Search results for: aged materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8456

Search results for: aged materials

2246 Sustainable Management of Water and Soil Resources for Agriculture in Dry Areas

Authors: Alireza Nejadmohammad Namaghi

Abstract:

Investigators have reported that mulches increase production potential in arid and semi arid lands. Mulches are covering materials that are used on soil surface for efficiency irrigation, erosion control, weed control, evaporation decrease and improvement of water perpetration. Our aim and local situation determine the kind of material that we can use. In this research we used different mulches including chemical mulch (M1), Aquasorb polymer, manure mulch (M2), Residue mulch (M3) and polyethylene mulch (M4), with control treatment (M0), without usage of mulch, on germination, biomass dry matter and cottonseed yield (Varamin variety) in Kashan area. Randomized complete block (RCB) design have measured the cotton yield with 3 replications for measuring the biomass dry matter and 4 replication in tow irrigation periods as 7 and 14 days. Germination percentage for M0, M1, M2, M3 and M4 treatment were receptivity 64, 65, 76, 57 and 72% Biomass dry matter average for M0, M1, M2, M3 and M4 treatment were receptivity 276, 306, 426, 403 and 476 gram per plot. M4 treatment (polyethylene Mulch) had the most effect, M2 and M3 had no significant as well as M0 and M1. Total yield average with respect to 7 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 700, 725, 857, 1057 and 1273 gram per plot. Dunken ne multiple showed no significant different among M0, M1, M2, and M3, but M4 ahs the most effect on yield. Total yield average with respect to 14 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 535, 507, 690, 957 and 1047 gram per plot. These were significant difference between all treatments and control treatment. Results showed that used different mulches with water decrease in dry situation can increase the yield significantly.

Keywords: mulch, cotton, arid land management, irrigation systems

Procedia PDF Downloads 84
2245 Investigation of Chronic Drug Use Due to Chronic Diseases in Patients Admitted to Emergency Department

Authors: Behcet Al, Şener Cindoruk, Suat Zengin, Mehmet Murat Oktay, Mehmet Mustafa Sunar, Hatice Eroglu, Cuma Yildirim

Abstract:

Objective: In present study we aimed to investigate the chronic drug use due to chronic diseases in patients admitted to emergency department. Materials-Methods: 144 patients who applied to emergency department (ED) of medicine school of Gaziantep University between June 2013 and September 2013 with chronic diseases and use chronic drugs were included. Information about drugs used by patients were recorded. Results: Of patients, half were male, half were female, and the mean age was 58 years. The first three common diseases were diabetes mellitus, hypertension and coronary artery diseases. Of patients, %79.2 knew their illness. Fifty patients began to use drug within three months, 36 patient began to use within the last one year. While 42 patients brought all of their drugs with themselves, 17 patients brought along a portion of drugs. While three patients stopped their medication completely, 125 patients received medication on a regular basis. Fifty-two patient described the drugs with names, 13 patients described with their colors, 3 patients described by grammes, 45 patients described with the size of the tablet and 13 patients could not describe the drugs. Ninety-two patients explained which kind of drugs were used for each diseases, 17 patient explained partly, and 35 patients had no idea. Hundred patients received medication by themselves, 44 patients medications were giving by their relatives and med carers. Of medications, 140 were written by doctors directly, three medication were given by pharmacist; and one patient bought the drug by himself. For 11 patients the drugs were not harmonious to their diseases. Fifty-one patients admitted to the ED two times within last week, and 73 admitted two times within last month. Conclusion: The majority of patients with chronic diseases and use chronic drugs know their diseases and use the drugs in order, but do not have enough information about their medication.

