Search results for: textile effluent
202 A Genetic Algorithm Approach to Solve a Weaving Job Scheduling Problem, Aiming Tardiness Minimization
Authors: Carolina Silva, João Nuno Oliveira, Rui Sousa, João Paulo Silva
Abstract:
This study uses genetic algorithms to solve a job scheduling problem in a weaving factory. The underline problem regards an NP-Hard problem concerning unrelated parallel machines, with sequence-dependent setup times. This research uses real data regarding a weaving industry located in the North of Portugal, with a capacity of 96 looms and a production, on average, of 440000 meters of fabric per month. Besides, this study includes a high level of complexity once most of the real production constraints are applied, and several real data instances are tested. Topics such as data analyses and algorithm performance are addressed and tested, to offer a solution that can generate reliable and due date results. All the approaches will be tested in the operational environment, and the KPIs monitored, to understand the solution's impact on the production, with a particular focus on the total number of weeks of late deliveries to clients. Thus, the main goal of this research is to develop a solution that allows for the production of automatically optimized production plans, aiming to the tardiness minimizing.Keywords: genetic algorithms, textile industry, job scheduling, optimization
Procedia PDF Downloads 157201 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent
Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar
Abstract:
Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics
Procedia PDF Downloads 389200 Prediction of Binding Free Energies for Dyes Removal Using Computational Chemistry
Authors: R. Chanajaree, D. Luanwiset, K. Pongpratea
Abstract:
Dye removal is an environmental concern because the textile industries have been increasing by world population and industrialization. Adsorption is the technique to find adsorbents to remove dyes from wastewater. This method is low-cost and effective for dye removal. This work tries to develop effective adsorbents using the computational approach because it will be able to predict the possibility of the adsorbents for specific dyes in terms of binding free energies. The computational approach is faster and cheaper than the experimental approach in case of finding the best adsorbents. All starting structures of dyes and adsorbents are optimized by quantum calculation. The complexes between dyes and adsorbents are generated by the docking method. The obtained binding free energies from docking are compared to binding free energies from the experimental data. The calculated energies can be ranked as same as the experimental results. In addition, this work also shows the possible orientation of the complexes. This work used two experimental groups of the complexes of the dyes and adsorbents. In the first group, there are chitosan (adsorbent) and two dyes (reactive red (RR) and direct sun yellow (DY)). In the second group, there are poly(1,2-epoxy-3-phenoxy) propane (PEPP), which is the adsorbent, and 2 dyes of bromocresol green (BCG) and alizarin yellow (AY).Keywords: dyes removal, binding free energies, quantum calculation, docking
Procedia PDF Downloads 154199 Quaternary Ammonium Salts Based Algerian Petroleum Products: Synthesis and Characterization
Authors: Houria Hamitouche, Abdellah Khelifa
Abstract:
Quaternary ammonium salts (QACs) are the most common cationic surfactants of natural or synthetic origin usually. They possess one or more hydrophobic hydrocarbon chains and hydrophilic cationic group. In fact, the hydrophobic groups are derived from three main sources: petrochemicals, vegetable oils, and animal fats. These QACs have attracted the attention of chemists for a long time, due to their general simple synthesis and their broad application in several fields. They are important as ingredients of cosmetic products and are also used as corrosion inhibitors, in emulsion polymerization and textile processing. Within biological applications, QACs show a good antimicrobial activity and can be used as medicines, gene delivery agents or in DNA extraction methods. The 2004 worldwide annual consumption of QACs was reported as 500,000 tons. The petroleum product is considered a true reservoir of a variety of chemical species, which can be used in the synthesis of quaternary ammonium salts. The purpose of the present contribution is to synthesize the quaternary ammonium salts by Menschutkin reaction, via chloromethylation/quaternization sequences, from Algerian petroleum products namely: reformate, light naphtha and kerosene and characterize.Keywords: quaternary ammonium salts, reformate, light naphtha, kerosene
Procedia PDF Downloads 336198 Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources
Authors: K. Nasir, S. Ahmad, A. Khan, H. Benkreira
Abstract:
The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%.Keywords: fire resistant, vibration damping, acoustic material, vibro-acoustic, thermal insulation, sustainable material, low cost materials, recycled materials, construction material
Procedia PDF Downloads 134197 Gis-Based Water Pollution Assesment of Buriganga River, Bangladesh
Authors: Nur-E-Jannat Tinu
Abstract:
