Search results for: artificial neural networks; crop water stress index; canopy temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24725

Search results for: artificial neural networks; crop water stress index; canopy temperature

24125 Prediction of Unsaturated Permeability Functions for Clayey Soil

Authors: F. Louati, H. Trabelsi, M. Jamei

Abstract:

Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.

Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation

Procedia PDF Downloads 299
24124 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 130
24123 Compression Index Estimation by Water Content and Liquid Limit and Void Ratio Using Statistics Method

Authors: Lizhou Chen, Abdelhamid Belgaid, Assem Elsayed, Xiaoming Yang

Abstract:

Compression index is essential in foundation settlement calculation. The traditional method for determining compression index is consolidation test which is expensive and time consuming. Many researchers have used regression methods to develop empirical equations for predicting compression index from soil properties. Based on a large number of compression index data collected from consolidation tests, the accuracy of some popularly empirical equations were assessed. It was found that primary compression index is significantly overestimated in some equations while it is underestimated in others. The sensitivity analyses of soil parameters including water content, liquid limit and void ratio were performed. The results indicate that the compression index obtained from void ratio is most accurate. The ANOVA (analysis of variance) demonstrates that the equations with multiple soil parameters cannot provide better predictions than the equations with single soil parameter. In other words, it is not necessary to develop the relationships between compression index and multiple soil parameters. Meanwhile, it was noted that secondary compression index is approximately 0.7-5.0% of primary compression index with an average of 2.0%. In the end, the proposed prediction equations using power regression technique were provided that can provide more accurate predictions than those from existing equations.

Keywords: compression index, clay, settlement, consolidation, secondary compression index, soil parameter

Procedia PDF Downloads 163
24122 A Comparitive Study of the Effect of Stress on the Cognitive Parameters in Women with Increased Body Mass Index before and after Menopause

Authors: Ramesh Bhat, Ammu Somanath, A. K. Nayanatara

Abstract:

Background: The increasing prevalence of overweight and obesity is a critical public health problem for women. The negative effect of stress on memory and cognitive functions has been widely explored for decades in numerous research projects using a wide range of methodology. Deterioration of memory and other brain functions are hallmarks of Alzheimer’s disease. Estrogen fluctuations and withdrawal have myriad direct effects on the central nervous system that have the potential to influence cognitive functions. Aim: The present study aims to compare the effect of stress on the cognitive functions in overweight/obese women before and after menopause. Material and Methods: A total of 142 female subjects constituting women before menopause between the age group of 18–44 years and women after menopause between the age group of 45–60 years were included in the sample. Participants were categorized into overweight/obese groups based on the body mass index. The Perceived Stress Scale (PSS) the major tool was used for measuring the perception of stress. Based on the stress scale measurement each group was classified into with stress and without stress. Addenbrooke’s cognitive Examination-III was used for measuring the cognitive functions. Results: Premenopausal women with stress showed a significant (P<0.05) decrease in the cognitive parameters such as attention and orientation Fluency, language and visuospatial ability. Memory did not show any significant change in this group. Whereas, in the postmenopausal stressed women all the cognitive functions except fluency showed a significant (P<0.05) decrease after menopause stressed group. Conclusion: Stress is a significant factor on the cognitive functions of obese and overweight women before and after menopause. Practice of Yoga, Encouragement in activities like gardening, embroidery, games and relaxation techniques should be recommended to prevent stress. Insights into the neurobiology before and after menopause can be gained from future studies examining the effect on the HPA axis in relation to cognition and stress.

Keywords: cognition, stress, premenopausal, body mass index

Procedia PDF Downloads 305
24121 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization

Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati

Abstract:

In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.

Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network

Procedia PDF Downloads 380
24120 Modulation of Alternative Respiration Pathyway under Salt Stress in Exogenous Estrogen-Treated Maize Seedlings

Authors: Farideh K. Khosroushahi, Serkan Erdal, Mucip Geni̇şel

Abstract:

Soil salinity is one of the major abiotic stress factors that restricts arable land and reduces crop productivity worldwide. High salt concentration adversely affects plant growth and development inducing water deficit, ionic toxicity, nutrient imbalance, and lead to oxidative stress. Although the stimulating role of mammalian sex hormones on various biological and biochemical processes under normal and stress condition have been proven, there is no study regarding with these hormone's effect on modulation of the alternative respiration pathway and AOX gene expression. In this study, changes in alternative respiration pathway in leaves of maize seedlings under salinity and the possible modulating effect of estrogen on these changes were investigated. Maize seedlings were grown in a hydroponic media for 11 days and then were exposed to salt stress for 3 days after being sprayed estrogen. The data obtained from oxygen consumption revealed that salt stress elevated cellular respiration value in the leaves. In addition, a marked increase was observed at alternative respiration level in salt-stressed seedlings. Compared to salt application alone, supplementation with estrogen resulted in a significant rise in alternative oxidase (AOX) activities. Similarly, while salt stress caused to rise in expressions of AOX gene compared to control seedlings, estrogen application resulted in further activation of these genes’ expression compared to stressed-seedlings alone. These data revealed that mitigating role of estrogen against the detrimental effects of salt stress is linked to modulation of alternative respiration pathway.

Keywords: alternative oxidase, estrogen, Ssalt stress, AOX, maize

Procedia PDF Downloads 215
24119 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 358
24118 Performance Evaluation of Thermosiphon Based Solar Water Heater in India

Authors: Dnyandip K. Bhamare, Manish K Rathod, Jyotirmay Banerjee

Abstract:

This paper aims to study performance of a thermosiphon solar water heating system with the help of the proposed analytical model. This proposed model predicts the temperature and mass flow rate in a thermosiphon solar water heating system depending on radiation intensity and ambient temperature. The performance of the thermosiphon solar water heating system is evaluated in the Indian context. For this, eight cities in India are selected considering radiation intensity and geographical positions. Predicted performance at various cities reveals the potential for thermosiphon solar water in India.

Keywords: solar water heater, collector outlet temperature, thermosyphon, India

Procedia PDF Downloads 259
24117 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques

Authors: Ved Kulkarni, Karthik Kini

Abstract:

This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.

Keywords: data mining, language processing, artificial neural networks, sentiment analysis

Procedia PDF Downloads 17
24116 Occupational Stress and Lipid Profile among Drivers in Ismailia City, Egypt

Authors: Amani Waheed, Adel Mishriky, Rasha Farouk, Essam Abdallah, Sarah Hussein

Abstract:

Background: Occupational stress plays a crucial role in professional drivers' health. They are exposed to high workloads, low physical activity, high demand and low decisions as well as poor lifestyle factors including poor diet, sedentary work, and smoking. Dyslipidemia is a well-established modifiable cardiovascular risk factor. Occupational stress and other forms of chronic stress have been associated with raised levels of atherogenic lipids. Although stress management has some evidence in improving lipid profile, the association between occupational stress and dyslipidemia is not clear. Objectives: To assess the relational between occupational stress and lipid profile among professional drivers. Methodology: A cross-sectional study conducted at a large company in Ismailia City, Egypt, where, 131 professional drivers divided into 44 car drivers, 43 bus drivers, and 44 truck drivers were eligible after applying exclusion criteria. Occupational stress index (OSI), non-occupational risk factors of dyslipidemia were assessed using interview structured questionnaire. Blood pressure, body mass index (BMI) and lipid profile were measured. Results: The mean of total OSI score was 79.98 ± 6.14. The total OSI score is highest among truck drivers (82.16 ± 4.62), then bus drivers (80.26 ± 6.02) and lowest among car drivers (77.55 ± 6.79) with statistically significant. Eighty percent had Dyslipidemia. The duration of driving hours per day, exposure to passive smoking and increased BMI were the risk factors. No statistical significance between Total OSI score and dyslipidemia. Using, logistic regression analysis, occupational stress, duration of driving hours per day, and BMI were positive significant predictors for dyslipidemia. Conclusion: Professional drivers are exposed to occupational stress. A high proportion of drivers have dyslipidemia. Total OSI score doesn't have statistically significant relation with dyslipidemia.