Keywords: chronic disease, drug use, emergency department, medication

Procedia PDF Downloads 463
2244 High Efficacy of Combined Therapy with Microbicide BASANT and Triple Combination of Selected Probiotics for Treatment of Vaginosis and Restoration of Vaginal Health

Authors: Nishu Atrey, Priyanka Singh, G. P. Talwar, Jagdish Gupta, Alka Kriplani, Rohini Sehgal, Indrani Ganguli, Soni Sinha

Abstract:

Background: Vaginosis is a widely prevalent syndrome in India and elsewhere. Recurrence is frequent in women treated with antibiotics, whose vagina pH remains above 5.0 indicative of the loss of resident lactobacilli. The objective of the present trial was to determine whether a Polyherbal microbicide BASANT can regress Vaginosis. Another objective was to determine whether the three selected strains of Probiotics endowed with making high amounts of lactic acid can colonise and restore the pH of the vagina to the acidic healthy range. Materials and Procedure: BASANT, was employed in powder form in veg (cellulose) capsules. TRF#36 strain of Lactobacillus fermentum, TRF#8 strain of L.gasseri, and TRF#30 strain of L.salivarius (combination termed as Pro-vag-Health) were employed at 3x109 bacilli lyophilized, packaged in capsules. The trials were conducted in women suffering from vaginosis with vaginal pH above 5.0. Women were given intravaginally either BASANT, Pro-vag-Health or a combination of the two intravaginally for seven days and thereafter once weekly as a maintenance dose. Results: BASANT cleared vaginosis in 14/20 women and Pro-vag-Health in 13/20 women. Interestingly, the combination of BASANT plus Pro-vag-Health was effective in 19/20 women, in contrast to Placebo capsules effective only in 1/20 women. Interpretation and Conclusion: The combination of BASANT and Pro-veg-Health Probiotics taken together intravaginally for seven days relieves 19 out of 20 women from vaginosis to restore acidic pH and healthy vagina. Extension of trial with this combination in larger number is indicated.

Keywords: microbicide, probiotics, vaginal pH, vaginosis

Procedia PDF Downloads 308
2243 Sustainable Design for Building Envelope in Hot Climates: A Case Study for the Role of the Dome as a Component of an Envelope in Heat Exchange

Authors: Akeel Noori Almulla Hwaish

Abstract:

Architectural design is influenced by the actual thermal behaviour of building components, and this in turn depends not only on their steady and periodic thermal characteristics, but also on exposure effects, orientation, surface colour, and climatic fluctuations at the given location. Design data and environmental parameters should be produced in an accurate way for specified locations, so that architects and engineers can confidently apply them in their design calculations that enable precise evaluation of the influence of various parameters relating to each component of the envelope, which indicates overall thermal performance of building. The present paper will be carried out with an objective of thermal behaviour assessment and characteristics of the opaque and transparent parts of one of the very unique components used as a symbolic distinguished element of building envelope, its thermal behaviour under the impact of solar temperatures, and its role in heat exchange related to a specific U-value of specified construction materials alternatives. The research method will consider the specified Hot-Dry weather and new mosque in Baghdad, Iraq as a case study. Also, data will be presented in light of the criteria of indoor thermal comfort in terms of design parameters and thermal assessment for a“model dome”. Design alternatives and considerations of energy conservation, will be discussed as well using comparative computer simulations. Findings will be incorporated to outline the conclusions clarifying the important role of the dome in heat exchange of the whole building envelope for approaching an indoor thermal comfort level and further research in the future.

Keywords: building envelope, sustainable design, dome impact, hot-climates, heat exchange

Procedia PDF Downloads 475
2242 The Importance of Clinicopathological Features for Differentiation Between Crohn's Disease and Ulcerative Colitis

Authors: Ghada E. Esheba, Ghadeer F. Alharthi, Duaa A. Alhejaili, Rawan E. Hudairy, Wafaa A. Altaezi, Raghad M. Alhejaili

Abstract:

Background: Inflammatory bowel disease (IBD) consists of two specific gastrointestinal disorders: ulcerative colitis (UC) and Crohn's disease (CD). Despite their distinct natures, these two diseases share many similar etiologic, clinical and pathological features, as a result, their accurate differential diagnosis may sometimes be difficult. Correct diagnosis is important because surgical treatment and long-term prognosis differ from UC and CD. Aim: This study aims to study the characteristic clinicopathological features which help in the differential diagnosis between UC and CD, and assess the disease activity in ulcerative colitis. Materials and methods: This study was carried out on 50 selected cases. The cases included 27 cases of UC and 23 cases of CD. All the cases were examined using H& E and immunohistochemically for bcl-2 expression. Results: Characteristic features of UC include: decrease in mucous content, irregular or villous surface, crypt distortion, and cryptitis, whereas the main cardinal histopathological features seen in CD were: epitheloid granuloma, transmural chronic inflammation, absence of mucin depletion, irregular surface, or crypt distortion. 3 cases of UC were found to be associated with dysplasia. UC mucosa contains fewer Bcl-2+ cells compared with CD mucosa. Conclusion: This study using multiple parameters such clinicopathological features and Bcl-2 expression as studied by immunohistochemical stain, helped to gain an accurate differentiation between UC and CD. Furthermore, this work spotted the light on the activity and different grades of UC which could be important for the prediction of relapse.

