Search results for: erbium doped fibre amplifier
443 Wet Spun Graphene Fibers With Silver Nanoparticles For Flexible Electronic Applications
Authors: Syed W. Hasan, Zhiqun Tian
Abstract:
Wet spinning provides a facile and economic route to fabricate graphene nanofibers (GFs) on mass scale. Nevertheless, the pristine GFs exhibit significantly low electrical and mechanical properties owing to stacked graphene sheets and weak inter-atomic bonding. In this report, we present highly conductive Ag-decorated-GFs (Ag/GFs). The SEM micrographs show Ag nanoparticles (NPs) (dia ~10 nm) are homogeneously distributed throughout the cross-section of the fiber. The Ag NPs provide a conductive network for the electrons flow raising the conductivity to 1.8(10^4) S/m which is 4 times higher than the pristine GFs. Our results surpass the conductivities of graphene fibers doped with CNTs, Nanocarbon, fullerene, and Cu. The chemical and structural attributes of Ag/GFs are further elucidated through XPS, AFM and Raman spectroscopy.Keywords: Ag nanoparticles, Conductive fibers, Graphene, Wet spinning
Procedia PDF Downloads 143442 Proximate Composition and Sensory Properties of Complementary Food from Fermented Acha (Digitaria exilis), Soybean and Orange-Flesh Sweet Potato Blends
Authors: N. C. Okoronkwo, I. E. Mbaeyi-Nwaoha, C. P. Agbata
Abstract:
Childhood malnutrition is one of the most persistent public health problems throughout developing countries, including Nigeria. Demographic and Health survey data from twenty-one developing countries indicated that poor complementary feeding of children aged 6- 23 months contributes to negative growth trends. To reduce malnutrition among children in the society, formulation of complimentary food rich in essential nutrient for optimum growth and development of infants is essential. This study focused on the evaluation of complementary food produced by solid-state fermentation of Acha and Soybean using Rhizopus oligosporus (2710) and Orange-fleshed sweet potatoes (OFSP) using Lactobacillus planterum (B-41621). The raw materials were soaked separately, each in four volumes of 0.9M acetic acid for 16 hours, rinsed with clean water, steam cooked and cooled. Solid-state fermentation (SSF) was carried out by inoculating Acha and Soybean with spore suspension (1x 10⁶spores/ml) of Rhizopus oligosporus (2710) and OFSP with spore suspension (1x 106spores/ml) of Lactobacillus planterum (B-41621). Fermentation which lasted for 72hours was carried out with 24hours sampling. The samples were blended in the following ratios: Acha and soybean 100: 100 (AS), Acha/soybean and OFSP 50: 50(ASO), made into gruel and compared with a commercial infant formula (Cerelac) which served as the control (CTRL). The samples were analyzed for proximate composition using AOAC methods and sensory attributes using a hedonic scale. Results showed that moisture, crude protein, fibre and ash content increased significantly (p<0.05) as fermentation progressed, while carbohydrate and fat content decreased. The protein, moisture, fibre and ash content ranged from 17.10-19.02%, 54.97-56.27%, 7.08-7.60% and2.09-2.38%, respectively, while carbohydrate and fat content ranged from 12.95-10.21% and 5.81-4.52%, respectively. In sensory scores, there were no significant (p>0.05) difference between the average mean scores of colours, texture and consistency of the samples. The sensory score for the overall acceptability ranged from 6.20-7.80. Sample CTRL had the highest score, while sample ASO had the least score. There was no significant (p>0.05) difference between samples CTRL and AS. Solid-state fermentation improved the nutritional content and flavour of the developed complementary food, which is needed for infant growth and development.Keywords: Complementary food, malnutrition, proximate composition, solid-state fermentation
Procedia PDF Downloads 160441 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes
Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen
Abstract:
Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades
Procedia PDF Downloads 164440 Design of Wireless Readout System for Resonant Gas Sensors
Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu
Abstract:
This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.Keywords: gas sensor, GSWR, micromechanical system, UWT, volatile emissions
