Search results for: EEG hyper scanning
1661 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite
Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee
Abstract:
Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration
Procedia PDF Downloads 2321660 Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants
Authors: Busra Balli, Tuncay Dikici, Mustafa Toparli
Abstract:
Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments.Keywords: dental implant, etching, surface modifications, surface morphology, surface roughness
Procedia PDF Downloads 4911659 Apoptotic Induction Ability of Harmalol and Its Binding: Biochemical and Biophysical Perspectives
Authors: Kakali Bhadra
Abstract:
Harmalol administration caused remarkable reduction in proliferation of HepG2 cells with GI50 of 14.2 mM, without showing much cytotoxicity in embryonic liver cell line, WRL-68. Data from circular dichroism and differential scanning calorimetric analysis of harmalol-CT DNA complex shows conformational changes with prominent CD perturbation and stabilization of CT DNA by 8 oC. Binding constant and stoichiometry was also calculated using the above biophysical techniques. Further, dose dependent apoptotic induction ability of harmalol was studied in HepG2 cells using different biochemical assays. Generation of ROS, DNA damage, changes in cellular external and ultramorphology, alteration of membrane, formation of comet tail, decreased mitochondrial membrane potential and a significant increase in Sub Go/G1 population made the cancer cell, HepG2, prone to apoptosis. Up regulation of p53 and caspase 3 further indicated the apoptotic role of harmalol.Keywords: apoptosis, beta carboline alkaloid, comet assay, cytotoxicity, ROS
Procedia PDF Downloads 2091658 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes
Authors: M. Nemer, E. I. Konukseven
Abstract:
In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.Keywords: CAD-based tools, edge deburring, edge scanning, offline programming, path generation
Procedia PDF Downloads 2841657 Interference of Contaminants in the Characterization of Sugarcane Straw for Energy Purpose
Authors: Gabriela T. Nakashima, Ana Larissa S. Hansted, Gabriela B. Belini, Carlos R. Sette Jr, Hiroyuki Yamamoto, Fabio M. Yamaji
Abstract:
The aim of this study was to determine the interference from contaminants in the characterization of sugarcane straw. The sugarcane straw was collected after the harvest and taken to the drying oven, and then it was crushed in the mill type Willey. Analyzes of ash contents and Klason lignin were done in triplicate and high heating value (HHV) in duplicate, according to ASTM standard. The results obtained for the sugarcane straw were 5.29% for ash content, 29.87% for Klason lignin and 17.67 MJ.kg-1 for HHV. Also, the material was analyzed by scanning electron microscope (SEM). The presence of contaminants was observed, such as silica. The high amount of contaminants in the samples may impact the results of analyzes, also raising its values, for example in the Klason lignin content. These contaminants can also adversely affect the quality of the biomass. Even using the standards is important to know what the purpose of the analysis and care mainly of sampling.Keywords: biomass, bioenergy, residues, solid fuel
Procedia PDF Downloads 2811656 Investigating the Role of Combined Length Scale Effect on the Mechanical Properties of Ni/Cu Multilayer Structures
Authors: Naresh Radaliyagoda, Nigel M. Jennett, Rong Lan, David Parfitt
Abstract:
A series of length scale engineered multilayer material with temperature robust mechanical properties has been suggested. A range of polycrystalline copper sub-layers with the thickness varying from 1 to 25μm and buried in between two nickel layers was produced using electrodeposition dual bath technique. The structure of the multilayers was characterized using Electron Backscatter Diffraction and Scanning Electron Microscope. The interface effect on the hardness and elastic modulus was tested using Nano-indentation. Results of the grain size and layer thickness measurements, and indentation hardness have been compared. It is found that there is a combined length scale effect that improves mechanical properties in Ni/Cu multilayer structures.Keywords: nano-indentation, size effect, multilayers, electrodeposition
Procedia PDF Downloads 1511655 Polypropylene/Red Mud Polymer Composites: Effects of Powder Size on Mechanical and Thermal Properties
Authors: Munir Tasdemir
Abstract:
Polymer/clay composites have received great attention in the past three decades owing to their light weight coupled with significantly better mechanical and barrier properties than the corresponding neat polymer resins. An investigation was carried out on the effects of red mud powder size and ratio on the mechanical and thermal properties of polypropylene /red mud polymer composites. Red mud, in four different concentrations (0, 10, 20 and 30 wt %) and three different powder size (180, 63 and 38 micron) were added to PP to produce composites. The mechanical properties, including the elasticity modulus, tensile & yield strength, % elongation, hardness, Izod impact strength and the thermal properties including the melt flow index, heat deflection temperature and vicat softening point of the composites were investigated. The structures of the composites were investigated by scanning electron microscopy and compared to mechanical and thermal properties as a function of red mud powder content and size.Keywords: polypropylene, powder, red mud, mechanical properties
Procedia PDF Downloads 3371654 Enhanced Thermal Properties of Rigid PVC Foams Using Fly Ash
Authors: Nidal H. Abu-Zahra, Parisa Khoshnoud, Murtatha Jamel, Subhashini Gunashekar
Abstract:
PVC foam-fly ash composites (PVC-FA) are characterized for their structural, morphological, mechanical and thermal properties. The tensile strength of the composites increased modestly with higher fly ash loading, while there was a significant increase in the elastic modulus for the same composites. On the other hand, a decrease in elongation at UTS was observed upon increasing fly ash content due to increased rigidity of the composites. Similarly, the flexural modulus increased as the fly ash loading increased, where the composites containing 25 phr fly ash showed the highest flexural strength. Thermal properties of PVC-fly ash composites were determined by Thermo Gravimetric Analysis (TGA). The micro structural properties were studied by Scanning Electron Microscopy (SEM). SEM results confirm that fly ash particles were mechanically interlocked in PVC matrix with good inter facial interaction with the matrix. Particle agglomeration and debonding was observed in samples containing higher amounts of fly ash.Keywords: PVC foam, polyvinyl chloride, rigid PVC, fly ash composites, polymer composites
Procedia PDF Downloads 3901653 Consolidation of Carbonyl Nickel Powders by Hot Pressing
Authors: Ridvan Yamanoglu, Ismail Daoud
Abstract:
In the current study, carbonyl nickel powders were sintered by uniaxial hot pressing technique. Loose starting powders were poured directly into a graphite die with a 15.4 mm inner diameter. Two graphite punches with an outer diameter of 15 mm were inserted into the die; then the powders were sintered at different sintering temperatures, holding times and pressure conditions. The sintered samples were polished and examined by optical microscopy. Hardness and bending behavior of the sintered samples were investigated in order to determine the mechanical properties of the sintered nickel samples. To carried out the friction properties of the produced samples wear tests were studied using a pin on disc tribometer. Load and distance were selected as wear test parameters. The fracture surface of the samples after bending test was also carried out by using scanning electron microscopy.Keywords: nickel powder, sintering, hot press, mechanical properties
Procedia PDF Downloads 1681652 Synthesizing and Fabrication of Pani-(SnO₂, ZnO)/rGO by Sol-Gel Method to Develop a Biosensor Thin-Films on Top Glass Substrate
Authors: Mohammad Arifin, Huda Abdullah, Norshafadzila Mohammad Naim
Abstract:
The fabricated PANI-(SnO₂, ZnO)/rGO nanocomposite thin films for the E. coli bacteria sensor were investigated. The nanocomposite thin films were prepared by the sol-gel method and deposited on the glass substrate using the spin-coating technique. The internal structure and surface morphology of the thin films have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The optical properties of the films were investigated by UV-Vis spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The sensitivity performance was identified by measuring the changing conductivity before and after the incubation of E. coli bacteria using current-voltage (I-V) and cyclic voltammetry (C-V) measurements.Keywords: PANI-(SnO₂, ZnO)/rGO, nanocomposite, bacteria sensor, thin films
Procedia PDF Downloads 1181651 Photo-Degradation of a Pharmaceutical Product in the Presence of a Catalyst Supported on a Silicoaluminophosphate Solid
Authors: I. Ben Kaddour, S. Larbaoui
Abstract:
Since their first synthesis in 1984, silicoaluminophosphates have proven their effectiveness as a good adsorbent and catalyst in several environmental and energy applications. In this work, the photocatalytic reaction of the photo-degradation of a pharmaceutical product in water was carried out in the presence of a series of materials based on titanium oxide, anatase phase, supported on the microporous framework of the SAPO4-5 at different levels, under ultraviolet light. These photo-catalysts were characterized by different physicochemical analysis methods in order to determine their structural, textural, and morphological properties, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), microscopy scanning electronics (SEM), nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS). In this study, liquid chromatography coupled with spectroscopy of mass (LC-MS) was used to determine the nature of the intermediate products formed during the photocatalytic degradation of DCF.Keywords: photocatalysis, titanium dioxide, SAPO-5, diclofenac