Water is absolutely vital not only for the survival of human beings but also for plants, animals, and all other living organisms. Water bodies, such as lakes, rivers, ponds, and estuaries, are the source of water supply in domestic, industrial, agriculture, and aquaculture purposes. The Buriganga River flows through the south and west of Dhaka city. The water quality of this river has become a matter of concern due to anthropogenic intervention of vital pollutants such as industrial effluents, urban sewage, and solid wastes in this area. Buriganga River is at risk to contamination from untreated municipal wastes, industrial discharges, runoff from organic and inorganic fertilizers, pesticides, insecticides, and oil emission around the river. The residential and commercial establishments along the river discharge wastewater either directly into the river or through drains and canals into the river. However, several regulatory measures and policies have been enforced by the Government to protect the river Buriganga from pollution, in most cases to no affect. Water quality assessment reveals that the water is also not appropriate for irrigation purposes. The physical parameters (pH, TDS, EC, Temperature, DO, COD, BOD) indicated that the water is too poor to be useable for agricultural, drinking, or other purposes. Chemical concentrations showed significant seasonal variations with high-level concentrations during the monsoon season, presumably due to extreme seasonal surface runoff. A comparative study of Electrical Conductivity (EC) and Total Dissolved Solids (TDS) indicated a considerable increase over the last five years A change in trend was observed from 2020 June-July, probably due to monsoon and post-monsoon. EC values decreased from 775 to 665 mmho/cm during this period. DO increased significantly from the mid-post-monsoon months to the early monsoon period. The pH value of river water is strongly alkaline, ranging between 6.5 and 7.79. This indicates that ecological organic compounds cause the water to become alkaline after the monsoon and monsoon seasons. As the water pollution level is very high, an effective remediation and pollution control plan should be considered.Keywords: precipitation, spatial distribution, effluent, remediation
Procedia PDF Downloads 140196 Possibilities of Output Technology the Project ADAPTIV for Use in Infrared Camouflage
Authors: Jiří Barta, Teodor Baláž, Tomáš Ludík, Jiří. F. Urbánek
Abstract:
This article deals with the outputs of project acronym ADAPTIV of Czech Defence Research Project. This Project solved tends to adaptive camouflage. The camouflage is concealment by means of disguise. Perceptive interface between recipient and camouflaged object is visualized by means of textile modular screens. Screens special light semi-permeability enables front/ back projection with nearly identical light parameters. Information permeability, towards illusion creation, must be controlled by the camouflage provider by means sophisticated and mastered illusion with perfect scenarios. The project ADAPTIV was primarily funded with the maximum possible use of COTS (Commercial-Off-The-Shelf) principle asks special definition of feasibility conditions, especially recipient space position. This paper deals with uses the ADAPTIV output with name DATAsam with modification for infrared camouflage. It is focused on active camouflage in infrared spectrum of emissivity at <8;14> μm for laboratory conditions. The main chapter provides basic experiments and testing physical properties needed for camouflage in infrared environment. The evaluation experiments revealed the possibility of use case in various types of camouflage.Keywords: camouflage, ADAPTIV, infrared camouflage, computer-aided, COTS
Procedia PDF Downloads 417195 Comparative Numerical Simulations of Reaction-Coupled Annular and Free-Bubbling Fluidized Beds Performance
Authors: Adefarati Oloruntoba, Yongmin Zhang, Hongliang Xiao
Abstract:
An annular fluidized bed (AFB) is gaining extensive application in the process industry due to its efficient gas-solids contacting. But a direct evaluation of its reaction performance is still lacking. In this paper, comparative 3D Euler–Lagrange multiphase-particle-in-cell (MP-PIC) computations are performed to assess the reaction performance of AFB relative to a bubbling fluidized bed (BFB) in an FCC regeneration process. By using the energy-minimization multi-scale (EMMS) drag model with a suitable heterogeneity index, the MP-PIC simulation predicts the typical fountain region in AFB and solids holdup of BFB, which is consistent with an experiment. Coke combustion rate, flue gas and temperature profile are utilized as the performance indicators, while related bed hydrodynamics are explored to account for the different performance under varying superficial gas velocities (0.5 m/s, 0.6 m/s, and 0.7 m/s). Simulation results indicate that the burning rates of coke and its species are relatively the same in both beds, albeit marginal increase in BFB. Similarly, the shape and evolution time of flue gas (CO, CO₂, H₂O and O₂) curves are indistinguishable but match the coke combustion rates. However, AFB has high proclivity to high temperature-gradient as higher gas and solids temperatures are predicted in the freeboard. Moreover, for both beds, the effect of superficial gas velocity is only conspicuous on the temperature but negligible on combustion efficiency and effluent gas emissions due to constant gas volumetric flow rate and bed loading criteria. Cross-flow of solids from the annulus to the spout region as well as the high primary gas in the AFB directly assume the underlying mechanisms for its unique gas-solids hydrodynamics (pressure, solids holdup, velocity, mass flux) and local spatial homogeneity, which in turn influence the reactor performance. Overall, the study portrays AFB as a cheap alternative reactor to BFB for catalyst regeneration.Keywords: annular fluidized bed, bubbling fluidized bed, coke combustion, flue gas, fountaining, CFD, MP-PIC, hydrodynamics, FCC regeneration