Procedia PDF Downloads 484439 Nanostructured Fluorine Doped Zinc Oxide Thin Films Deposited by Ultrasonic Spray Pyrolisys Technique: Effect of Starting Solution Composition and Substrate Temperature on the Physical Characteristics
Authors: Esmeralda Chávez Vargas, M. de la L. Olvera, A. Maldonado
Abstract:
The doping it is believed as follows, at high concentration fluorine in ZnO: F films is incorporated to the lattice by substitution of O-2 ions by F-1 ions; at middle fluorine concentrations, F ions may form interstitials, whereas for low concentrations it is increased the carriers and mobility could be explained by the surface passivation effect of fluorine. ZnO:F thin films were deposited on sodocalcic glass substratesat 425 °C , 450°C, 475 during 8, 12, 15 min from a 0.2 M solution. Doping concentration in the starting solutions was varied, namely, [F]/[F+Zn] = 0, 5, 15, 30, 45, 60, and 90 at. %; solvent composition was varied as well, 100:100; 50:50; 100:50(acetic acid: water: methanol ratios, in volume). In this work it is reported the characterization results of fluorine doped zinc oxide (ZnO:F) thin films deposited by the ultrasonic spray pyrolysis technique, using zinc acetate and ammonium fluorine as Zn an F precursors, respectively. The effect of varying the fluorine concentration in the starting solutions, the solvent composition, and the ageing time of the starting solutions, on the electrical resistivity, optical transmittance, structure and surface morphology was analyzed. In order to have a quantitative evaluation of the ZnO:F thin films for its application as transparent electrodes, the Figure of Merit was estimated from the Haacke´s formula. After a thoroughly study, it can be found that optimal conditions for the deposition of transparent and conductive ZnO:F thin films on sodocalcic substrates, were as follows; substrate temperature: solution molar concentration 0.2, doping concentration in the starting solution of [F]/[Zn]= 60 at. %, (water content)/(acetic acid) in starting solution: [H2O/ CH3OH]= 50:50, substrate temperature: 450 °C. The effects of aging of the starting solution has also been analyzed thoroughly and it has been found a dramatic effect on the electric resistivity of the material, aged by 40 days, show an electrical resitivity as low as 120 Ω/□, with a transmittance around 80% in the visible range. X-ray diffraction spectra show a polycrystalline of ZnO (wurtzite structure) where the amount of fluorine doping affects to preferential orientation (002 plane). Therefore, F introduction in lattice is by the substitution of O-2 ions by F-1 ions. The results show that ZnO:F thin films are potentially adequate for application as transparent conductive oxide in thin film solar cells.Keywords: TCOs, transparent electrodes, ultrasonic spray pyrolysis, zinc oxide, ZnO:F
Procedia PDF Downloads 504438 Evaluation of Electrophoretic and Electrospray Deposition Methods for Preparing Graphene and Activated Carbon Modified Nano-Fibre Electrodes for Hydrogen/Vanadium Flow Batteries and Supercapacitors
Authors: Barun Chakrabarti, Evangelos Kalamaras, Vladimir Yufit, Xinhua Liu, Billy Wu, Nigel Brandon, C. T. John Low
Abstract:
In this work, we perform electrophoretic deposition of activated carbon on a number of substrates to prepare symmetrical coin cells for supercapacitor applications. From several recipes that involve the evaluation of a few solvents such as isopropyl alcohol, N-Methyl-2-pyrrolidone (NMP), or acetone to binders such as polyvinylidene fluoride (PVDF) and charging agents such as magnesium chloride, we display a working means for achieving supercapacitors that can achieve 100 F/g in a consistent manner. We then adapt this EPD method to deposit reduced graphene oxide on SGL 10AA carbon paper to achieve cathodic materials for testing in a hydrogen/vanadium flow battery. In addition, a self-supported hierarchical carbon nano-fibre is prepared by means of electrospray deposition of an iron phthalocyanine solution onto a temporary substrate followed by carbonisation to remove heteroatoms. This process also induces a degree of nitrogen doping on the carbon nano-fibres (CNFs), which allows its catalytic performance to improve significantly as detailed in other publications. The