Procedia PDF Downloads 681650 Effect of Cr2O3 on Mechanical Properties of Aluminum Produced Powder Metallurgy
Authors: Yasin Akgul, Fazil Husem, Memis Isik
Abstract:
In this study, effect of content of chromium (III) oxide on production of Al/Cr203 alloys were investigated. Experimental procedure was started with mixturing of powders in the presence of absolute ethanol, vacuum distillation technique was used for evaporation, by ultrasonic bath and mechanic stirrer. Pressing procedure was achieved by hydrolic press that has 100 tons forcing for production of 25 mm diameter compact green billets. Green bodies were sintered at 600 °C in argon atmosphere. Scanning electron microscope (SEM) analysis for characterization of microstructure, compression test for determination of strength and Vickers test for measuring of hardness of sintered billets were done. End of the study is concluded that, enhancement of physical and mechanical properties is observed by increasing content of chromium (III) oxide.Keywords: aluminium, chromium (III) oxide, powder metallurgy, sintering
Procedia PDF Downloads 2301649 Study of Dispersion of Silica and Chitosan Nanoparticles into Gelatin Film
Authors: Mohit Batra, Noel Sarkar, Jayeeta Mitra
Abstract:
In this study silica nanoparticles were synthesized using different methods and different silica sources namely Tetraethyl ortho silicate (TEOS), Sodium Silicate, Rice husk while chitosan nanoparticles were prepared with ionic gelation method using Sodium tripolyphosphate (TPP). Size and texture of silica nanoparticles were studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) along with the effect of change in concentration of various reagents in different synthesis processes. Size and dispersion of Silica nanoparticles prepared from TEOS using stobber’s method were found better than other methods while nanoparticles prepared using rice husk were cheaper than other ones. Catalyst found to play a very significant role in controlling the size of nanoparticles in all methods.Keywords: silica nanoparticles, gelatin, bio-nanocomposites, SEM, TEM, chitosan
Procedia PDF Downloads 3151648 Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica
Authors: J. Adeppa, S. Samanta, O. K. Raina
Abstract:
Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis.Keywords: fasciola gigantic, fasciola hepatica, GST, RT- PCR
Procedia PDF Downloads 1861647 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization
Authors: G. Çelik Gül, F. Kurtuluş
Abstract:
Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA).Keywords: colemanite, conventional synthesis, powder x-ray diffraction, borates
Procedia PDF Downloads 3331646 Rare Diagnosis in Emergency Room: Moyamoya Disease
Authors: Ecem Deniz Kırkpantur, Ozge Ecmel Onur, Tuba Cimilli Ozturk, Ebru Unal Akoglu
Abstract:
Moyamoya disease is a unique chronic progressive cerebrovascular disease characterized by bilateral stenosis or occlusion of the arteries around the circle of Willis with prominent arterial collateral circulation. The occurrence of Moyamoya disease is related to immune, genetic and other factors. There is no curative treatment for Moyamoya disease. Secondary prevention for patients with symptomatic Moyamoya disease is largely centered on surgical revascularization techniques. We present here a 62-year old male presented with headache and vision loss for 2 days. He was previously diagnosed with hypertension and glaucoma. On physical examination, left eye movements were restricted medially, both eyes were hyperemic and their movements were painful. Other neurological and physical examination were normal. His vital signs and laboratory results were within normal limits. Computed tomography (CT) showed dilated vascular structures around both lateral ventricles and atherosclerotic changes inside the walls of internal carotid artery (ICA). Magnetic resonance imaging (MRI) and angiography (MRA) revealed dilated venous vascular structures around lateral ventricles and hyper-intense gliosis in periventricular white matter. Ischemic gliosis around the lateral ventricles were present in the Digital Subtracted Angiography (DSA). After the neurology, ophthalmology and neurosurgery consultation, the patient was diagnosed with Moyamoya disease, pulse steroid therapy was started for vision loss, and super-selective DSA was planned for further investigation. Moyamoya disease is a rare condition, but it can be an important cause of stroke in both children and adults. It generally affects anterior circulation, but posterior cerebral circulation may also be affected, as well. In the differential diagnosis of acute vision loss, occipital stroke related to Moyamoya disease should be considered. Direct and indirect surgical revascularization surgeries may be used to effectively revascularize affected brain areas, and have been shown to reduce risk of stroke.Keywords: headache, Moyamoya disease, stroke, visual loss
