against human cancer cell lines of different histological origin.

Keywords: dipeptide Cu(II) and Zn(II) complexes, DNA binding profile, pBR322 DNA cleavage, in vitro anticancer activity

Procedia PDF Downloads 316
2641 Effect of Low Temperature on Structure and RNA Binding of E.coli CspA: A Molecular Dynamics Based Study

Authors: Amit Chaudhary, B. S. Yadav, P. K. Maurya, A. M., S. Srivastava, S. Singh, A. Mani

Abstract:

Cold shock protein A (CspA) is major cold inducible protein present in Escherichia coli. The protein is involved in stabilizing secondary structure of RNA by working as chaperone during cold temperature. Two RNA binding motifs play key role in the stabilizing activity. This study aimed to investigate implications of low temperature on structure and RNA binding activity of E. coli CspA. Molecular dynamics simulations were performed to compare the stability of the protein at 37°C and 10 °C. The protein was mutated at RNA binding motifs and docked with RNA to assess the stability of both complexes. Results suggest that CspA as well as CspA-RNA complex is more stable at low temperature. It was also confirmed that RNP1 and RNP2 play key role in RNA binding.

Keywords: CspA, homology modelling, mutation, molecular dynamics simulation

Procedia PDF Downloads 344
2640 N₂O₂ Salphen-Like Ligand and Its Pd(II), Ag(I) and Cu(II) Complexes as Potentially Anticancer Agents: Design, Synthesis, Antimicrobial, CT-DNA Binding and Molecular Docking

Authors: Laila H. Abdel-Rahman, Mohamed Shaker S. Adam, Ahmed M. Abu-Dief, Hanan El-Sayed Ahmed

Abstract:

In this investigation, Cu(II), Pd(II) and Ag(I) complexes with the tetra-dentate DSPH Schiff base ligand were synthesized. The DSPH Schiff base and its complexes were characterized by using different physicochemical and spectral analysis. The results revealed that the metal ions coordinated with DSPH ligand through azomethine nitrogen and phenolic oxygen. Cu(II), Pd(II) and Ag(I) complexes are present in a 1:1 molar ratio. Pd(II) and Ag(I) complexes have square planar geometries while, Cu(II) has a distorted octahedral (Oh) geometry. All investigated complexes are nonelectrolytes. The investigated compounds were tested against different strains of bacteria and fungi. Both prepared compounds showed good results of inhibition against the selected pathogenic microorganism. Moreover, the interaction of investigated complexes with CT-DNA was studied via various techniques and the binding modes are mainly intercalative and grooving modes. Operating Environment MOE package was used to do docking studies for the investigated complexes to explore the potential binding mode and energy. Furthermore, the growth inhibitory effect of the investigated compounds was examined on some cancer cells lines.

Keywords: tetradentate, antimicrobial, CT-DNA interaction, docking, anticancer

Procedia PDF Downloads 211
2639 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 188
2638 Salt-Induced Modulation in Biomass Production, Pigment Concentration, Ion Accumulation, Antioxidant System and Yield in Pea Plant

Authors: S. Noreen, S. Ahmad

Abstract:

Salinity is one of the most important environmental factors that limit the production of crop plants to the greatest proportion than any other ones. Salt-induced changes in growth, pigment concentration, water status, malondialdehydes (MDA) and H₂O₂ content, enzymatic and non-enzymatic antioxidants, Na⁺, K⁺ content and yield attributes were examined in the glasshouse on ten pea (Pisum Sativum L.) accessions, namely ‘13240’, ‘18302’, ‘19666’, ‘19700’, ‘19776’, ‘19785’, ‘19788’, ‘20153’, ‘20155’, ‘26719’ were subjected to non-stress (0 mM NaCl) and salt stress (100 mM and150 mM NaCl) in pots containing sand medium. The results showed that salt stress at level150 mM substantially reduced biomass production, leaf water status, pigment concentration (chlorophyll ‘a’, ‘b’, ‘carotenoid content’ total chlorophyll), K⁺ content, quantum yield and yield attributes as compared to plants treated with 100 mM NaCl. Antioxidant enzymes, Catalase (CAT), Peroxidase (POD), Superoxide dismutase (SOD) and Ascorbate peroxidase (APX), proline content, total soluble protein, total amino acids, Malondialdehyde content (MDA), Hydrogen peroxide (H₂O₂) content and Na⁺ uptake markedly enhanced due to the influence of salt stress. On the basis of analyses (expressed as percent of control), of 10 accessions of pea plant, two were ranked as salt tolerant namely (‘19666’, ‘20153’), four were moderately tolerant namely (‘19700’, ‘19776’, ‘19785’, ‘20155’), and three were salt sensitive namely (‘13240’, ‘18302’, ‘26719’) at 150 mM NaCl level.

