Search results for: problem-based learning approach
13022 Surface Thermodynamics Approach to Mycobacterium tuberculosis (M-TB) – Human Sputum Interactions
Authors: J. L. Chukwuneke, C. H. Achebe, S. N. Omenyi
Abstract:
This research work presents the surface thermodynamics approach to M-TB/HIV-Human sputum interactions. This involved the use of the Hamaker coefficient concept as a surface energetics tool in determining the interaction processes, with the surface interfacial energies explained using van der Waals concept of particle interactions. The Lifshitz derivation for van der Waals forces was applied as an alternative to the contact angle approach which has been widely used in other biological systems. The methodology involved taking sputum samples from twenty infected persons and from twenty uninfected persons for absorbance measurement using a digital Ultraviolet visible Spectrophotometer. The variables required for the computations with the Lifshitz formula were derived from the absorbance data. The Matlab software tools were used in the mathematical analysis of the data produced from the experiments (absorbance values). The Hamaker constants and the combined Hamaker coefficients were obtained using the values of the dielectric constant together with the Lifshitz equation. The absolute combined Hamaker coefficients A132abs and A131abs on both infected and uninfected sputum samples gave the values of A132abs = 0.21631x10-21Joule for M-TB infected sputum and Ã132abs = 0.18825x10-21Joule for M-TB/HIV infected sputum. The significance of this result is the positive value of the absolute combined Hamaker coefficient which suggests the existence of net positive van der waals forces demonstrating an attraction between the bacteria and the macrophage. This however, implies that infection can occur. It was also shown that in the presence of HIV, the interaction energy is reduced by 13% conforming adverse effects observed in HIV patients suffering from tuberculosis.Keywords: absorbance, dielectric constant, hamaker coefficient, lifshitz formula, macrophage, mycobacterium tuberculosis, van der waals forces
Procedia PDF Downloads 28213021 Building Transparent Supply Chains through Digital Tracing
Authors: Penina Orenstein
Abstract:
In today’s world, particularly with COVID-19 a constant worldwide threat, organizations need greater visibility over their supply chains more than ever before, in order to find areas for improvement and greater efficiency, reduce the chances of disruption and stay competitive. The concept of supply chain mapping is one where every process and route is mapped in detail between each vendor and supplier. The simplest method of mapping involves sourcing publicly available data including news and financial information concerning relationships between suppliers. An additional layer of information would be disclosed by large, direct suppliers about their production and logistics sites. While this method has the advantage of not requiring any input from suppliers, it also doesn’t allow for much transparency beyond the first supplier tier and may generate irrelevant data—noise—that must be filtered out to find the actionable data. The primary goal of this research is to build data maps of supply chains by focusing on a layered approach. Using these maps, the secondary goal is to address the question as to whether the supply chain is re-engineered to make improvements, for example, to lower the carbon footprint. Using a drill-down approach, the end result is a comprehensive map detailing the linkages between tier-one, tier-two, and tier-three suppliers super-imposed on a geographical map. The driving force behind this idea is to be able to trace individual parts to the exact site where they’re manufactured. In this way, companies can ensure sustainability practices from the production of raw materials through the finished goods. The approach allows companies to identify and anticipate vulnerabilities in their supply chain. It unlocks predictive analytics capabilities and enables them to act proactively. The research is particularly compelling because it unites network science theory with empirical data and presents the results in a visual, intuitive manner.Keywords: data mining, supply chain, empirical research, data mapping
Procedia PDF Downloads 18013020 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training
Authors: Biki Sarmah, Priyanko Raj Mudiar
Abstract:
In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator
Procedia PDF Downloads 17013019 Teacher Training in Saudi Arabia: A Blend of Old and New
Authors: Ivan Kuzio
Abstract:
The GIZ/TTC project is the first of its kind in the Middle East, which allows the development of a teaching training programme to degree level based on modern methodologies. The graduates from this college are part of the Saudization programme and will, over the next four years be part of and eventually run the new Colleges of Excellence. The new Colleges of Excellence are being developed to create a local vocationally trained workforce and will run initially alongside the current Colleges of Technology.Keywords: blended learning, pedagogy, training, key competencies, social skills, cognitive development
Procedia PDF Downloads 31213018 Emerging Therapeutic Approach with Dandelion Phytochemicals in Breast Cancer Treatment
Authors: Angel Champion, Sadia Kanwal, Rafat Siddiqui