CNFs are then used as catalysts by attaching them to graphite felt electrodes facing the membrane inside an all-vanadium flow battery (Scribner cell using serpentine flow distribution channels) and efficiencies as high as 60% is noted at high current densities of 150 mA/cm². About 20 charge and discharge cycling show that the CNF catalysts consistently perform better than pristine graphite felt electrodes. Following this, we also test the CNF as an electro-catalyst in the hydrogen/vanadium flow battery (cathodic side as mentioned briefly in the first paragraph) facing the membrane, based upon past studies from our group. Once again, we note consistently good efficiencies of 85% and above for CNF modified graphite felt electrodes in comparison to 60% for pristine felts at low current density of 50 mA/cm² (this reports 20 charge and discharge cycles of the battery). From this preliminary investigation, we conclude that the CNFs may be used as catalysts for other systems such as vanadium/manganese, manganese/manganese and manganese/hydrogen flow batteries in the future. We are generating data for such systems at present, and further publications are expected.Keywords: electrospinning, carbon nano-fibres, all-vanadium redox flow battery, hydrogen-vanadium fuel cell, electrocatalysis
Procedia PDF Downloads 291437 Phytochemical and Proximate Composition Analysis of Aspillia kotschyi
Authors: A. U. Adamu, E. D Paul, C. E. Gimba, I. G. Ndukwe
Abstract:
The phytochemical and proximate composition of Aspillia kotschyi belonging to Compositae family which is commonly used as medicinal plant in Nigeria was determined on both the Methanolic and Petroleum sprit extract of the plant. The Methanolic extract of the plant revealed the presence of carbohydrates, cardiac glyscosides, flavonoids, triterpene, and alkaloids. The Petroleum sprit extract showed the presence of only carbohydrates and alkaloid. Proximate composition analysis shows moisture content of 5.7%, total ash of 4.03%, crude protein 10.94%, fibre 9.06%, fat value 0.83%, and nitrogen free extract of 70.19%. The results of this study suggest some merit in the popular use of Aspillia kotschi in herbal medicine.Keywords: Aspillia kotschyi, herbal medicine, phytochemical, proximate composition
Procedia PDF Downloads 367436 Na Doped ZnO UV Filters with Reduced Photocatalytic Activity for Sunscreen Application
Authors: Rafid Mueen, Konstantin Konstantinov, Micheal Lerch, Zhenxiang Cheng
Abstract:
In the past two decades, the concern for skin protection from ultraviolet (UV) radiation has attracted considerable attention due to the increased intensity of UV rays that can reach the Earth’s surface as a result of the breakdown of ozone layer. Recently, UVA has also attracted attention, since, in comparison to UVB, it can penetrate deeply into the skin, which can result in significant health concerns. Sunscreen agents are one of the significant tools to protect the skin from UV irradiation, and it is either organic or in organic. Developing of inorganic UV blockers is essential, which provide efficient UV protection over a wide spectrum rather than organic filters. Furthermore inorganic UV blockers are good comfort, and high safety when applied on human skin. Inorganic materials can absorb, reflect, or scatter the ultraviolet radiation, depending on their particle size, unlike the organic blockers, which absorb the UV irradiation. Nowadays, most inorganic UV-blocking filters are based on (TiO2) and ZnO). ZnO can provide protection in the UVA range. Indeed, ZnO is attractive for in sunscreen formulization, and this relates to many advantages, such as its modest refractive index (2.0), absorption of a small fraction of solar radiation in the UV range which is equal to or less than 385 nm, its high probable recombination of photogenerated carriers (electrons and holes), large direct band gap, high exciton binding energy, non-risky nature, and high tendency towards chemical and physical stability which make it transparent in the visible region with UV protective activity. A significant issue for ZnO use in sunscreens is that it can generate ROS in the presence of UV light because of its photocatalytic activity. Therefore it is essential to make a non-photocatalytic material through modification by other