Keywords: antioxidant enzymes, ion uptake, pigment concentration, salt stress, yield attributes

Procedia PDF Downloads 78
2637 Design, Spectroscopic, Structural Characterization, and Biological Studies for New Complexes via Charge Transfer Interaction of Ciprofloxacin Drug With π Acceptors

Authors: Khaled Alshammari

Abstract:

Ciprofloxacin (CIP) is a common antibiotic drug used as a strudy electron donor that interacts with dynamic π -acceptors such as 2,3-dinitrosalsylic acid (HDNS) and Tetracyanoethylene (TCNE) for synthesizing a new model of charge transfer (CT) complexes. The synthesized complexes were identified using diverse analytical methods such as UV–vis spectra, photometric titration measurements, FT-IR, HNMR Spectroscopy, and thermogravimetric analysis techniques (TGA/DTA). The stoichiometries for all the formed complexes were found to be a 1:1 M ratio between the reactants. The characteristic spectroscopic properties such as transition dipole moment (µ), oscillator strength (f), formation constant (KCT), ionization potential (ID), standard free energy (∆G), and energy of interaction (ECT) for the CT-complexes were collected. The developed CT complexes were tested for their toxicity on main organs, antimicrobial activity, antioxidant activity, and biofilm formation.

Keywords: biological, biofilm, toxicity, thermal analysis, charge transfer, spectroscopy

Procedia PDF Downloads 16
2636 Conventional and Computational Investigation of the Synthesized Organotin(IV) Complexes Derived from o-Vanillin and 3-Nitro-o-Phenylenediamine

Authors: Harminder Kaur, Manpreet Kaur, Akanksha Kapila, Reenu

Abstract:

Schiff base with general formula H₂L was derived from condensation of o-vanillin and 3-nitro-o-phenylenediamine. This Schiff base was used for the synthesis of organotin(IV) complexes with general formula R₂SnL [R=Phenyl or n-octyl] using equimolar quantities. Elemental analysis UV-Vis, FTIR, and multinuclear spectroscopic techniques (¹H, ¹³C, and ¹¹⁹Sn) NMR were carried out for the characterization of the synthesized complexes. These complexes were coloured and soluble in polar solvents. Computational studies have been performed to obtain the details of the geometry and electronic structures of ligand as well as complexes. Geometry of the ligands and complexes have been optimized at the level of Density Functional Theory with B3LYP/6-311G (d,p) and B3LYP/MPW1PW91 respectively followed by vibrational frequency analysis using Gaussian 09. Observed ¹¹⁹Sn NMR chemical shifts of one of the synthesized complexes showed tetrahedral geometry around Tin atom which is also confirmed by DFT. HOMO-LUMO energy distribution was calculated. FTIR, ¹HNMR and ¹³CNMR spectra were also obtained theoretically using DFT. Further IRC calculations were employed to determine the transition state for the reaction and to get the theoretical information about the reaction pathway. Moreover, molecular docking studies can be explored to ensure the anticancer activity of the newly synthesized organotin(IV) complexes.