Keywords: body mass index, dyslipidaemia, occupational stress, professional drivers

Procedia PDF Downloads 166
24115 Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO

Authors: Gyeong-Sung Kim, In-soo Ahn, Yong Cho

Abstract:

SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced.

Keywords: water treatment, water thermal energy, energy saving, RO, SBR

Procedia PDF Downloads 516
24114 Experimental Squeeze Flow of Bitumen: Rheological Properties

Authors: A. Kraiem, A. Ayadi

Abstract:

The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.

Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress

Procedia PDF Downloads 140
24113 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features

Authors: Stylianos Kampakis

Abstract:

This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.

Keywords: neural networks, feature selection, regularization, aggressive reweighting

Procedia PDF Downloads 455
24112 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic

Authors: Miroslav Dumbrovsky

Abstract:

The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.

Keywords: soil degradation, land consolidation, soil erosion, soil conservation

Procedia PDF Downloads 356
24111 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices

Authors: Sunita Singh, Rajani Srivastava

Abstract:

For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.

Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices

Procedia PDF Downloads 362
24110 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers

Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver

Abstract:

Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.

Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN

Procedia PDF Downloads 72
24109 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 158
24108 Effect of Acute Ingestion of Ice Water on Blood Pressure in Relation to Body Mass Index

Authors: Savitri Siddanagoudra, Shantala Herlekar, Priya Arjunwadekar

Abstract:

Background: The physiological response to water drinking in healthy subjects is an integrated response with an increase in sympathetic vasoconstrictor activity with induced bradycardia. Obesity is a modern pandemic, implicated in the pathogenesis of cardiovascular disease. In autonomic failure patients, water drinking has been shown the increased high blood pressure and bradycardia. Acute effects of ice water ingestion on blood pressure (BP) in relation to body mass index (BMI) is not addressed in literature. Objectives: Objective of this study is to evaluate BP before and after ingestion of cold water in all the three groups. Methods and Material: 60 healthy subjects between the age group of 18-24 yrs were selected and assigned into 3 groups based on BMI. BMI less than and equal to 25 kg/m2 is selected as Normal BMI group ,between 25- 29 kg/m2 as Overweight and BMI more than and equal to 30 kg/m2 as Obese. Procedure: Basal and after ingestion of 250 ml of cold water (7 0C ± 0.5 0C)BP was recorded in all the 3 groups. Results: Basal and after ice water ingestion BP increased statistically in all 3 groups. Conclusion: On acute ingestion of ice water overweight, obese may have more sympathoexcitaion compared to normal subjects.

Keywords: blood pressure, body mass index, ice water, symathoexcitation

Procedia PDF Downloads 160
24107 Impact of the Fourth Industrial Revolution on Food Security in South Africa

Authors: Fiyinfoluwa Giwa, Nicholas Ngepah

Abstract:

This paper investigates the relationship between the Fourth Industrial Revolution and food security in South Africa. The Ordinary Least Square was adopted from 2012 Q1 to 2021 Q4. The study used artificial intelligence investment and the food production index as the measure for the fourth industrial revolution and food security, respectively. Findings reveal a significant and positive coefficient of 0.2887, signifying a robust statistical relationship between AI adoption and the food production index. As a policy recommendation, this paper recommends the introduction of incentives for farmers and agricultural enterprises to adopt AI technologies -and the expansion of digital connectivity and access to technology in rural areas.

Keywords: Fourth Industrial Revolution, food security, artificial intelligence investment, food production index, ordinary least square

Procedia PDF Downloads 75
24106 Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data

Authors: Odai Ibrahim Mohammed Al Balasmeh, Tapas Karmaker, Richa Babbar

Abstract:

In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition.