Abstract:
Harnessing phytochemicals from plant sources presents a novel opportunity to prevent or treat malignant diseases, including breast cancer. Chemotherapy lacks precision in targeting cancerous cells while sparing normal cells, but a phytopharmaceutical approach may offer a solution. Dandelion, a common weed plant, is rich in phytochemicals and provides a safer, more cost-effective alternative with lower toxicity than traditional pharmaceuticals for conditions such as breast cancer. In this study, an in-vitro experiment will be conducted using the ethanol extract of Dandelion on triple-negative MDA-231 breast cancer cell lines. The polyphenolic analysis revealed that the Dandelion extract, particularly from the root and leaf (both cut and sifted), had the most potent antioxidant properties and exhibited the most potent antioxidation activity from the powdered leaf extract. The extract exhibits prospective promising effects for inducing cell proliferation and apoptosis in breast cancer cells, highlighting its potential for targeted therapeutic interventions. Standardizing methods for Dandelion use is crucial for future clinical applications in cancer treatment. Combining plant-derived compounds with cancer nanotechnology holds the potential for effective strategies in battling malignant diseases. Utilizing liposomes as carriers for phytoconstituent anti-cancer agents offers improved solubility, bioavailability, immunoregulatory effects, advancing anticancer immune function, and reducing toxicity. This integrated approach of natural products and nanotechnology has significant potential to revolutionize healthcare globally, especially in underserved communities where herbal medicine is prevalent.Keywords: apoptosis, antioxidant activity, cancer nanotechnology, phytopharmaceutical
Procedia PDF Downloads 5813017 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media
Authors: Naila Nasreen, Dianchen Lu
Abstract:
This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena
Procedia PDF Downloads 10913016 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition
Authors: L. Hamsaveni, Navya Prakash, Suresha
Abstract:
Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.Keywords: grayscale image format, image fusing, RGB image format, SURF detection, YCbCr image format
Procedia PDF Downloads 37713015 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data
Authors: K. Sathishkumar, V. Thiagarasu
Abstract:
Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.Keywords: microarray technology, gene expression data, clustering, gene Selection
Procedia PDF Downloads 32913014 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network
Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib
Abstract:
The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.Keywords: heat exchanger network, synthesis, NLP, optimization
Procedia PDF Downloads 16913013 Dream Work: Examining the Effectiveness of Dream Interpretation in Gaining Psychological Insight into Young Adults in Korea
Authors: Ahn Christine Myunghee, Sim Wonjin, Cho Kristina, Ahn Mira, Hong Yeju, Kwok Jihae, Lim Sooyeon, Park Hansol
Abstract:
With a sharp increase in the prevalence rate for mental health issues in Korea, there is a need for specific and effective intervention strategies in counseling and psychotherapy for use with Korean clients. With the cultural emphasis on restraining emotional expression and not disclosing personal and familial problems to outsiders, clients often find it difficult to discuss their emotional issues even to therapists. Exploring a client’s internal psychological processes bypassing this culture-specific mode of therapeutic communication often becomes a challenge in the therapeutic setting. Given this socio-cultural context, the purpose of the current study was to investigate the effectiveness of using dream work to individuals in Korea. The current study conducted one 60-90 minute dream session and analyzed the dream content of 39 Korean young adults to evaluate the effectiveness of the Hill dream model in accessing the intra-psychic materials, determining essential emotional themes, and learning how the individuals interpreted the contents of their dreams. The transcribed data, which included a total of 39 sessions from 39 volunteer university students, were analyzed by the Consensus Qualitative Research (CQR) approach in terms of domains and core ideas. Self-report measures on Dream Salience, Gains from Dream Interpretations and the Session Evaluation Scale were administered before and after each of their dream sessions. The results indicated that dream work appears to be an effective way to understand unconscious motivations, thoughts, and feelings related to a person’s sense of self, and also how these people relate to other people. Current findings need to be replicated with clients referred for counseling and psychotherapy to determine if the dream work is an appropriate and useful intervention in counseling settings. Limitations of the current study and suggestions for future follow-ups are included in the discussion.Keywords: dream work, dream interpretation, Korean, young adults, CQR
Procedia PDF Downloads 45013012 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations
Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi
Abstract:
Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis
Procedia PDF Downloads 20113011 Action Research: The Goal Setting Intervention Promotes Students' Academic Achievement of the Bachelors of Early Childhood Education Program During the COVID-19 Pandemic
Authors: Mashaal Hooda
Abstract:
The rationale for conducting this action research was to increase students' Academic Achievement (AA) contexts of studying/researching by employing the Goal Setting intervention (GS). The purposive sample consisted of 10 female undergraduate students at a university in Dubai. The intervention was introduced through workshop classes conducted online. The pre-intervention consisted of discussions concentrating on participants' research contexts amidst a pandemic. The GS moderators were implemented in the class, followed by scaffolding and mentoring interactions and self-reflective accounts of students' actions and feelings of using the intervention to better plan and structure their dissertation tasks. The research incorporated a Mixed Methods Methodology (MMM). Quantitative data collection took place through surveys, while qualitative data were collected using semi-structured interviews. Triangulation of the emergent themes showed a positive increase in students achievable GS, self-regulatory study skills, feedback-seeking behaviours, research organisation and synthesis, self-reflection and Academic Resilient (AR) attitudes amalgamate to enhance students' AA outcomes. Though, students' intrinsic motivational levels to study and research observed minor changes only. Nonetheless, the pebble in the shoe was removed as students AA contexts improved in undertaking better actionable steps for their research. Therefore, the GS intervention enabled students to set, balance, and achieve academic goals while catering to their academic anxieties, mental health concerns, and adaptability to the e-learning platforms amidst the COVID-19 pandemic. Despite the wide-scale changes the pandemic brought to the teaching and learning communities, the GS intervention served as a targeted intervention to help students maintain their achievement contexts in a goal-oriented way.Keywords: academic achievement, acadeic resilience, COVID-19, goal setting
Procedia PDF Downloads 14813010 Global Pandemic of Chronic Diseases: Public Health Challenges to Reduce the Development
Authors: Benjamin Poku
Abstract:
Purpose: The purpose of the research is to conduct systematic reviews and synthesis of existing knowledge that addresses the growing incidence and prevalence of chronic diseases across the world and its impact on public health in relation to communicable diseases. Principal results: A careful compilation and summary of 15-20 peer-reviewed publications from reputable databases such as PubMed, MEDLINE, CINAHL, and other peer-reviewed journals indicate that the Global pandemic of Chronic diseases (such as diabetes, high blood pressure, etc.) have become a greater public health burden in proportion as compared to communicable diseases. Significant conclusions: Given the complexity of the situation, efforts and strategies to mitigate the negative effect of the Global Pandemic on chronic diseases within the global community must include not only urgent and binding commitment of all stakeholders but also a multi-sectorial long-term approach to increase the public health educational approach to meet the increasing world population of over 8 billion people and also the aging population as well to meet the complex challenges of chronic diseases.Keywords: pandemic, chronic disease, public health, health challenges
Procedia PDF Downloads 53213009 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach
Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman
Abstract:
Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.Keywords: categorical data, log linear modeling, neural network, shifting cultivation
Procedia PDF Downloads 5713008 A Low-Cost Experimental Approach for Teaching Energy Quantization: Determining the Planck Constant with Arduino and Led
Authors: Gastão Soares Ximenes de Oliveira, Richar Nicolás Durán, Romeo Micah Szmoski, Eloiza Aparecida Avila de Matos, Elano Gustavo Rein
Abstract:
This article aims to present an experimental method to determine Planck's constant by calculating the cutting potential V₀ from LEDs with different wavelengths. The experiment is designed using Arduino as a central tool in order to make the experimental activity more engaging and attractive for students with the use of digital technologies. From the characteristic curves of each LED, graphical analysis was used to obtain the cutting potential, and knowing the corresponding wavelength, it was possible to calculate Planck's constant. This constant was also obtained from the linear adjustment of the cutting potential graph by the frequency of each LED. Given the relevance of Planck's constant in physics, it is believed that this experiment can offer teachers the opportunity to approach concepts from modern physics, such as the quantization of energy, in a more accessible and applied way in the classroom. This will not only enrich students' understanding of the fundamental nature of matter but also encourage deeper engagement with the principles of quantum physics.Keywords: physics teaching, educational technology, modern physics, Planck constant, Arduino
Procedia PDF Downloads 8013007 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring
Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang
Abstract:
Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.Keywords: building, image matching, temperature, unmanned aerial vehicle
Procedia PDF Downloads 29713006 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network
Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin
Abstract:
Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.Keywords: eConsent, health social network, mixed methods, situation awareness
Procedia PDF Downloads 29813005 Digital Content Strategy (DCS) Detailed Review of the Key Content Components
Authors: Oksana Razina, Shakeel Ahmad, Jessie Qun Ren, Olufemi Isiaq
Abstract:
The modern life of businesses is categorically reliant on their established position online, where digital (and particularly website) content plays a significant role as the first point of information. Digital content, therefore, becomes essential – from making the first impression to the building and development of client relationships. Despite a number of valuable papers suggesting a strategic approach when dealing with digital data, other sources often do not view or accept the approach to digital content as a holistic or continuous process. Associations are frequently made with merely a one-off marketing campaign or similar. The challenge is to establish an agreed definition for the notion of Digital Content Strategy, which currently does not exist, as DCS is viewed from an excessive number of different angles. A strategic approach to content, nonetheless, is required, both practically and contextually. The researchers, therefore, aimed at attempting to identify the key content components comprising a digital content strategy to ensure all the aspects were covered and strategically applied – from the company’s understanding of the content value to the ability to display flexibility of content and advances in technology. This conceptual project evaluated existing literature on the topic of Digital Content Strategy (DCS) and related aspects, using the PRISMA Systematic Review Method, Document Analysis, Inclusion and Exclusion Criteria, Scoping Review, Snow-Balling Technique and Thematic Analysis. The data was collected from academic and statistical sources, government and relevant trade publications. Based on the suggestions from academics and trading sources related to the issues discussed, the researchers revealed the key actions for content creation and attempted to define the notion of DCS. The major finding of the study presented Key Content Components of Digital Content Strategy and can be considered for implementation in a business retail setting.Keywords: digital content strategy, key content components, websites, digital marketing strategy
Procedia PDF Downloads 15013004 CRISPR Technology: A Tool in the Potential Cure for COVID-19 Virus
Authors: Chijindu Okpalaoka, Charles Chinedu Onuselogu
Abstract:
COVID-19, humanity's coronavirus disease caused by SARS-CoV-2, was first detected in late 2019 in Wuhan, China. COVID-19 lacked an established conventional pharmaceutical therapy, and as a result, the outbreak quickly became an epidemic affecting the entire World. Only a qPCR assay is reliable for diagnosing COVID-19. Clustered, regularly interspaced short palindromic repeats (CRISPR) technology is being researched for speedy and specific identification of COVID-19, among other therapeutic techniques. Apart from its therapeutic capabilities, the CRISPR technique is being evaluated to develop antiviral therapies; nevertheless, no CRISPR-based medication has been approved for human use to date. Prophylactic antiviral CRISPR in living being cells, a Cas 13-based approach against coronavirus, has been developed. While this method can be evolved into a treatment approach, it may face substantial obstacles in human clinical trials for licensure. This study discussed the potential applications of CRISPR-based techniques for developing a speedy and accurate feasible treatment alternative for the COVID-19 virus.Keywords: COVID-19, CRISPR technique, Cas13, SARS-CoV-2, prophylactic antiviral
Procedia PDF Downloads 13913003 How Children Synchronize with Their Teacher: Evidence from a Real-World Elementary School Classroom
Authors: Reiko Yamamoto
Abstract:
This paper reports on how synchrony occurs between children and their teacher, and what prevents or facilitates synchrony. The aim of the experiment conducted in this study was to precisely analyze their movements and synchrony and reveal the process of synchrony in a real-world classroom. Specifically, the experiment was conducted for around 20 minutes during an English as a foreign language (EFL) lesson. The participants were 11 fourth-grade school children and their classroom teacher in a public elementary school in Japan. Previous researchers assert that synchrony causes the state of flow in a class. For checking the level of flow, Short Flow State Scale (SFSS) was adopted. The experimental procedure had four steps: 1) The teacher read aloud the first half of an English storybook to the children. Both the teacher and the children were at their own desks. 2) The children were subjected to an SFSS check. 3) The teacher read aloud the remaining half of the storybook to the children. She made the children remove their desks before reading. 