Keywords: DFT, molecular docking, organotin(IV) complexes, o-vanillin, 3-nitro-o-phenylenediamine

Procedia PDF Downloads 127
2635 Extraction of Phycocyanin from Spirulina platensis by Isoelectric Point Precipitation and Salting Out for Scale Up Processes

Authors: Velasco-Rendón María Del Carmen, Cuéllar-Bermúdez Sara Paulina, Parra-Saldívar Roberto

Abstract:

Phycocyanin is a blue pigment protein with fluorescent activity produced by cyanobacteria. It has been recently studied to determine its anticancer, antioxidant and antiinflamatory potential. Since 2014 it was approved as a Generally Recognized As Safe (GRAS) proteic pigment for the food industry. Therefore, phycocyanin shows potential for the food, nutraceutical, pharmaceutical and diagnostics industry. Conventional phycocyanin extraction includes buffer solutions and ammonium sulphate followed by chromatography or ATPS for protein separation. Therefore, further purification steps are time-requiring, energy intensive and not suitable for scale-up processing. This work presents an alternative to conventional methods that also allows large scale application with commercially available equipment. The extraction was performed by exposing the dry biomass to mechanical cavitation and salting out with NaCl to use an edible reagent. Also, isoelectric point precipitation was used by addition of HCl and neutralization with NaOH. The results were measured and compared in phycocyanin concentration, purity and extraction yield. Results showed that the best extraction condition was the extraction by salting out with 0.20 M NaCl after 30 minutes cavitation, with a concentration in the supernatant of 2.22 mg/ml, a purity of 3.28 and recovery from crude extract of 81.27%. Mechanical cavitation presumably increased the solvent-biomass contact, making the crude extract visibly dark blue after centrifugation. Compared to other systems, our process has less purification steps, similar concentrations in the phycocyanin-rich fraction and higher purity. The contaminants present in our process edible NaCl or low pHs that can be neutralized. It also can be adapted to a semi-continuous process with commercially available equipment. This characteristics make this process an appealing alternative for phycocyanin extraction as a pigment for the food industry.

Keywords: extraction, phycocyanin, precipitation, scale-up

Procedia PDF Downloads 404
2634 Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy

Authors: Chieh-Chung Tsou, Chun-Min Lo, Yeh-Shiu Chu

Abstract:

Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion.

Keywords: cadherin, intercellular adhesion, protein micropattern, traction force microscopy

Procedia PDF Downloads 229
2633 Association of Photosynthetic Pigment with Oceanic Physical Parameters in the North-eastern Bay of Bengal

Authors: Saif Khan Sunny, Md. Masud-ul-alam

Abstract:

This study presents the association of photosynthetic pigment: chlorophyll-a (chl-a) and physical parameters: sea surface temperature (SST), dissolved oxygen (DO), sea surface salinity (SSS), and total dissolved solids (TDS) in the northeastern Bay of Bengal. At 15 sampling stations in the bay near the eastern coast of Teknaf, photosynthetic pigment and environmental variables were measured for surface water where acetone extraction was used for ch-a. Samples of seawater were taken in March 2021, where chlorophyll-a content varies from 0.554 to 9.696 mg/m3 in surface water over the sampling site. Higher concentrations may be attributable to the nutrient supply of hatcheries and the delivery of fluvial input. The observed SST, DO, SSS, and TDS in the north-eastern Bay of Bengal are 26.65 to 28.6 °C, 6.26 to 8.03 mg/l, 29.3 to 33.1 PSU, and 22.4 to 25.3 ppm, respectively. Temperature and chl-a had a positive association (0.18), according to an analysis of the cross-correlation matrix. Again, a negative correlation (0.34) between dissolved oxygen and temperature is significant at p < 0.05. Total dissolved solids and dissolved oxygen have a significant negative correlation (0.70) where p is < 0.001.

Keywords: photosynthetic pigment, nutrient supply, chlorophyll, physical parameters

Procedia PDF Downloads 49
2632 Synthesis of Metal Curcumin Complexes with Iron(III) and Manganese(II): The Effects on Alzheimer's Disease

Authors: Emel Yildiz, Nurcan Biçer, Fazilet Aksu, Arash Alizadeh Yegani

Abstract:

Plants provide the wealth of bioactive compounds, which exert a substantial strategy for the treatment of neurological disorders such as Alzheimer's disease. Recently, a lot of studies have explored the medicinal properties of curcumin, including antitumoral, antimicrobial, anti-inflammatory, antioxidant, antiviral, and anti-Alzheimer's disease effects. Metal complexes of curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) were synthesized with Mn(II) and Fe(III). The structures of synthesized metal complexes have been characterized by using spectroscopic and analytic methods such as elemental analysis, magnetic susceptibility, FT-IR, AAS, TG and argentometric titration. It was determined that the complexes have octahedral geometry. The effects of the metal complexes on the disorder of memory, which is an important symptom of Alzheimer's Disease were studied on lab rats with Plus-Maze Tests at Behavioral Pharmacology Laboratory.