Procedia PDF Downloads 2671645 Prosthetic Rehabilitation of Midfacial: Nasal Defects
Authors: Bilal Ahmed
Abstract:
Rehabilitation of congenital and acquired maxillofacial defects is always a challenging clinical scenario. These defects pose major physiological and psychological threat not only to the patient but to the entire family. There has been an enormous scientific development in maxillofacial rehabilitation with the advent of CAD CAM, 3-D scanning, Osseo-integrated implants and improved restorative materials. There are also specialized centers with latest diagnostic and treatment facilities in the developed countries. However, in certain clinical case scenarios, conventional prosthodontic principles are still the gold standards. Similarly in a less developed world, financial and technical constraints are factors affecting treatment planning and final outcomes. However, we can do a lot of benefits to the affected human beings, even with use of simple and cost-effective conventional prosthodontic techniques and materials. These treatment strategies may sometimes be considered as intermediate or temporary options, but with regular follow-up maintenance these can be used on a definitive basis.Keywords: maxillofacial defects, obturators, prosthodontics, medical and health sciences
Procedia PDF Downloads 3461644 UV-Cured Thiol-ene Based Polymeric Phase Change Materials for Thermal Energy Storage
Authors: M. Vezir Kahraman, Emre Basturk
Abstract:
Energy storage technology offers new ways to meet the demand to obtain efficient and reliable energy storage materials. Thermal energy storage systems provide the potential to acquire energy savings, which in return decrease the environmental impact related to energy usage. For this purpose, phase change materials (PCMs) that work as 'latent heat storage units' which can store or release large amounts of energy are preferred. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. PCMs have found different application areas such as solar energy storage and transfer, HVAC (Heating, Ventilating and Air Conditioning) systems, thermal comfort in vehicles, passive cooling, temperature controlled distributions, industrial waste heat recovery, under floor heating systems and modified fabrics in textiles. Ultraviolet (UV)-curing technology has many advantages, which made it applicable in many different fields. Low energy consumption, high speed, room-temperature operation, low processing costs, high chemical stability, and being environmental friendly are some of its main benefits. UV-curing technique has many applications. One of the many advantages of UV-cured PCMs is that they prevent the interior PCMs from leaking. Shape-stabilized PCM is prepared by blending the PCM with a supporting material, usually polymers. In our study, this problem is minimized by coating the fatty alcohols with a photo-cross-linked thiol-ene based polymeric system. Leakage is minimized because photo-cross-linked polymer acts a matrix. The aim of this study is to introduce a novel thiol-ene based shape-stabilized PCM. Photo-crosslinked thiol-ene based polymers containing fatty alcohols were prepared and characterized for the purpose of phase change materials (PCMs). Different types of fatty alcohols were used in order to investigate their properties as shape-stable PCMs. The structure of the PCMs was confirmed by ATR-FTIR techniques. The phase transition behaviors, thermal stability of the prepared photo-crosslinked PCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This work was supported by Marmara University, Commission of Scientific Research Project.Keywords: differential scanning calorimetry (DSC), Polymeric phase change material, thermal energy storage, UV-curing
Procedia PDF Downloads 2281643 Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates
Authors: H. Fazlinejad, A. Halvaee
Abstract:
In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.Keywords: ATIG, active flux, weld penetration, Al 1050, ZnO
Procedia PDF Downloads 1651642 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge
Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq
Abstract:
Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.Keywords: crystallinity, glow discharge, nitriding, sputtering
Procedia PDF Downloads 4191641 Structural and Magnetic Properties of CoFe2-xNdxO4 Spinel Ferrite Nanoparticles
Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, M. Hajdúchová, V. Enev, J. Wasserbauer