metals. Several efforts have been made to deactivate the photocatalytic activity of ZnO by using inorganic surface modifiers. The doping of ZnO by different metals is another way to modify its photocatalytic activity. Recently, successful doping of ZnO with different metals such as Ce, La, Co, Mn, Al, Li, Na, K, and Cr by various procedures, such as a simple and facile one pot water bath, co-precipitation, hydrothermal, solvothermal, combustion, and sol gel methods has been reported. These materials exhibit greater performance than undoped ZnO towards increasing the photocatalytic activity of ZnO in visible light. Therefore, metal doping can be an effective technique to modify the ZnO photocatalytic activity. However, in the current work, we successfully reduce the photocatalytic activity of ZnO through Na doped ZnO fabricated via sol-gel and hydrothermal methods.Keywords: photocatalytic, ROS, UVA, ZnO
Procedia PDF Downloads 144435 Automated Resin Transfer Moulding of Carbon Phenolic Composites
Authors: Zhenyu Du, Ed Collings, James Meredith
Abstract:
The high cost of composite materials versus conventional materials remains a major barrier to uptake in the transport sector. This is exacerbated by a shortage of skilled labour which makes the labour content of a hand laid composite component (~40 % of total cost) an obvious target for reduction. Automation is a method to remove labour cost and improve quality. This work focuses on the challenges and benefits to automating the manufacturing process from raw fibre to trimmed component. It will detail the experimental work required to complete an automation cell, the control strategy used to integrate all machines and the final benefits in terms of throughput and cost.Keywords: automation, low cost technologies, processing and manufacturing technologies, resin transfer moulding
Procedia PDF Downloads 293434 Electrical Characterization of Hg/n-bulk GaN Schottky Diode
Authors: B. Nabil, O. Zahir, R. Abdelaziz
Abstract:
We present the results of electrical characterizations current-voltage and capacity-voltage implementation of a method of making a Schottky diode on bulk gallium nitride doped n. We made temporary Schottky contact of Mercury (Hg) and an ohmic contact of silver (Ag), the electrical characterizations current-voltage (I-V) and capacitance-voltage (C-V) allows us to determine the difference parameters of our structure (Hg /n-GaN) as the barrier height (ΦB), the ideality factor (n), the series resistor (Rs), the voltage distribution (Vd), the doping of the substrate (Nd) and density of interface states (Nss).Keywords: Bulk Gallium nitride, electrical characterization, Schottky diode, series resistance, substrate doping
Procedia PDF Downloads 486433 Piezoelectric Actuator for Controlling Robotics Organs
Authors: Lemoussi Somia, Ouali Mohammed, Zemirline Adel
Abstract:
In precision engineering, including precision positioning, micro-manipulation, robotic systems... a majority of these applications actuated by piezo stack used the compliant amplifier mechanism to amplifying motion and guiding it as needed utilize the flexibility of their components, in this paper, we present a novel approach introducing a symmetric structure comprising three stages, featuring rectangular flexure hinges with a compact size of 77mm×42mm×10mm. This design provides the capability for rotation, translation or a combination of both movements in both directions. The system allows for a displacement of 2107.5 μm when the input displacement of PZT is 50 μm while considering the material constraints of the aluminum alloy (7075 T6) which has a maximum admissible stress of 500 MPa However, our proposed design imposes additional constraints to ensure the stress remains below 361 MPa for optimal performance. These findings were obtained through finite element simulations conducted using ANSYS Workbench. Furthermore, our module facilitates precise control of various components within robotic systems, allowing for adjustable speeds based on specific requirements or desired outcomes.Keywords: robotic, piezoelectric, compliant mechanism, flexure hinge
Procedia PDF Downloads 80432 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades
Authors: Chi Zhang, Hua-Peng Chen
Abstract:
With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.