Procedia PDF Downloads 163194 Studies on Dye Removal by Aspergillus niger Strain
Authors: M. S. Mahmoud, Samah A. Mohamed, Neama A. Sobhy
Abstract:
For color removal from wastewater containing organic contaminants, biological treatment systems have been widely used such as physical and chemical methods of flocculation, coagulation. Fungal decolorization of dye containing wastewater is one of important goal in industrial wastewater treatment. This work was aimed to characterize Aspergillus niger strain for dye removal from aqueous solution and from raw textile wastewater. Batch experiments were studied for removal of color using fungal isolate biomass under different conditions. Environmental conditions like pH, contact time, adsorbent dose and initial dye concentration were studied. Influence of the pH on the removal of azo dye by Aspergillus niger was carried out between pH 1.0 and pH 11.0. The optimum pH for red dye decolonization was 9.0. Results showed the decolorization of dye was decreased with the increase of its initial dye concentration. The adsorption data was analyzed based on the models of equilibrium isotherm (Freundlich model and Langmuir model). During the adsorption isotherm studies; dye removal was better fitted to Freundlich model. The isolated fungal biomass was characterized according to its surface area both pre and post the decolorization process by Scanning Electron Microscope (SEM) analysis. Results indicate that the isolated fungal biomass showed higher affinity for dye in decolorization process.Keywords: biomass, biosorption, dye, isotherms
Procedia PDF Downloads 305193 Study of Mini Steel Re-Rolling and Pickling Mills for the Reduction of Accidents and Health Hazards
Authors: S. P. Rana
Abstract:
Objectives: For the manufacture of a very thin strip or a strip with a high-quality finish, the stainless steel sheet that is called billet is re-rolled in re-rolling mill to make stainless steel sheet of 18 gauges. The rolls of re-rolling mill exert tremendous pressure over the sheet and there is likely chance of breaking of stainless steel strip from the sheet. The objective of the study was to minimise the number of accidents in steel re-rolling mills due to ejection of stainless steel strip and to minimize the pollution caused by the pickling process used in these units. Methods: Looking into the high rate of frequency and severity of accidents as well as pollution hazard in re-rolling and pickling mills, it becomes essential to make necessary arrangements for prevention of accidents in such type of industry. The author carried out survey/inspections of a large number of re-rolling and pickling mills and allied units. During the course of inspection, the working of these steel re-rolling and pickling mills was closely studied and monitored. A number of accidents involving re-rolling mills were investigated and subsequently remedial measures to prevent the occurrence of such accidents were suggested. Assessment of occupational safety and health system of these units was carried out and compliance level of the statutory requirements was checked. The workers were medically examined and monitored to ascertain their health conditions. Results: Proper use of safety gadgets by workers, machine guarding and regular training brought down the risk to an acceptable level and discharged effluent pollution was brought down to permissible limits. The fatal accidents have been reduced by 83%. Conclusions: Effective enforcement and implementation of the directions/suggestions given to the managements of such units brought down the no. of accidents to a rational level. The number of fatal accidents has reduced by 83% during the study period. The effective implementation of pollution control device curtailed the pollution level to an acceptable level.Keywords: re-rolling mill, hazard, accident, health hazards
Procedia PDF Downloads 442192 Natural Dyes in Schools. Development of Techniques From Early Childhood as a Tool for Art, Design and Sustainability
Authors: Luciana Marrone
Abstract:
Natural dyes are a great resource for today's artists and designers providing endless possibilities for design and sustainability. This research and development project focuses on the idea of making these dyeing or painting methodologies reach the widest possible range of students. The main objective is to inform and train, free of charge, teachers and students from different academic institutions, at different levels, kindergarten, primary, secondary, tertiary and university. In this research and dissemination project, in the first instance, institutions from Argentina, Chile, Uruguay, Mexico, Spain, Italy, Colombia, Paraguay, Venezuela, Brazil and Australia joined the project, reaching the grassroots of education from the very beginning. Natural dyes will become part of everyday life for more people, achieving their own colors for art, textiles or any other application. The knowledge of the techniques and resources of the student a fundamental tool, sustainable and opens endless possibilities even in places or homes with few economic resources, thus achieving that natural dyes are not only part of the world of designers but also that they are incorporated from the basics and can thus become a resource applicable in different areas even in places with few economic or development possibilities.Keywords: art, education, natural dyes, sustainability, textile design.