Abstract:
In this present work, CoFe2-xNdxO4 (0.0 ≤ x ≥0.1) spinel ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method. Powder X-ray diffraction patterns were revealed the formation of cubic spinel ferrite with the signature of NdFeO3 phase at higher Nd3+ concentration. The field emission scanning electron microscopy study demonstrated the spherical nanoparticle in the size range between 5-15 nm. Raman and Fourier Transform Infrared spectra supported the formation of the spinel ferrite structure in the nanocrystalline form. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Co2+ and Fe3+ at octahedral as well as a tetrahedral site in CoFe2-xNdxO4 nanoparticles. The change in magnetic properties with a variation of concentration of Nd3+ ions in cobalt ferrite nanoparticles was observed.Keywords: nanoparticles, spinel ferrites, sol-gel auto-combustion method, CoFe2-xNdxO4
Procedia PDF Downloads 4981640 Influence of Dopant of Tin (Sn) on the Optoelectronic and Structural Properties of Cadmium Sulfide (CdS) Pallets
Authors: Himanshu Pavagadhi, Maunik Jani, S. M. Vyas, Jaymin Ray, Vimal Patel, Piyush Patel, Jignesh P. Raval
Abstract:
The preparation of pure and Sn-doped cadmium sulfide (CdS) pellets was carried out using a compression technique with a pelletizer. The energy dispersive X-ray (EDX) analysis is used to confirm the purity and stoichiometric ratio of Cd, S, and Sn in the prepared pellets. The surface morphology of the pellets was examined using a scanning electron microscope. Both XRD and Raman scattering spectrum analysis confirmed the doping effect in the CdS pellets. The X-ray diffraction (XRD) analysis confirmed the hexagonal structure and revealed that the grain size decreases with increasing Sn dopant concentration in the parent CdS pellet. The optical properties of the pellets were evaluated by measuring diffuse reflectance using a UV-vis spectrophotometer. The analysis indicated that as the Sn concentration increases in the parent CdS pellet, the optical band gap decreases. This implies that the optical properties of the CdS material are also affected by the Sn dopant.Keywords: CdS, Sn dopant, UV-Spetrophotometer, XRD
Procedia PDF Downloads 321639 Structure and Properties of Intermetallic NiAl-Based Coatings Produced by Magnetron Sputtering Technique
Authors: Tatiana S. Ogneva
Abstract:
Aluminum and nickel-based intermetallic compounds have attracted the attention of scientific community as promising materials for heat-resistant and wear-resistant coatings in such manufacturing areas as microelectronics, aircraft and rocket building and chemical industries. Magnetron sputtering makes possible to coat materials without formation of liquid phase and improves the mechanical and functional properties of nickel aluminides due to the possibility of nanoscale structure formation. The purpose of the study is the investigation of structure and properties of intermetallic coatings produced by magnetron sputtering technique. The feature of this work is the using of composite targets for sputtering, which were consisted of two semicircular sectors of cp-Ni and cp-Al. Plates of alumina, silicon, titanium and steel alloys were used as substrates. To estimate sputtering conditions on structure of intermetallic coatings, a series of samples were produced and studied in detail using scanning and transition electron microcopy and X-Ray diffraction. Besides, nanohardness and scratching tests were carried out. The varying parameters were the distance from the substrate to the target, the duration and the power of the sputtering. The thickness of the obtained intermetallic coatings varied from 0.05 to 0.5 mm depending on the sputtering conditions. The X-ray diffraction data indicated that the formation of intermetallic compounds occurred after sputtering without additional heat treatment. Sputtering at a distance not closer than 120 mm led to the formation of NiAl phase. Increase in the power of magnetron from 300 to 900 W promoted the increase of heterogeneity of the phase composition and the appearance of intermetallic phases NiAl, Ni₂Al₃, NiAl₃, and Al under the aluminum side, and NiAl, Ni₃Al, and Ni under the nickel side of the target. A similar trend is observed with increasing the distance of sputtering from 100 to 60 mm. The change in the phase composition correlates with the changing of the atomic composition of the coatings. Scanning electron microscopy revealed that the coatings have a nanoscale grain structure. In this case, the substrate material and the distance from the substrate to the magnetron have a significant effect on the structure formation process. The size of nanograins differs from 10 to 83 nm and depends not only on the sputtering modes but also on material of a substrate. Nanostructure of the material influences the level of mechanical properties. The highest level of nanohardness of the coatings deposited during 30 minutes on metallic substrates at a distance of 100 mm reached 12 GPa. It was shown that nanohardness depends on the grain size of the intermetallic compound. Scratching tests of the coatings showed a high level of adhesion of the coating to substrate without any delamination and cracking. The results of the study showed that magnetron sputtering of composite targets consisting of nickel and aluminum semicircles makes it possible to form intermetallic coatings with good mechanical properties directly in the process of sputtering without additional heat treatment.Keywords: intermetallic coatings, magnetron sputtering, mechanical properties, structure