Keywords: satellite data, normalize differences vegetation index, NDVI, normalize differences water index, NDWI, reservoir capacity, sedimentation, t-test hypothesis

Procedia PDF Downloads 167
24105 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification

Authors: Bharatendra Rai

Abstract:

The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.

Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences

Procedia PDF Downloads 129
24104 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 150
24103 Insect Diversity Assessment of Maize Crop (Zea mays L.) by Using Sweep Net, Pitfall Trap and Plant Inspection Methods

Authors: Muhammad Naeem Mushtaq, Muhammad Arshad, Shahid Majeed

Abstract:

Maize is known as queen of cereals because of its highest genetic yield potential and multipurpose characteristics in human being and animal diet. Maize crop visited by many major, minor, visitors and sporadic insect pests. This study was conducted during 2014 to evaluate the richness and evenness of these insect pests and their interaction with metrological conditions at University of Agriculture, Faisalabad. In this experiment, two localities were selected; one was treated with pesticide and second was untreated. Maize field visited by many insect pests. Those insect pests were collected by using three collection method: sweep net, pitfall trap and plant inspection. The data was collected weekly interval from August to October and statistically analyzed by using Shannon Index which showed the results of insect pest richness and evenness. The value of Shannon Index was higher with the increase in number of species and abundance of insects. Camponotus nearcticus was most abundant in sweep net and pitfall trap method while Rhopalosiphum maidis was abundant in plant inspection method. Temperature was negatively co-relate with the insect population in all three collection methods while the relative humidity and rainfall had varying results.

Keywords: abundance, evenness, maize, richness

Procedia PDF Downloads 220
24102 Heat Stress Adaptive Urban Design Intervention for Planned Residential Areas of Khulna City: Case Study of Sonadanga

Authors: Tanjil Sowgat, Shamim Kobir

Abstract:

World is now experiencing the consequences of climate change such as increased heat stress due to high temperature rise. In the context of changing climate, this study intends to find out the planning interventions necessary to adapt to the current heat stress in the planned residential areas of Khulna city. To carry out the study Sonadanga residential area (phase I) of Khulna city has been taken as the study site. This residential neighbourhood covering an area of 30 acres has 206 residential plots. The study area comprises twelve access roads, one park, one playfield, one water body and two street furniture’s. This study conducts visual analysis covering green, open space, water body, footpath, drainage and street trees and furniture and questionnaire survey deals with socio-economic, housing tenancy, experience of heat stress and urban design interventions. It finds that the current state that accelerates the heat stress condition such as lack of street trees and inadequate shading, maximum uses are not within ten minutes walking distance, no footpath for the pedestrians and lack of well-maintained street furniture. It proposes that to adapt to the heat stress pedestrian facilities, buffer sidewalk with landscaping, street trees and open spaces, soft scape, natural and man-made water bodies, green roofing could be effective urban design interventions. There are evidences of limited number of heat stress adaptive planned residential area. Since current sub-division planning practice focuses on rigid land use allocation, it partly addresses the climatic concerns through creating open space and street trees. To better respond to adapt to the heat stress, urban design considerations in the context of sub-division practice would bring more benefits.

Keywords: climate change, urban design, adaptation, heat stress, water-logging

Procedia PDF Downloads 296
24101 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials

Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan

Abstract:

In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.

Keywords: thermal model, thermal resistance, finite element simulation, neural network

Procedia PDF Downloads 358
24100 An Investigation of Crop Diversity’s Impact on Income Risk of Selected Crops

Authors: Saeed Yazdani, Sima Mohamadi Amidabadi, Amir Mohamadi Nejad, Farahnaz Nekoofar

Abstract:

As a result of uncertainty and doubts about the quantity of agricultural products, greater significance has been attached to risk management in the agricultural sector. Normally, farmers seek to minimize risks, and crop diversity has always been a means to reduce risk. The study at hand seeks to explore the long-term impact of crop diversity on income risk reduction. The timeframe of the study is 1998 to 2018. Initially, the Herfindahl index was used to estimate crop diversity in different periods, and next, the Hodrick-Prescott filter was applied to estimate income risk both in nominal and real terms. Finally, using the Vector Error Correction Model (VECM), the long-term impact of crop diversity on two modes of risk for the farmer's income has been estimated. Given the long-term pattern’s results, it is evident that in the long-run, crop diversity can reduce income fluctuations in two nominal and real terms. Moreover, results showed that in case the fluctuation shock affects the agricultural income in the short run, to balance out the shock in nominal and real terms, 4 and 3 cycles are needed respectively. In other words, in each cycle, 25% and 33% of the shock impact can be removed, respectively. Thus, as the results of the error correction coefficient showed, policies need to be put in place to prevent income shocks. In case of a shock, they need to be balanced out in a four-year period, taking inflation into account, and in a three-year period irrespective of the inflation and reparative policies such as insurance services should be developed.

Keywords: risk, long-term model, Herfindahl index, time series model, vector error correction model

Procedia PDF Downloads 24
24099 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 153
24098 Effects of Saline Groundwater on Crop Yield of Bitter-Gourd (Momordica charantia L.) under Drip System of Irrigation

Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand

Abstract:

Water scarcity has exacerbated in the last couple of decades; it is incumbent on agriculture to maximize the use of water of all qualities. The drip irrigation system practice has shown a vast increase in profit and research interests in the last two decades. However, the application of this system is still limited. The two years field experiment was conducted with three replications at Malir, Karachi (a semi-arid region) in Pakistan. The aim was to evaluate the effects of two qualities of irrigation water IT1 (EC 0.56 dS.m⁻¹) and IT2 (EC 2.89 dS.m⁻¹) on water use efficiency. To achieve the aim, bitter gourd was grown under the drip irrigation system in 2016-17. The uniformity co-efficient (UC) ranged from 93 to 96%. Water use efficiency, of 1.60 and 1.21 kg.m⁻³ under IT1 was recorded higher in season 1 and 2. Using t-test at 5% significance level, the crop yield was higher in both seasons under IT1 compared to IT2. Using pairwise t-test at 5% significance level, the parameters related with the quality of fruit, like length, weight, and diameter, were higher in IT1 than IT2 in all plants; and in both seasons. A correlational study was also conducted to observe the trends in the variables associated with both irrigation treatments for the two seasons. Results showed that most of the parameters exhibited a similar linear trend in both the seasons. The study concluded that bitter gourd crop could be grown successfully in sandy loam using drip irrigation system, supplying saline ground-water. The sustainable use of saline irrigation water should be utilized for vegetable cultivation to meet the food demand in the rural areas of Pakistan.

Keywords: uniformity co-efficient, water use efficiency, drip irrigation, ground-water, t-test, correlation

Procedia PDF Downloads 144
24097 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia

Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo

Abstract:

Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.

Keywords: climate variability, crop income, household, rainfall, temperature

Procedia PDF Downloads 376
24096 Intelligent Irrigation Control System Using Wireless Sensors and Android Application

Authors: Rajeshwari Madli, Santhosh Hebbar, Vishwanath Heddoori, G. V. Prasad

Abstract:

Agriculture is the major occupation in India and forms the backbone of Indian economy in which irrigation plays a crucial role for increasing the quality and quantity of crop yield. In spite of many revolutionary advancements in agriculture, there has not been a dramatic increase in agricultural performance. Lack of irrigation infrastructure and agricultural knowledge are the critical factors influencing agricultural performance. However, by using advanced agricultural equipment, the effect of these factors can be curtailed.  The presented system aims at increasing the yield of crops by using an intelligent irrigation controller that makes use of wireless sensors. Sensors are used to monitor primary parameters such as soil moisture, soil pH, temperature and humidity. Irrigation decisions are taken based on the sensed data and the type of crop being grown. The system provides a mobile application in which farmers can remotely monitor and control the irrigation system. Also, the water pump is protected against damages due to voltage variations and dry running.

Keywords: android application, Bluetooth, wireless sensors, irrigation, temperature, soil pH

Procedia PDF Downloads 382