Keywords: curcumin, Mn(II), Fe(III), Alzheimer disease, beta amyloid 25-35

Procedia PDF Downloads 274
2631 Impact of the Simplification of Licensing Procedures for Industrial Complexes on Supply of Industrial Complexes and Regional Policies

Authors: Seung-Seok Bak, Chang-Mu Jung

Abstract:

An enough amount supply of industrial complexes is an important national policy in South Korea, which is highly dependent on foreign trade. A development process of the industrial complex can distinguish between the planning stage and the construction stage. The planning stage consists of the process of consulting with many stakeholders on the contents of the development of industrial complex, feasibility study, compliance with the Regional policies, and so on. The industrial complex planning stage, including licensing procedure, usually takes about three years in South Korea. The government determined that the appropriate supply of industrial complexes have been delayed, due to the long licensing period and drafted a law to shorten the license period in 2008. The law was expected to shorten the period of licensing, which was about three years, to six months. This paper attempts to show that the shortening of the licensing period does not positively affect the appropriate supply of industrial complexes. To do this, we used Interrupted Time Series Designs. As a result, it was found that the supply of industrial complexes was influenced more by other factors such as actual industrial complex demand of private sector and macro-level economic variables. In addition, the specific provisions of the law conflict with local policy and cause some problems such as damage to nature and agricultural land, traffic congestion.

Keywords: development of industrial complexes, industrial complexes, interrupted time series designs, simplification of licensing procedures for industrial complexes, time series regression

Procedia PDF Downloads 261
2630 Binding Ability of Carbazolylphenyl Dendrimers with Zinc (II) Tetraphenylporphyrin Core towards Cryptands

Authors: Galina Mamardashvili, Nugzar Mamardashvili, Win Dehaen

Abstract:

The processes of complexation of the Zn-tetraarylporphyrins with eight 4-(4-(3,6-bis(t-butyl)carbazol-9-yl-phenyl)-1,2,3-triazole (ZnP1) and eight 4-(4-(3,6-di-tert-butyl-9-H-carbazol-9-yl)phenoxy)methyl)-2,4,6-trimethylphenyl (ZnP2)with the 1,10-diaza-4,7,13,18tetraoxabicyclo[8.5.5]eicosane (L1),1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane (L2)and 1,10-diaza-5,6,14,15-dibenzo-4,7,13,16,21,24 hexaoxabicyclo[8.8.8] hexacosane (L3) were investigated by the method of spectrophotometric titration and 1H NMR-spectroscopy. We determined the structures of the host-guest complexes, and their stability constants in toluene were calculated. It was found out that the ZnP1 interacts with the guest molecules L1, L2 with the formation of stable "nest" type complexes and does not form similar complexes with the L3 (presumably due to the fact that the L3 does not match the size of the porphyrin ZnP(1) cavity). On the other hand, the porphyrin ZnP2 binds all of the ligands L1-L3, however complexes thus formed are less stable than complexes ZnP1-L1, ZnP1-L2. In the report, we will also discuss the influence of the alkali cations additives on the stability of the complexes between the porphyrin ZnP1, ZnP2 hosts and guest molecules of the ligands L1-L3.

Keywords: porphyrin, cryptand, cation, complex guest-host

Procedia PDF Downloads 190
2629 Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)

Authors: V. K. Srivastava

Abstract:

The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents.

Keywords: anti cancer, biocidal, DNA binding, spectra

Procedia PDF Downloads 127
2628 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions

Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita

Abstract:

Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.

Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly

Procedia PDF Downloads 216