Procedia PDF Downloads 1211638 The Effect of Additives on Characterization and Photocatalytic Activity of Ag-TiO₂ Nanocomposite Prepared via Sol-Gel Process
Authors: S. Raeis Farshid, B. Raeis Farshid
Abstract:
Ag-TiO₂ nanocomposites were prepared by the sol-gel method with and without additives such as carboxy methyl cellulose (CMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), and hydroxyl propyl cellulose (HPC). The characteristics of the prepared Ag-TiO₂ nanocomposites were identified by Fourier Transform Infra-Red spectroscopy (FTIR), X-Ray Diffraction (XRD), and scanning electron microscopy (SEM) methods. The additives have a significant effect on the particle size distribution and photocatalytic activity of Ag-TiO₂ nanocomposites. SEM images have shown that the particle size distribution of Ag-TiO₂ nanocomposite in the presence of HPC was the best in comparison to the other samples. The photocatalytic activity of the synthesized nanocomposites was investigated for decolorization of methyl orange (MO) in water under UV-irradiation in a batch reactor, and the results showed that the photocatalytic activity of the nanocomposites had been increased by CMC, PEG, PVP, and HPC, respectively.Keywords: sol-gel method, Ag-TiO₂, decolorization, photocatalyst, nanocomposite
Procedia PDF Downloads 801637 Characterization of Pigments in an Egyptian Icon
Authors: Mohamed Abd Elfattah Ibraheem Elghrbawy
Abstract:
Icons are a significant group of cultural heritage objects that deserve to be maintained and conserved, as these ions are performed according to religious standards and norms. The ideal structure of icons is five strata, the lower layer is a wood plate, and the upper layer is the varnish layer that is exposed to photo-oxidation, that is turned into a fragile yellow layer. In addition, the components of the icons are important in dating these ions, so X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Scanning Electron Microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) patterns were used. SEM-EDX pattern revealed that the red pigment was vermillion (HgS), that was used in the late period, with a slight difference from the synthesized pigment. Pigments were subjected to chromatic alteration due to different agents, such as microbial agents and pollutants, in particular SO₂, whereas the pigment-based pigments are more sensitive. Moreover, cleaning, varnish removal, and retouching are important processes in the conservation of icons.Keywords: conservation, cultural heritage, Egyptian icon, pigments
Procedia PDF Downloads 801636 The Use of Arabic Gum Mixed with Carbon Nanotubes Functionalized with Dodecylamine to Fabricate Superior Ultrafiltration Membranes
Authors: Yehia Manawi, Viktor Kochkodan, Muataz Hussien
Abstract:
In this paper, the effect of adding Arabic Gum (AG) and carbon nanotubes functionalized with dodecylamine (CNT-DDA) to the casting solutions of polysulfone (PS) was investigated. The aim of adding AG and CNT-DDA was to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. Different CNT-DDA loadings (0.1-3.0 wt.%) in 2 wt.% AG were added to PS/dimethylacetamide (DMAc) casting solutions to prepare PS membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PS/AG/CNT-DDA membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of BSA solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG and CNT-DDA to PS membranes was found to increase the hydrophilicity, porosity and hence the permeate flux of the fabricated membranes.Keywords: Arabic gum, hydrophilicity, polysulfone membrane, ultrafiltration
Procedia PDF Downloads 2401635 Acidic Dye Removal From Aqueous Solution Using Heat Treated and Polymer Modified Waste Containing Boron Impurity
Authors: Asim Olgun, Ali Kara, Vural Butun, Pelin Sevinc, Merve Gungor, Orhan Ornek
Abstract:
In this study, we investigated the possibility of using waste containing boron impurity (BW) as an adsorbent for the removal of Orange 16 from aqueous solution. Surface properties of the BW, heat treated BW, and diblock copolymer coated BW were examined by using Zeta Meter and scanning electron microscopy (SEM). The polymer modified sample having the highest positive zeta potential was used as an adsorbent. Batch adsorption studies were carried out. The operating variables studied were the initial dye concentration, contact time, solution pH, and adsorbent dosage. It was found that the dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 3. The adsorption followed pseudo-second-order kinetics and the isotherm fit well to the Langmuir model.Keywords: zeta potential, adsorption, Orange 16, isotherms