4) The children were again subjected to an SFSS check. The movements of all participants were recorded with a video camera. From the movement analysis, it was found that the children synchronized better with the teacher in Step 3 than in Step 1, and that the teacher’s movement became free and outstanding without a desk. This implies that the desk acted as a barrier between the children and the teacher. Removal of this barrier resulted in the children’s reactions becoming synchronized with those of the teacher. The SFSS results proved that the children experienced more flow without a barrier than with a barrier. Apparently, synchrony is what caused flow or social emotions in the classroom. The main conclusion is that synchrony leads to cognitive outcomes such as children’s academic performance in EFL learning.Keywords: engagement in a class, English as a foreign language (EFL) learning, interactional synchrony, social emotions
Procedia PDF Downloads 14913002 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 37613001 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen
Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev
Abstract:
The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms
Procedia PDF Downloads 9613000 Acetic Acid Assisted Phytoextraction of Chromium (Cr) by Energy Crop (Arundo donax L.) in Cr Contaminated Soils
Authors: Muhammad Iqbal, Hafiz Muhammad Tauqeer, Hamza Rafaqat, Muhammad Naveed, Muhammad Awais Irshad
Abstract:
Soil pollution with chromium (Cr) has become one of the most important concerns due to its toxicity for humans. To date, various remediation approaches have been employed for the remediation and management of Cr contaminated soils. Phytoextraction is an eco-friendly and emerging remediation approach which has gained attention due to several advantages over conventional remediation approach. The use of energy crops for phytoremediation is an emerging trend worldwide. These energy crops have high tolerance against various environmental stresses, the potential to grow in diverse ecosystems and high biomass production make them a suitable candidate for phytoremediation of contaminated soils. The removal efficiency of plants in phytoextraction depends upon several soil and plant factors including solubility, bioavailability and metal speciation in soils. A pot scale experiment was conducted to evaluate the phytoextraction potential of Arundo donax L. with the application of acetic acid (A.A) in Cr contaminated soils. Plants were grown in pots filled with 5 kg soils for 90 days. After 30 days plants acclimatization in pot conditions, plants were treated with various levels of Cr (2.5 mM, 5 mM, 7.5 mM, 10 mM) and A.A (Cr 2.5 mM + A.A 2.5 mM, Cr 5 mM + A.A 2.5 mM, Cr 7.5 mM + A.A 2.5 mM, Cr 10 mM + A.A 2.5 mM). The application of A.A significantly increased metal uptake and in roots and shoots of A. donax. This increase was observed at Cr 7.5 mM + A.A 2.5 mM but at high concentrations, visual symptoms of Cr toxicity were observed on leaves. Similarly, A.A applications also affect the activities of key enzymes including catalase (CAT), superoxidase dismutase (SOD), and ascorbate peroxidase (APX) in leaves of A. donax. Based on results it is concluded that the applications of A.A acid for phytoextraction is an alternative approach for the management of Cr affected soils and synthetic chelators should be replaced with organic acids.Keywords: acetic acid, A. donax, chromium, energy crop, phytoextraction
Procedia PDF Downloads 39312999 A Statistical Approach to Rationalise the Number of Working Load Test for Quality Control of Pile Installation in Singapore Jurong Formation
Authors: Nuo Xu, Kok Hun Goh, Jeyatharan Kumarasamy
Abstract:
Pile load testing is significant during foundation construction due to its traditional role of design validation and routine quality control of the piling works. In order to verify whether piles can take loadings at specified settlements, piles will have to undergo working load test where the test load should normally up to 150% of the working load of a pile. Selection or sampling of piles for the working load test is done subject to the number specified in Singapore National Annex to Eurocode 7 SS EN 1997-1:2010. This paper presents an innovative way to rationalize the number of pile load test by adopting statistical analysis approach and looking at the coefficient of variance of pile elastic modulus using a case study at Singapore Tuas depot. Results are very promising and have shown that it is possible to reduce the number of working load test without influencing the reliability and confidence on the pile quality. Moving forward, it is suggested that more load test data from other geological formations to be examined to compare with the findings from this paper.Keywords: elastic modulus of pile under soil interaction, jurong formation, kentledge test, pile load test
Procedia PDF Downloads 39112998 Using ANN in Emergency Reconstruction Projects Post Disaster
Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir
Abstract:
Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management
Procedia PDF Downloads 17012997 A Study of Teachers’ View on Modern Methods of Teaching Regarding the Quality of Instruction in Shiraz High Schools
Authors: Nasrin Badrkhani
Abstract:
Teaching is an interaction between the teacher, student, and the concept being taught, especially within the classroom setting. As society increasingly values thoughtful and creative individuals, there is a growing need to adopt modern, active teaching methods. These methods should engage students in activities that foster problem-solving, creativity, cooperation, and scientific thinking skills. Modern teaching methods emphasize student involvement, gradual and continuous learning (process-centered approaches), and holistic evaluation of students' abilities and talents. A shift from teacher-centered to student-centered teaching is crucial. Among these modern methods are group work, role-playing, group discussions, and activities that engage students in evaluating societal values. This research employs a survey and a 38-question Likert scale questionnaire to explore teachers' perspectives on the impact of modern teaching methods on the quality of education. The study also examines the relationship between these perspectives and variables such as gender, major, and teaching experience. The statistical population consists of high school teachers in Shiraz, Iran, with sampling done using the Morgan table. Discriminant analysis was used for the initial analysis of the questions, and Cronbach's Alpha test was employed for the final examination. SPSS Software was used for statistical analysis, including T-tests and one-way ANOVA. The results indicate that teachers in this city generally have positive attitudes towards the use of modern teaching methods, except when it comes to engaging in judgments concerning societal values. There is no significant difference in viewpoints based on gender or educational background. The findings are consistent with similar studies conducted both within Iran and internationally.Keywords: learning, modern methods, student, teacher, teaching
Procedia PDF Downloads 2712996 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm
Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar
Abstract:
The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations
Procedia PDF Downloads 42012995 Foreign Language Faculty Mentorship in Vietnam: An Interpretive Qualitative Study
Authors: Hung Tran
Abstract:
This interpretive qualitative study employed three theoretical lenses: Bronfenbrenner’s (1979) Ecological System of Human Development, Vygotsky’s (1978) Sociocultural Theory of Development, and Knowles’s (1970) Adult Learning Theory as the theoretical framework in connection with the constructivist research paradigm to investigate into positive and negative aspects of the extant English as a Foreign Language (EFL) faculty mentoring programs at four higher education institutions (HEIs) in the Mekong River Delta (MRD) of Vietnam. Four apprentice faculty members (mentees), four experienced faculty members (mentors), and two associate deans (administrators) from these HEIs participated in two tape-recorded individual interviews in the Vietnamese language. Twenty interviews were transcribed verbatim and translated into English with verification. The initial analysis of data reveals that the mentoring program, which is mandated by Vietnam’s Ministry of Education and Training, has been implemented differently at these HEIs due to a lack of officially-documented mentoring guidance. Other general themes emerging from the data include essentials of the mentoring program, approaches of the mentoring practice, the mentee – mentor relationship, and lifelong learning beyond the mentoring program. Practically, this study offers stakeholders in the mentoring cycle description of benefits and best practices of tertiary EFL mentorship and a suggested mentoring program that is metaphorically depicted as “a lifebuoy” for its current and potential administrators and mentors to help their mentees survive in the first years of teaching. Theoretically, this study contributes to the world’s growing knowledge of post-secondary mentorship by enriching the modest literature on Asian tertiary EFL mentorship.Keywords: faculty mentorship, mentees, mentors, administrator, the MRD, Vietnam
Procedia PDF Downloads 12912994 An Inviscid Compressible Flow Solver Based on Unstructured OpenFOAM Mesh Format
Authors: Utkan Caliskan
Abstract:
Two types of numerical codes based on finite volume method are developed in order to solve compressible Euler equations to simulate the flow through forward facing step channel. Both algorithms have AUSM+- up (Advection Upstream Splitting Method) scheme for flux splitting and two-stage Runge-Kutta scheme for time stepping. In this study, the flux calculations differentiate between the algorithm based on OpenFOAM mesh format which is called 'face-based' algorithm and the basic algorithm which is called 'element-based' algorithm. The face-based algorithm avoids redundant flux computations and also is more flexible with hybrid grids. Moreover, some of OpenFOAM’s preprocessing utilities can be used on the mesh. Parallelization of the face based algorithm for which atomic operations are needed due to the shared memory model, is also presented. For several mesh sizes, 2.13x speed up is obtained with face-based approach over the element-based approach.Keywords: cell centered finite volume method, compressible Euler equations, OpenFOAM mesh format, OpenMP
Procedia PDF Downloads 32212993 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites
Authors: Dhaladhuli Pranavi, Amirtham Rajagopal
Abstract:
There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.Keywords: composite, interface, nonlocal, phase field
Procedia PDF Downloads 146