Procedia PDF Downloads 413431 Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Time Domain Reflectometer
Authors: Osama Terra, Mariesa Nel, Hatem Hussein
Abstract:
Calibration of Optical Time Domain Reflectometer (OTDR) has a crucial role for the accurate determination of fault locations and the accurate calculation of loss budget of long-haul optical fibre links during installation and repair. A comparison has been made between the Egyptian National Institute for Standards (NIS-Egypt) and the National Metrology institute of South Africa (NMISA-South Africa) for the calibration of an OTDR. The distance and the attenuation scales of a transfer OTDR have been calibrated by both institutes using their standards according to the standard IEC 61746-1 (2009). The results of this comparison have been compiled in this report.Keywords: OTDR calibration, recirculating loop, concatenated method, standard fiber
Procedia PDF Downloads 449430 Effects of Particle Sizes of Maize Flour on the Quality of Traditional Maize Snack, Kokoro
Authors: Adebola Ajayi, Olakunle M. Makanjuola
Abstract:
The effects of particle sizes of maize flour on the quality of traditional maize snack (Kokoro) were investigated. Maize flour of different sieve mesh sizes of 1.00mm, 1.9 mm, 1.4 mm, 1.68 mm and 2.0 mm was used to produce Kokoro. The samples were analysed for protein, fat, moisture content, crude fibre, ash and sensory evaluation. The various mixture obtained were separately processed into snacks following essential traditional method of production. The result of the sensory evaluation showed that Kokoro of sample 546 using 1.0mm mesh sieve size was the most preferred and sample 513 using 2.00 was least preferred. The result revealed that the more the maize was well blended the more acceptable the product is to the consumer.Keywords: particle sizes, maize flour, quality, Kokoro
Procedia PDF Downloads 199429 Activated Carbons Prepared from Date Pits for Hydrogen Storage
Authors: M. Belhachemi, M. Monteiro de Castro, M. Casco, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso
Abstract:
In this study, activated carbons were prepared from Algerian date pits using thermal activation with CO2 or steam. The prepared activated carbons were doped by vanadium oxide in order to increase the H2 adsorption capacity. The adsorbents were characterized by N2 and CO2 adsorption at 77 K and 273K, respectively. The hydrogen adsorption experiments were carried at 298K in the 0–100 bar pressure range using a volumetric equipment. The results show that the H2 adsorption capacity is influenced by the size and volume of micropores in the activated carbon adsorbent. Furthermore, vanadium doping of activated carbons has a slight positive effect on H2 storage.Keywords: hydrogen storage, activated carbon, vanadium doping, adsorption
Procedia PDF Downloads 572428 Physicochemical Properties of Moringa oleifera Seeds
Authors: Oyewusi Peter Ayodele, Onipede Ayodeji
Abstract:
Our research focuses on some physicochemical parameters of Moringa Oleifera seed meal and its seed oil to determine its nutritional quality. Proximate, mineral, and vitamin analyses were performed on the defatted seed meal, while fatty acid determination was carried out on the seed oil. The results of the proximate composition show moisture content (3.52 ± 0.01), ash (2.80 ± 0.33), crude fibre (3.92 ± 0.01), protein (42.96 ± 0.05), crude fat (7.04 ± 0.01) and carbohydrate (36.79 ± 0.04). The mineral composition shows that the seed is rich in Ca, K, and Na with 220ppm, 205ppm, and 118ppm, respectively. The seed has vitamins A and C with 2.17 ± 0.01mg/100g and 6.95 ± 0.00 mg/100g respectively. The seed also contains 56.62 %, 38.50 %, and 5.24 % saturated, monounsaturated, and polyunsaturated fatty acids, respectively. It could be illustrated that Moringa seeds and their oil can be considered potential sources for both dietary and industrial purposes.Keywords: Moringa oleifera seed, chemical composition, fatty acid, proximate, minerals and vitamins compositions
Procedia PDF Downloads 288427 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize
Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu
Abstract:
The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.Keywords: maize weevil, resistant, parameters, mechanisms, preference
Procedia PDF Downloads 307426 Ab-Initio Study of Native Defects in SnO Under Strain
Authors: A. Albar, D. B. Granato, U. Schwingenschlogl
Abstract:
Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor.Keywords: native defects, ab-initio, point defect, tension, compression, semiconductor
Procedia PDF Downloads 396425 An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures
Authors: Edwin Forero-Garcia, Jaime Vitola, Brayan Cardenas, Johan Casagua
Abstract:
This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them.Keywords: acquisition, signal processing, ultrasound, SAFT, HMI
Procedia PDF Downloads 107424 Quality Assessment Of Instant Breakfast Cereals From Yellow Maize (Zea mays), Sesame (Sesamum indicium), And Mushroom (Pleurotusostreatus) Flour Blends
Authors: Mbaeyi-Nwaoha, Ifeoma Elizabeth, Orngu, Africa Orngu
Abstract:
Composite flours were processed from blends of yellow maize (Zea mays), sesame seed (Sesamum indicum) and oyster mushroom (Pleurotus ostreatus) powder in the ratio of 80:20:0; 75:20:5; 70:20:10; 65:20:10 and 60:20:20, respectively to produce the breakfast cereal coded as YSB, SMB, TMB, PMB and OMB with YSB as the control. The breakfast cereals were produced by hydration and toasting of yellow maize and sesame to 160oC for 25 minutes and blended together with oven dried and packaged oyster mushroom. The developed products (flours and breakfast cereals) were analyzed for proximate composition, vitamins, minerals, anti-nutrients, phytochemicals, functional, microbial and sensory properties. Results for the flours showed: proximate composition (%): moisture (2.59-7.27), ash (1.29-7.57), crude fat (0.98-14.91), fibre (1.03-16.02), protein (10.13-35.29), carbohydrate (75.48-38.18) and energy (295.18-410.75kcal). Vitamins ranged as: vitamin A (0.14-9.03 ug/100g), vitamin B1 (0.14-0.38), vitamin B2 (0.07-0.15), vitamin B3(0.89-4.88) and Vitamin C (0.03-4.24). Minerals (mg/100g) were reported thus: calcium (8.01-372.02), potassium (1.40-1.85), magnesium (12.09-13.15), iron (1.23-5.25) and zinc (0.85-2.20). The results for anti-nutrients and phytochemical ranged from: tannin (1.50-1.61mg/g), Phytate (0.40-0.71mg/g), Oxalate(1.81-2.02mg/g), Flavonoid (0.21-1.27%) and phenolic (1.12-2.01%). Functional properties showed: bulk density (0.51-0.77g/ml), water absorption capacity (266.0-301.5%), swelling capacity (136.0-354.0%), least Gelation (0.55-1.45g/g) and reconstitution index (35.20-69.60%). The total viable count ranged from 6.4× 102to1.0× 103cfu/g while the total mold count was from 1.0× 10to 3.0× 10 cfu/g. For the breakfast cereals, proximate composition (%) ranged thus: moisture (4.07-7.08), ash (3.09-2.28), crude fat(16.04-12.83), crude fibre(4.30-8.22), protein(16.14-22.54), carbohydrate(56.34-47.04) and energy (434.34-393.83Kcal).Vitamin A (7.99-5.98 ug/100g), vitamin B1(0.08-0.42mg/100g), vitamin B2(0.06-0.15 mg/100g), vitamin B3(1.91-4.52 mg/100g) and Vitamin C(3.55-3.32 mg/100g) were reported while Minerals (mg/100g) were: calcium (75.31-58.02), potassium (0.65-4.01), magnesium(12.25-12.62), iron (1.21-4.15) and zinc (0.40-1.32). The anti-nutrients and phytochemical revealed the range (mg/g) as: tannin (1.12-1.21), phytate (0.69-0.53), oxalate (1.21-0.43), flavonoid (0.23-1.22%) and phenolic (0.23-1.23%). The bulk density (0.77-0.63g/ml), water absorption capacity (156.5-126.0%), swelling capacity (309.5-249.5%), least gelation (1.10-0.75g/g) and reconstitution index (49.95-39.95%) were recorded. From the total viable count, it ranged from 3.3× 102to4.2× 102cfu/g but no mold growth was detected. Sensory scores revealed that the breakfast cereals were acceptable to the panelist with oyster mushroom supplementation up to 10%.Keywords: oyster mushroom (Pleurotus ostreatus), sesame seed (Sesamum indicum), yellow maize (Zea mays, instant breakfast cereals
Procedia PDF Downloads 204423 To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate
Authors: Kshitij Sawke, Pradnyavant Kamble, Shrikant Patil
Abstract:
The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples.Keywords: laser clad, processing parameters, wear rate, wear resistance
Procedia PDF Downloads 259422 Microcrystalline Cellulose (MCC) from Oil Palm Empty Fruit Bunch (EFB) Fiber via Simultaneous Ultrasonic and Alkali Treatment
Authors: Ridzuan Ramli, Norhafzan Junadi, Mohammad D.H. Beg, Rosli M. Yunus
Abstract:
In this study, microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (EFB) cellulose which was earlier isolated from oil palm EFB fibre. In order to isolate the cellulose, the chlorination method was carried out. Then, the MCC was prepared by simultaneous ultrasonic and alkali treatment from the isolated α-cellulose. Based on mass balance calculation, the yields for MCC obtained from EFB was 44%. For fiber characterization, it is observed that the chemical composition of the hemicellulose and lignin for all samples decreased while composition for cellulose increased. The structural property of the MCC was studied by X-ray diffraction (XRD) method and the result shows that the MCC produced is a cellulose-I polymorph, with 73% crystallinity.Keywords: oil palm empty fruit bunch, microcrystalline cellulose, ultrasonic, alkali treatment, x-ray diffraction