Procedia PDF Downloads 1961634 The Effectiveness of the Recovering from Child Abuse Programme (RCAP) for the Treatment of CPTSD: A Pilot Study
Authors: Siobhan Hegarty, Michael Bloomfield, Kim Entholt, Dorothy Williams, Helen Kennerley
Abstract:
Complex Post-Traumatic Stress Disorder (CPTSD) confers greater risk of poor outcomes than does Post-Traumatic Stress Disorder (PTSD). Despite this, the current treatment guidelines for CPTSD aim to reduce only the ‘core’ symptoms of re-experiencing, hyper-vigilance and avoidance, while not addressing the Disturbances of Self Organisation (DSO) symptoms that distinguish this novel diagnosis from PTSD. The Recovering from Child Abuse Programme (RCAP) is a group protocol, based on the principles of cognitive behavioural therapy (CBT). Preliminary evidence suggests the program is effective at reducing DSO symptoms. This pilot study is the first to investigate the potential effectiveness of the RCAP for the specific treatment of CPTSD. This study was conducted as a service evaluation in a secondary care, traumatic stress service. Treatment was delivered once a week, in two-hour sessions, to ten existing female CPTSD patients of the service, who had experienced sexual abuse in childhood. The programme was administered by two therapists and two additional facilitators, following the RCAP protocol manual. Symptom severity was measured before the administration of therapy and was tracked across a range of measures (International Trauma Questionnaire; Patient Health Questionnaire; Community Assessment of Psychic Experience; Work and Social Adjustment Scale) at five time points, over the course of treatment. Qualitative appraisal of the programme was gathered via weekly feedback forms and from audio-taped recordings of verbal feedback given during group sessions. Preliminary results suggest the programme causes a slight reduction in CPTSD and depressive symptom severity and preliminary qualitative analysis suggests that the RCAP is both helpful and acceptable to group members. Final results and conclusions will follow completed thematic analysis of results.Keywords: Child sexual abuse, Cognitive behavioural therapy, Complex post-traumatic stress disorder, Recovering from child abuse programme
Procedia PDF Downloads 1351633 Eu³⁺ Ions Doped-SnO₂ for Effective Degradation of Malachite Green Dye
Authors: Ritu Malik, Vijay K. Tomer, Satya P. Nehra, Anshu Nehra
Abstract:
Visible light sensitive Eu³⁺ doped-SnO₂ nanoparticles were successfully synthesized via the hydrothermal method and extensively characterized by a combination of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and N₂ adsorption-desorption isotherms (BET). Their photocatalytic activities were evaluated using Malachite Green (MG) as decomposition objective by varying the concentration of Eu³⁺ in SnO₂. The XRD analysis showed that lanthanides phase was not observed on lower loadings of Eu³⁺ ions doped-SnO₂. Eu³⁺ ions can enhance the photocatalytic activity of SnO₂ to some extent as compared with pure SnO₂, and it was found that 3 wt% Eu³⁺ -doped SnO₂ is the most effective photocatalyst due to its lowest band gap, crystallite size and also the highest surface area. The photocatalytic tests indicate that at the optimum conditions, illumination time 40 min, pH 65, 0.3 g/L photocatalyst loading and 50 ppm dye concentration, the dye removal efficiency was 98%.Keywords: photocatalyst, visible light, lanthanide, SnO₂
Procedia PDF Downloads 2821632 Continuous Synthesis of Nickel Nanoparticles by Hydrazine Reduction
Authors: Yong-Su Jo, Seung-Min Yang, Seok Hong Min, Tae Kwon Ha
Abstract:
The synthesis of nickel nanoparticles by the reduction of nickel chloride with hydrazine in an aqueous solution. The effect of hydrazine concentration on batch-processed particle characteristics was investigated using Field Emission Scanning Electron Microscopy (FESEM). Both average particle size and geometric standard deviation (GSD) were decreasing with increasing hydrazine concentration. The continuous synthesis of nickel nanoparticles by microemulsion method was also studied using FESEM and X-ray Diffraction (XRD). The average size and geometric standard deviation of continuous-processed particles were 87.4 nm and 1.16, respectively. X-ray diffraction revealed continuous-processed particles were pure nickel crystalline with a face-centered cubic (fcc) structure.Keywords: nanoparticle, hydrazine reduction, continuous process, microemulsion method
Procedia PDF Downloads 458