Procedia PDF Downloads 85191 Indigo Production in a Fed Batch Bioreactor Using Aqueous-Solvent Two Phase System
Authors: Vaishnavi Unde, Srikanth Mutnuri
Abstract:
Today dye stuff sector is one of the major chemical industries in India. Indigo is a blue coloured dye used all over the world in large quantity. The indigo dye produced and used in textile industries is synthetic having toxic effect, thus there is an increase in interest for natural dyes owing to the environmental concerns. The present study focuses on the use of a strain Pandoraea sp. isolated from garage soil, for the production of indigo in fed batch bioreactor. A comparative study between single phase and two phase production was carried out in this work. The blue colour produced during the experiments was analyzed using, TLC, UV-visible spectrophotometer and FTIR technique. The blue pigment was found to be indigo. The production of bio-indigo was done in a single phase fermentor carrying medium and substrate indole in dissolved form and was found to produce maximum of 0.041 g/L of indigo. Whereas there was an increase in production of indigo to 0.068 g/L in a two phase, water-silicone oil system. In this study the advantage of using second phase as silicone oil has enhanced the indigo production, as the second phase made the substrate available to the bacteria by increasing the surface area as well as it helped to prevent the inhibition effect of the high concentration of substrate, indole. The effect of single and two phases on the growth of bacteria was also studied.Keywords: dyes, fed batch reactor, indole, Indigo
Procedia PDF Downloads 433190 Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics
Authors: Neha Singh
Abstract:
The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera.Keywords: UV protection, aloe vera, protective clothing, reactive dyes, cotton, woven and knits
Procedia PDF Downloads 261189 The Effect of Artificial Intelligence on Decoration
Authors: Ashraf Fayz Bekhet Abaskron
Abstract:
This research is done to create new compositions for designs, finding inspiration from watercolor artworks displayed in SuanSunandha Palace. The researcher made a study in the history of the landmark, its importance, the paintings in the Palace, the types and characteristics of the flowers painted, as well as the artistic elements and principles of designs that went into the paintings. The information obtained led to the creation of six totally new designs. The designs incorporated standard international designs and artistic principles and still kept to the original style of the watercolor paintings in SuanSunandha Palace. Following the paintings, the designs are divided into three categories: Orchids, Roses, and Flowers from literature. The researcher used the components of the flowers including rounded-petal flowers, wavy-edged petals, flowers with pointed petals, leaves, vines, and branches. All of them are represented in the original paintings. Upon the original, the researcher switched these elements and their proportions around to create a more modern design. The original forms are used as references since they contain the characteristics of each flower species. The work created achieved an updated trait and simultaneously reflects the charms and timeless beauty of the watercolor paintings displayed in SuanSunandha Palace, which still exists in today’s world.Keywords: art, craft, design, Oman, weaving watercolor, painting, flower, Suan Sunandhagolden ratio, Fibonacci numbers, textile design, designs
Procedia PDF Downloads 34188 Celebrity Endorsement: How It Works When a Celebrity Fits the Brand and Advertisement
Authors: Göksel Şimşek
Abstract:
Celebrities are admired, appreciated and imitated all over the world. As a natural result of this, today many brands choose to work with celebrities for their advertisements. It can be said that the more the brands include celebrities in their marketing communication strategies, the tougher the competition in this field becomes and they allocate a large portion of their marketing budget to this. Brands invest in celebrities who will represent them in order to build the image they want to create. This study aimed to bring under spotlight the perceptions of Turkish customers regarding the use of celebrities in advertisements and marketing communication and try to understand their possible effects on subsequent purchasing decisions. In addition, consumers’ reactions and perceptions were investigated in the context of the product-celebrity match, to what extent the celebrity conforms to the concept of the advertisement and the celebrity-target audience match. In order to achieve this purpose, a quantitative research was conducted as a case study concerning Mavi Jeans (textile company). Information was obtained through survey. The results from this case study are supported by relevant theories concerning the main subject. The most valuable result would be that instead of creating an advertisement around a celebrity in demand at the time, using a celebrity that fits the concept of the advertisement and feeds the concept rather than replaces it, that is celebrity endorsement, will lead to more striking and positive results.Keywords: celebrity endorsement, product-celebrity match, advertising, social sciences
Procedia PDF Downloads 205187 The Perspective of Smart Thermoregulation in Personal Protective Equipment
Authors: Alireza Saidi
Abstract:
Aside from injuries due to direct contact with hot or cold substances or objects, exposure to extreme temperatures in the workplace involves physical hazards to workers. On the other hand, a poorly acclimatized worker may have reduced performance and alertness and may, therefore, be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of the standards put in place with certain workplaces and the lack of thermoregulation in many protective equipments, thermal strains remain among the physical risks most present in many work sectors. However, many of these problems can be overcome thanks to the potential of intelligent textile technologies allowing intelligent thermoregulation in protective equipment. Nowadays, technologies such as heating elements, cooling elements are applied in products intended for sport and leisure, and research work has been carried out in the integration of temperature sensors and thermal stress detectors in personal protective equipment. However, the usage of all of these technologies in personal protective equipment remains very marginal. This article presents a portrait of the current state of intelligent thermoregulation systems by carrying out a synthesis of technical developments, which is accompanied by a gap analysis of current developments. Thus, the research work necessary for the adaptation and integration of intelligent thermoregulation systems with personal protective equipment is discussed in order to offer a perspective of future developments.Keywords: personal protective equipment, smart textiles, thermoregulation, thermal strain
Procedia PDF Downloads 110186 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials
Authors: Chongyang Ye, Rong Liu
Abstract:
Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.Keywords: elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis
Procedia PDF Downloads 119185 Carvedilol Ameliorates Potassium Dichromate-Induced Acute Renal Injury in Rats: Plausible Role of Inflammation and Apoptosis
Authors: Bidya Dhar Sahu, Meghana Koneru, R. Shyam Sunder, Ramakrishna Sistla
Abstract:
Environmental and occupational exposure to hexavalent chromium [Cr(VI)] via textile manufacture, metallurgy, spray paints, stainless steel industries, drinking water containing chromium are often known to cause acute renal injury in humans and animals. Nephrotoxicity is the major effect of chromium poisoning. In the present study, we investigated the potential renoprotective effect and underlying mechanisms of carvedilol using rat model of potassium dichromate (K2Cr2O7)-induced nephrotoxicity. Exploration of the underlying mechanisms of carvedilol revealed that carvedilol attenuated nuclear translocation and DNA binding activity of NF-κB (p65), restored antioxidant and mitochondrial respiratory enzyme activities and attenuated apoptosis related protein expressions in kidney tissues. The serum levels of TNF-α, the renal iNOS and myeloperoxidase activity were significantly decreased in carvedilol pre-treated K2Cr2O7-induced nephrotoxic rats. These results were further supported and confirmed by histological findings. In conclusion, the findings of the present study demonstrated that carvedilol is an effective chemoprotectant against K2Cr2O7-induced nephrotoxicity in rats.Keywords: apoptosis, carvedilol, inflammation, potassium dichromate-induced nephrotoxicity, applied pharmacology
Procedia PDF Downloads 284184 Comparison of Different in vitro Models of the Blood-Brain Barrier for Study of Toxic Effects of Engineered Nanoparticles
Authors: Samir Dekali, David Crouzier
Abstract:
Due to their new physico-chemical properties engineered nanoparticles (ENPs) are increasingly employed in numerous industrial sectors (such as electronics, textile, aerospace, cosmetics, pharmaceuticals, food industry, etc). These new physico-chemical properties can also represent a threat for the human health. Consumers can notably be exposed involuntarily by different routes such as inhalation, ingestion or through the skin. Several studies recently reported a possible biodistribution of these ENPs on the blood-brain barrier (BBB). Consequently, there is a great need for developing BBB in vitro models representative of the in vivo situation and capable of rapidly and accurately assessing ENPs toxic effects and their potential translocation through this barrier. In this study, several in vitro models established with micro-endothelial brain cell lines of different origins (bEnd.3 mouse cell line or a new human cell line) co-cultivated or not with astrocytic cells (C6 rat or C8-B4 mouse cell lines) on Transwells® were compared using different endpoints: trans-endothelial resistance, permeability of the Lucifer yellow and protein junction labeling. Impact of NIST diesel exhaust particles on BBB cell viability is also discussed.Keywords: nanoparticles, blood-brain barrier, diesel exhaust particles, toxicology
Procedia PDF Downloads 440183 The Impact of Human Rights on Society and Legislations
Authors: Eid Nasr Saad Nasr
Abstract:
Although human rights protection in the industrial sector has increased, human rights violations continue to occur. Although the government has passed human rights laws, labor laws, and an international treaty ratified by the United States, human rights crimes continue to occur and go undetected. The growing number of textile companies in Bekasi is also leading to an increase in human rights violations as the government has no obligation to protect them. The United States government and business leaders should respect, protect and defend the human rights of workers. The article discusses the human rights violations faced by garment factory workers in the context of the law, as well as ideas for improving the protection of workers' rights. The connection between development and human rights has long been the subject of academic debate. Therefore, to understand the dynamics between these two concepts, a number of principles have been adopted, ranging from the right to development to a human rights-based approach to development. Despite these attempts, the precise connection between development and human rights is not yet fully understood. However, the inherent interdependence between these two concepts and the idea that development efforts must respect human rights guarantees has gained momentum in recent years. It will then be examined whether the right to sustainable development is recognized.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 59182 Intentional Cultivation of Non-toxic Filamentous Cyanobacteria Tolypothrix as an Approach to Treat Eutrophic Waters
Authors: Simona Lucakova, Irena Branyikova
Abstract:
Eutrophication, a condition when water becomes over-enriched with nutrients (P, N), can lead to undesirable excessive growth of phytoplankton, so-called algal bloom. This process results in the accumulation of toxin-producing cyanobacteria and oxygen depletion, both possibly leading to the collapse of the whole ecosystem. In real conditions, the limiting nutrient, which determines the possible growth of harmful algal bloom, is usually phosphorus. Algicides or flocculants have been applied in the eutrophicated waterbody in order to reduce the phytoplankton growth, which leads to the introduction of toxic chemicals into the water. In our laboratory, the idea of the prevention of harmful phytoplankton growth by the intentional cultivation of non-toxic cyanobacteria Tolypothrix tenuis in semi-open floating photobioreactors directly on the surface of phosphorus-rich waterbody is examined. During the process of cultivation, redundant phosphorus is incorporated into cyanobacterial biomass, which can be subsequently used for the production of biofuels, cosmetics, pharmaceuticals, or biostimulants for agricultural use. To determine the ability of phosphorus incorporation, batch-cultivation of Tolypothrix biomass in media simulating eutrophic water (10% BG medium) and in effluent from municipal wastewater treatment plant, both with the initial phosphorus concentration in the range 0.5-1.0 mgP/L was performed in laboratory-scale models of floating photobioreactors. After few hours of cultivation, the phosphorus content was decreased below the target limit of 0.035 mgP/L, which was given as a borderline for the algal bloom formation. Under laboratory conditions, the effect of several parameters on the rate of phosphorus decrease was tested (illumination, temperature, stirring speed/aeration gas flow, biomass to medium ratio). Based on the obtained results, a bench-scale floating photobioreactor was designed and will be tested for Tolypothrix growth in real conditions. It was proved that intentional cultivation of cyanobacteria Tolypothrix could be a suitable approach for extracting redundant phosphorus from eutrophic waters as prevention of algal bloom formation.Keywords: cyanobacteria, eutrophication, floating photobioreactor, Tolypothrix
Procedia PDF Downloads 165181 The Effect of Artificial Intelligence on Human Rights Regulations
Authors: Karam Aziz Hamdy Fahmy
Abstract:
Although human rights protection in the industrial sector has increased, human rights violations continue to occur. Although the government has passed human rights laws, labor laws, and an international treaty ratified by the United States, human rights crimes continue to occur and go undetected. The growing number of textile companies in Bekasi is also leading to an increase in human rights violations as the government has no obligation to protect them. The United States government and business leaders should respect, protect and defend the human rights of workers. The article discusses the human rights violations faced by garment factory workers in the context of the law, as well as ideas for improving the protection of workers' rights. The connection between development and human rights has long been the subject of academic debate. Therefore, to understand the dynamics between these two concepts, a number of principles have been adopted, ranging from the right to development to a human rights-based approach to development. Despite these attempts, the precise connection between development and human rights is not yet fully understood. However, the inherent interdependence between these two concepts and the idea that development efforts must respect human rights guarantees has gained momentum in recent years. It will then be examined whether the right to sustainable development is recognized.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 64180 Creating Knowledge Networks: Comparative Analysis of Reference Cases
Authors: Sylvia Villarreal, Edna Bravo
Abstract:
Knowledge management focuses on coordinating technologies, people, processes, and structures to generate a competitive advantage and considering that networks are perceived as mechanisms for knowledge creation and transfer, this research presents the stages and practices related to the creation of knowledge networks. The methodology started with a literature review adapted from the systematic literature review (SLR). The descriptive analysis includes variables such as approach (conceptual or practical), industry, knowledge management processes and mythologies (qualitative or quantitative), etc. The content analysis includes identification of reference cases. These cases were characterized based on variables as scope, creation goal, years, network approach, actors and creation methodology. It was possible to do a comparative analysis to determinate similarities and differences in these cases documented in knowledge network scientific literature. Consequently, it was shown that even the need and impact of knowledge networks in organizations, the initial guidelines for their creation are not documented, so there is not a guide of good practices and lessons learned. The reference cases are from industries as energy, education, creative, automotive and textile. Their common points are the human approach; it is oriented to interactions to facilitate the appropriation of knowledge, explicit and tacit. The stages of every case are analyzed to propose the main successful elements.Keywords: creation, knowledge management, network, stages
Procedia PDF Downloads 302179 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics
Authors: Shi Yu, Rong Liu, Jingyun Lv
Abstract:
Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density (yarn diameters) of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.Keywords: laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles
Procedia PDF Downloads 210178 Valonea Tannin Supported AgCl/ZnO/Fe3O4 Nanocomposite, a Magnetically Separable Photocatalyst with Enhanced Photocatalytic Performance under Visible Light Irradiation
Authors: Nuray Güy, Mahmut Özacar
Abstract:
In the past few decades, considerable attention has been devoted to the photocatalysts for the photocatalytic degradation of environmental pollutants. Many novel nanostructured photocatalysts for wastewater treatment have been investigated, such as TiO2 and, CdS, ZnO and silver halides (AgX, X = Cl, Br, I). The silver halides are photosensitive materials which can absorb photons in the visible region to produce electron–hole pairs. Silver halides are expensive that restricts their applications in large-scale photocatalytic processes. Tannin contains hydroxyl functional groups, it was employed as a modifier to improve the surface properties and adsorption capacity of the activated carbon towards the metal cations uptake. In this work, we designed a new structure of magnetically separable photocatalyst that combines AgCl/ZnO nanoparticles with Fe3O4 nanoparticles deposited on tannin, which was denoted as (AgI/ZnO)-Fe3O4/Tannin. The as-prepared products are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR), diffuse reflectance spectra (DRS) and vibrating sample magnetometer (VSM). The photocatalyst exhibited high activity degrading a textile dye under visible light irradiation. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.Keywords: AgI/ZnO-Fe3O4/Tannin, visible light, magnetically separable, photocatalyst
Procedia PDF Downloads 217177 TiO2 Solar Light Photocatalysis a Promising Treatment Method of Wastewater with Trinitrotoluene Content
Authors: Ines Nitoi, Petruta Oancea, Lucian Constantin, Laurentiu Dinu, Maria Crisan, Malina Raileanu, Ionut Cristea
Abstract:
2,4,6-Trinitrotoluene (TNT) is the most common pollutant identified in wastewater generated from munitions plants where this explosive is synthesized or handled (munitions load, assembly and pack operations). Due to their toxic and suspected carcinogenic characteristics, nitroaromatic compounds like TNT are included on the list of prioritary pollutants and strictly regulated in EU countries. Since their presence in water bodies is risky for human health and aquatic life, development of powerful, modern treatment methods like photocatalysis are needed in order to assures environmental pollution mitigation. The photocatalytic degradation of TNT was carried out at pH=7.8, in aqueous TiO2 based catalyst suspension, under sunlight irradiation. The enhanced photo activity of catalyst in visible domain was assured by 0.5% Fe doping. TNT degradation experiments were performed using a tubular collector type solar photoreactor (26 UV permeable silica glass tubes series connected), plug in a total recycle loops. The influence of substrate concentration and catalyst dose on the pollutant degradation and mineralization by-products (NO2-, NO3-, NH4+) formation efficiencies was studied. In order to compare the experimental results obtained in various working conditions, the pollutant and mineralization by-products measured concentrations have been considered as functions of irradiation time and cumulative photonic energy Qhν incident on the reactor surface (kJ/L). In the tested experimental conditions, at tens mg/L pollutant concentration, increase of 0,5%-TiO2 dose up to 200mg/L leads to the enhancement of CB degradation efficiency. Since, doubling of TNT content has a negative effect on pollutant degradation efficiency, in similar experimental condition, prolonged irradiation time from 360 to 480 min was necessary in order to assures the compliance of treated effluent with limits imposed by EU legislation (TNT ≤ 10µg/L).Keywords: wastewater treatment, TNT, photocatalysis, environmental engineering
Procedia PDF Downloads 357176 Mitigating Nitrous Oxide Production from Nitritation/Denitritation: Treatment of Centrate from Pig Manure Co-Digestion as a Model
Authors: Lai Peng, Cristina Pintucci, Dries Seuntjens, José Carvajal-Arroyo, Siegfried Vlaeminck
Abstract:
Economic incentives drive the implementation of short-cut nitrogen removal processes such as nitritation/denitritation (Nit/DNit) to manage nitrogen in waste streams devoid of biodegradable organic carbon. However, as any biological nitrogen removal process, the potent greenhouse gas nitrous oxide (N2O) could be emitted from Nit/DNit. Challenges remain in understanding the fundamental mechanisms and development of engineered mitigation strategies for N2O production. To provide answers, this work focuses on manure as a model, the biggest wasted nitrogen mass flow through our economies. A sequencing batch reactor (SBR; 4.5 L) was used treating the centrate (centrifuge supernatant; 2.0 ± 0.11 g N/L of ammonium) from an anaerobic digester processing mainly pig manure, supplemented with a co-substrate. Glycerin was used as external carbon source, a by-product of vegetable oil. Out-selection of nitrite oxidizing bacteria (NOB) was targeted using a combination of low dissolved oxygen (DO) levels (down to 0.5 mg O2/L), high temperature (35ºC) and relatively high free ammonia (FA) (initially 10 mg NH3-N/L). After reaching steady state, the process was able to remove 100% of ammonium with minimum nitrite and nitrate in the effluent, at a reasonably high nitrogen loading rate (0.4 g N/L/d). Substantial N2O emissions (over 15% of the nitrogen loading) were observed at the baseline operational condition, which were even increased under nitrite accumulation and a low organic carbon to nitrogen ratio. Yet, higher DO (~2.2 mg O2/L) lowered aerobic N2O emissions and weakened the dependency of N2O on nitrite concentration, suggesting a shift of N2O production pathway at elevated DO levels. Limiting the greenhouse gas emissions (environmental protection) from such a system could be substantially minimized by increasing the external carbon dosage (a cost factor), but also through the implementation of an intermittent aeration and feeding strategy. Promising steps forward have been presented in this abstract, yet at the conference the insights of ongoing experiments will also be shared.Keywords: mitigation, nitrous oxide, nitritation/denitritation, pig manure
Procedia PDF Downloads 249175 How Group Education Impacts Female Factory Workers’ Behavior and Readiness to Receive Mammography and Pap Smears
Authors: Memnun Seven, Mine Bahar, Aygül Akyüz, Hatice Erdoğan
Abstract:
Background: The workplace has been deemed a suitable location for educating many women at once about cancer screening. Objective: To determine how group education about early diagnostic methods for breast and cervical cancer affects women’s behavior and readiness to receive mammography and Pap smears. Methods: This semi-interventional study was conducted at a textile factory in Istanbul, Turkey. Female workers (n = 125) were included in the study. A participant identification form and knowledge evaluation form developed for this study, along with the trans-theoretical model, were used to collect data. A 45-min interactive group education was given to the participants. Results: Upon contacting participants 3 months after group education, 15.4% (n = 11) stated that they had since received a mammogram and 9.8% (n = 7) a Pap smear. As suggested by the trans-theoretical model, group education increased participants’ readiness to receive cancer screening, along with their knowledge of breast and cervical cancer. Conclusions: Group education positively impacted women’s knowledge of cancer and their readiness to receive mammography and Pap smears. Group education can therefore potentially create awareness of cancer screening tests among women and improve their readiness to receive such tests.Keywords: cancer screening, educational intervention, participation, women
Procedia PDF Downloads 329174 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)
Authors: Amer Obaid Saud
Abstract:
Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.Keywords: Babylon governorate, Canadian version, water quality, Euphrates river
Procedia PDF Downloads 398173 Pectin Degrading Enzyme: Entrapment of Pectinase Using Different Synthetic and Non-Synthetic Polymers for Continuous Degradation of Pectin Polymer
Authors: Haneef Ur Rehman, Afsheen Aman, Abdul Hameed Baloch, Shah Ali Ul Qader
Abstract:
Pectinase is a heterogeneous group of enzymes that catalyze the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, pectinase from B. licheniformis KIBGE-IB21 was immobilized within different polymers (calcium alginate beads, polyacrylamide gel and agar-agar matrix) to enhance its catalytic properties. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield. While less immobilization yield was observed in case of calcium alginate beads that only retained 46 % activity. The reaction time for maximum pectinolytic activity was increased from 5.0 to 10 minutes after immobilization. The temperature of pectinase for maximum enzyme activity was increased from 45 °C to 50 °C and 55 °C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH of pectinase didn’t alter when it was immobilized within polyacrylamide gel and calcium alginate beads, but in case of agar-agar it was changed from pH 10 to pH 9.0. Thermal stability of pectinase was improved after immobilization and immobilized pectinase showed higher toleration against different temperatures as compared to free enzyme. It can be concluded that the entrapment is a simple, single step and promising procedure to immobilized pectinase within different synthetic and non-synthetic polymers and enhanced its catalytic properties.Keywords: pectinase, characterization immobilization, polyacrylamide, agar-agar, calcium alginate beads
Procedia PDF Downloads 606