Ab-Initio Study of Native Defects in SnO Under Strain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87758
Ab-Initio Study of Native Defects in SnO Under Strain

Authors: A. Albar, D. B. Granato, U. Schwingenschlogl

Abstract:

Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor.

Keywords: native defects, ab-initio, point defect, tension, compression, semiconductor

Procedia PDF Downloads 397