Procedia PDF Downloads 415421 First Principle study of Electronic Structure of Silicene Doped with Galium
Authors: Mauludi Ariesto Pamungkas, Wafa Maftuhin
Abstract:
Gallium with three outer electrons commonly are used as dopants of silicon to make it P type and N type semiconductor respectively. Silicene, one-atom-thick silicon layer is one of emerging two dimension materials after the success of graphene. The effects of Gallium doping on electronic structure of silicine are investigated by using first principle calculation based on Density Functional Theory (DFT) calculation and norm conserving pseudopotential method implemented in ABINIT code. Bandstructure of Pristine silicene is similar to that of graphene. Effect of Ga doping on bandstructure of silicene depend on the position of Ga adatom on siliceneKeywords: silicene, effects of Gallium doping, Density Functional Theory (DFT), graphene
Procedia PDF Downloads 435420 A Biomimetic Uncemented Hip Resurfacing Versus Various Biomaterials Hip Resurfacing Implants
Authors: Karima Chergui, Hichem Amrani, Hammoudi Mazouz, Fatiha Mezaache
Abstract:
Cemented femoral resurfacings have experienced a revival for younger and more active patients. Future developments have shown that the uncemented version eliminates failures related to cementing implants. A three-dimensional finite element method (FEM) simulation was carried out in order to exploit a new resurfacing prothesis design named MARMEL, proposed by a recent study with Co–Cr–Mo material, for comparing a hip uncemented resurfacing with a novel carbon fiber/polyamide 12 (CF/PA12) composite to other hip resurfacing implants with various bio materials. From FE analysis, the von Mises stress range for the Composite hip resurfacing was much lower than that in the other hip resurfacing implants used in this comparison. These outcomes showed that the biomimetic hip resurfacing had the potential to reduce stress shielding and prevent from bone fracture compared to conventional hip resurfacing implants.Keywords: biomechanics, carbon–fibre polyamide 12, finite element analysis, hip resurfacing
Procedia PDF Downloads 335419 Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC
Authors: Gürol Önal, Kevser Dinçer, Salih Yayla
Abstract:
In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC.Keywords: fuel cell, Polymer Electrolyte Membrane (PEM), membrane, spin method
Procedia PDF Downloads 562418 Application of Artificial Neural Network and Background Subtraction for Determining Body Mass Index (BMI) in Android Devices Using Bluetooth
Authors: Neil Erick Q. Madariaga, Noel B. Linsangan
Abstract:
Body Mass Index (BMI) is one of the different ways to monitor the health of a person. It is based on the height and weight of the person. This study aims to compute for the BMI using an Android tablet by obtaining the height of the person by using a camera and measuring the weight of the person by using a weighing scale or load cell. The height of the person was estimated by applying background subtraction to the image captured and applying different processes such as getting the vanishing point and applying Artificial Neural Network. The weight was measured by using Wheatstone bridge load cell configuration and sending the value to the computer by using Gizduino microcontroller and Bluetooth technology after the amplification using AD620 instrumentation amplifier. The application will process the images and read the measured values and show the BMI of the person. The study met all the objectives needed and further studies will be needed to improve the design project.Keywords: body mass index, artificial neural network, vanishing point, bluetooth, wheatstone bridge load cell
Procedia PDF Downloads 325417 Influence of La0.1Sr0.9Co1-xFexO3-δ Catalysts on Oxygen Permeation Using Mixed Conductor
Authors: Y. Muto, S. Araki, H. Yamamoto
Abstract:
The separation of oxygen is one key technology to improve the efficiency and to reduce the cost for the processed of the partial oxidation of the methane and the condensation of the carbon dioxide. Particularly, carbon dioxide at high concentration would be obtained by the combustion using pure oxygen separated from air. However, the oxygen separation process occupied the large part of energy consumption. Therefore, it is considered that the membrane technologies enable to separation at lower cost and lower energy consumption than conventional methods. In this study, it is examined that the separation of oxygen using membranes of mixed conductors. Oxygen permeation through the membrane is occurred by the following three processes. At first, the oxygen molecules dissociate into oxygen ion at feed side of the membrane, subsequently, oxygen ions diffuse in the membrane. Finally, oxygen ions recombine to form the oxygen molecule. Therefore, it is expected that the membrane of thickness and material, or catalysts of the dissociation and recombination affect the membrane performance. However, there is little article about catalysts for the dissociation and recombination. We confirmed the performance of La0.6Sr0.4Co1.0O3-δ (LSC) based catalyst which was commonly used as the dissociation and recombination. It is known that the adsorbed amount of oxygen increase with the increase of doped Fe content in B site of LSC. We prepared the catalysts of La0.1Sr0.9Co0.9Fe0.1O3-δ(C9F1), La0.1Sr0.9Co0.5Fe0.5O3-δ(C5F5) and La0.1Sr0.9Co0.3Fe0.7O3-δ(C7F3). Also, we used Pr2NiO4 type mixed conductor as a membrane material. (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG) shows the high oxygen permeability and the stability against carbon dioxide. Oxygen permeation experiments were carried out using a homemade apparatus at 850 -975 °C. The membrane was sealed with Pyrex glass at both end of the outside dense alumina tubes. To measure the oxygen permeation rate, air was fed to the film side at 50 ml min-1, helium as the sweep gas and reference gas was fed at 20 ml min-1. The flow rates of the sweep gas and the gas permeated through the membrane were measured using flow meter and the gas concentrations were determined using a gas chromatograph. Then, the permeance of the oxygen was determined using the flow rate and the concentration of the gas on the permeate side of the membrane. The increase of oxygen permeation was observed with increasing temperature. It is considered that this is due to the catalytic activities are increased with increasing temperature. Another reason is the increase of oxygen diffusivity in the bulk of membrane. The oxygen permeation rate is improved by using catalyst of LSC or LSCF. The oxygen permeation rate of membrane with LSCF showed higher than that of membrane with LSC. Furthermore, in LSCF catalysts, oxygen permeation rate increased with the increase of the doped amount of Fe. It is considered that this is caused by the increased of adsorbed amount of oxygen.Keywords: membrane separation, oxygen permeation, K2NiF4-type structure, mixed conductor
Procedia PDF Downloads 519416 Substrate Coupling in Millimeter Wave Frequencies
Authors: Vasileios Gerakis, Fontounasios Christos, Alkis Hatzopoulos
Abstract:
A study of the impact of metal guard rings on the coupling between two square metal pads is presented. The structure is designed over a bulk silicon substrate with epitaxial layer, so the coupling through the substrate is also involved. A lightly doped profile is adopted and is simulated by means of an electromagnetic simulator for various pad distances and different metal layers, assuming a 65 nm bulk CMOS technology. The impact of various guard ring design (geometrical) parameters is examined. Furthermore, the increase of isolation (resulting in reduction of the noise coupling) between the pads by cutting the ring, or by using multiple rings, is also analyzed. S parameters are used to compare the various structures.Keywords: guard rings, metal pad coupling, millimeter wave frequencies, substrate noise,
Procedia PDF Downloads 540415 Effect of Boric Acid Content on the Structural and Optical Properties of In2O3 Films Prepared by Spray Pyrolysis Technique
Authors: Mustafa Öztas, Metin Bedir, Yahya Özdemir
Abstract:
Boron doped of In2O3 films were prepared by spray pyrolysis technique at 350 °C substrate temperature, which is a low cost and large area technique to be well-suited for the manufacture of solar cells, using boric acid (H3BO3) as dopant source, and their properties were investigated as a function of doping concentration. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal structure and have preferred orientation in (220) direction. The changes observed in the energy band gap and structural properties of the films related to the boric acid concentration are discussed in detail.Keywords: spray pyrolysis, In2O3, boron, optical properties, boric acid
Procedia PDF Downloads 587414 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings
Authors: A. Fayad, Q. Alqhazaly, T. Cinkler
Abstract:
In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.Keywords: BER, DuoBinary, NRZ-OOK, TWDM-PON
Procedia PDF Downloads 151