Keywords: Crohn's disease, dysplasia, inflammatory bowel disease, ulcerative colitis

Procedia PDF Downloads 191
2241 Stability of Concrete Moment Resisting Frames in View of Current Codes Requirements

Authors: Mahmoud A. Mahmoud, Ashraf Osman

Abstract:

In this study, the different approaches currently followed by design codes to assess the stability of buildings utilizing concrete moment resisting frames structural system are evaluated. For such purpose, a parametric study was performed. It involved analyzing group of concrete moment resisting frames having different slenderness ratios (height/width ratios), designed for different lateral loads to vertical loads ratios and constructed using ordinary reinforced concrete and high strength concrete for stability check and overall buckling using code approaches and computer buckling analysis. The objectives were to examine the influence of such parameters that directly linked to frames’ lateral stiffness on the buildings’ stability and evaluates the code approach in view of buckling analysis results. Based on this study, it was concluded that, the most susceptible buildings to instability and magnification of second order effects are buildings having high aspect ratios (height/width ratio), having low lateral to vertical loads ratio and utilizing construction materials of high strength. In addition, the study showed that the instability limits imposed by codes are mainly mathematical to ensure reliable analysis not a physical ones and that they are in general conservative. Also, it has been shown that the upper limit set by one of the codes that second order moment for structural elements should be limited to 1.4 the first order moment is not justified, instead, the overall story check is more reliable.

Keywords: buckling, lateral stability, p-delta, second order

Procedia PDF Downloads 257
2240 The Effect of Multi-Stakeholder Extension Services towards Crop Choice and Farmer's Income, the Case of the Arc High Value Crop Programme

Authors: Joseph Sello Kau, Elias Mashayamombe, Brian Washington Madinkana, Cynthia Ngwane

Abstract:

This paper presents the results for the statistical (stepwise linear regression and multiple regression) analyses, carried out on a number of crops in order to evaluate how the decision for crop choice affect the level of farm income generated by the farmers participating in the High Value Crop production (referred to as the HVC). The goal of the HVC is to encourage farmers cultivate fruit crops. The farmers received planting material from different extension agencies, together with other complementary packages such as fertilizer, garden tools, water tanks etc. During the surveys, it was discovered that a significant number of farmers were cultivating traditional crops even when their plot sizes were small. Traditional crops are competing for resources with high value crops. The results of the analyses show that farmers cultivating fruit crops, maize and potatoes were generating high income than those cultivating spinach and cabbage. High farm income is associated with plot size, access to social grants and gender. Choice for a crop is influenced by the availability of planting material and the market potential for the crop. Extension agencies providing the planting materials stand a good chance of having farmers follow their directives. As a recommendation, for the farmers to cultivate more of the HVCs, the ARC must intensify provision of fruit trees.

Keywords: farm income, nature of extension services, type of crops cultivated, fruit crops, cabbage, maize, potato and spinach

Procedia PDF Downloads 323
2239 Effect of Satureja khuzestanica Jamzad Supplementation on Inflammatory and Antioxidant Indicators in Type 2 Diabetes Patients: A Randomized Controlled Clinical Trial Study

Authors: Maryam Bordbar, Yaser Mokhayeri, Sajjad Roosta, Fatemeh Ghasemi, Saeed Choobkar, Hamidreza Nikbakht, Ebrahim Falahi

Abstract:

Objective: Diabetes mellitus type 2 is the most common metabolic disorder that is growing exponentially worldwide. Satureja Khuzestanica Jamzad is a native plant of Iran that grows widely in the south of Iran. Its antimicrobial, antioxidant, anti-inflammatory and pain-relieving effects have been documented in animal studies. The purpose of this study is to investigate the effect of consumption daily S. khuzestanica on inflammatory and antioxidant indicators in type 2 diabetic patients. Methods and Materials: In a double-blind, placebo-controlled clinical trial, 67 patients with type 2 diabetes were included and divided into two groups. One group received S. khuzestanica (capsule containing 500 mg) and the other group received placebo (500 mg talcum powder) once a day for 12 weeks. After the intervention, the inflammatory and antioxidant indicators of the two groups were compared. Results: In comparison to placebo groups, there was a significant difference in levels of total antioxidant capacity, superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase; these antioxidant indicators were higher in the intervention group (P<0.05). Moreover, a considerable decrease in weight, CRP and IL-6 levels were observed in patients in the S.Khuzestanica group. Conclusion: Our findings may provide novel complementary treatments without adverse effects for diabetes complications.

Keywords: Satureja khuzestanica Jamzad, diabetes mellitus, antioxidant indicators, IL-6, C-reactive protein

Procedia PDF Downloads 70
2238 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design

Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao

Abstract:

Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.

Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL

Procedia PDF Downloads 228
2237 Study of the Performances of an Environmental Concrete Based on Recycled Aggregates and Marble Waste Fillers Addition

Authors: Larbi Belagraa, Miloud Beddar, Abderrazak Bouzid

Abstract:

The needs of the construction sector still increasing for concrete. However, the shortage of natural resources of aggregate could be a problem for the concrete industry, in addition to the negative impact on the environment due to the demolition wastes. Recycling aggregate from construction and demolition (C&D) waste presents a major interest for users and researchers of concrete since this constituent can occupies more than 70% of concrete volume. The aim of the study here in is to assess the effect of sulfate resistant cement combined with the local mineral addition of marble waste fillers on the mechanical behavior of a recycled aggregate concrete (RAC). Physical and mechanical properties of RAC including the density, the flexural and the compressive strength were studied. The non destructive test methods (pulse-velocity, rebound hammer) were performed . The results obtained were compared to crushed aggregate concrete (CAC) using the normal compressive testing machine test method. The optimal content of 5% marble fillers showed an improvement for both used test methods (compression, flexion and NDT). Non-destructive methods (ultrasonic and rebound hammer test) can be used to assess the strength of RAC, but a correction coefficient is required to obtain a similar value to the compressive strength given by the compression tests. The study emphasizes that these waste materials can be successfully and economically utilized as additional inert filler in RAC formulation within similar performances compared to a conventional concrete.

Keywords: marble waste fillers, mechanical strength, natural aggregate, non-destructive testing (NDT), recycled aggregate concrete

Procedia PDF Downloads 312
2236 Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar

Authors: Seyed Mohamad Rasool Mirkarimi, David Chiaramonti, Samir Bensaid

Abstract:

Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion.

Keywords: hydrogen production, catalytic methane decomposition, biochar, activated biochar, carbon-based catalyts

Procedia PDF Downloads 81
2235 Effect of Iron Ore Tailings on the Properties of Fly-ash Cement Concrete

Authors: Sikiru F. Oritola, Abd Latif Saleh, Abd Rahman Mohd Sam, Rozana Zakaria, Mushairry Mustaffar

Abstract:

The strength of concrete varies with the types of material used; the material used within concrete can also result in different strength due to improper selection of the component. Each material brings a different aspect to the concrete. This work studied the effect of using Iron ore Tailings (IOTs) as partial replacement for sand on some properties of concrete using Fly ash Cement as the binder. The sieve analysis and some other basic properties of the materials used in producing concrete samples were first determined. Two brands of Fly ash Cement were studied. For each brand of Fly ash Cement, five different types of concrete samples denoted as HCT0, HCT10, HCT20, HCT30 and HCT40, for the first brand and PCT0, PCT10, PCT20, PCT30 and PCT40, for the second brand were produced. The percentage of Tailings as partial replacement for sand in the sample was varied from 0% to 40% at 10% interval. For each concrete sample, the average of three cubes, three cylinders and three prism specimen results was used for the determination of the compressive strength, splitting tensile strength and the flexural strength respectively. Water/cement ratio of 0.54 with fly-ash cement content of 463 Kg/m3 was used in preparing the fresh concrete. The slump values for the HCT brand concrete ranges from 152mm – 75mm while that of PCT brand ranges from 149mm to 70mm. The concrete sample PCT30 recorded the highest 28 days compressive strength of 28.12 N/mm2, the highest splitting tensile strength of 2.99 N/mm2 as well as the highest flexural strength of 4.99 N/mm2. The texture of the iron-ore tailings is rough and angular and was therefore able to improve the strength of the fly ash cement concrete. Also, due to the fineness of the IOTs more void in the concrete can be filled, but this reaches the optimum at 30% replacement level, hence the drop in strength at 40% replacement

Keywords: concrete strength, fine aggregate, fly ash cement, iron ore tailings

Procedia PDF Downloads 671
2234 Wear Performance of SLM Fabricated 1.2709 Steel Nanocomposite Reinforced by TiC-WC for Mould and Tooling Applications

Authors: Daniel Ferreira, José M. Marques Oliveira, Filipe Oliveira

Abstract:

Wear phenomena is critical in injection moulding processes, causing failure of the components, and making the parts more expensive with an additional wasting time. When very abrasive materials are being injected inside the steel mould’s cavities, such as polymers reinforced with abrasive fibres, the consequences of the wear are more evident. Maraging steel (1.2709) is commonly employed in moulding components to resist in very aggressive injection conditions. In this work, the wear performance of the SLM produced 1.2709 maraging steel reinforced by ultrafine titanium and tungsten carbide (TiC-WC), was investigated using a pin-on-disk testing apparatus. A polypropylene reinforced with 40 wt.% fibreglass (PP40) disk, was used as the counterpart material. The wear tests were performed at 40 N constant load and 0.4 ms-1 sliding speed at room temperature and humidity conditions. The experimental results demonstrated that the wear rate in the 18Ni300-TiC-WC composite is lower than the unreinforced 18Ni300 matrix. The morphology and chemical composition of the worn surfaces was observed by 3D optical profilometry and scanning electron microscopy (SEM), respectively. The resulting debris, caused by friction, were also analysed by SEM and energy dispersive X-ray spectroscopy (EDS). Their morphology showed distinct shapes and sizes, which indicated that the wear mechanisms, may be different in maraging steel produced by casting and SLM. The coefficient of friction (COF) was recorded during the tests, which helped to elucidate the wear mechanisms involved.

Keywords: selective laser melting, nanocomposites, injection moulding, polypropylene with fibreglass

Procedia PDF Downloads 155
2233 Preparation of Fe3Si/Ferrite Micro-and Nano-Powder Composite

Authors: Radovan Bures, Madgalena Streckova, Maria Faberova, Pavel Kurek

Abstract:

Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.

Keywords: micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties

Procedia PDF Downloads 364
2232 International Humanitarian Law and the Challenges of New Technologies of Warfare

Authors: Uche A. Nnawulezi

Abstract:

Undoubtedly, despite all efforts made to achieve overall peace through the application of the principles of international humanitarian law, crimes against mankind which are of unprecedented concern to the whole world have remained unabated. The fall back on war as a technique for settling disputes between nations, individuals, countries and ethnic groups with accompanying toll of deaths and destruction of properties have remained a conspicuous component of human history. Indeed, to control this conduct of warfare and the dehumanization of individuals, a body of law aimed at regulating the impacts of conflicts and hostilities in the theater of war has become necessary. Thus, it is to examine the conditions in which international humanitarian law will apply and also to determine the extent of the challenges of new progressions of warfare that this study is undertaken. All through this examination, we grasped doctrinal approach wherein we used text books, journals, international materials and supposition of law specialists in the field of international humanitarian law. This paper shall examine the distinctive factors responsible for the rebelliousness to the rules of International Humanitarian Law and furthermore, shall proffer possible courses of action that will address the challenges of new technologies of warfare all over the world. Essentially, the basic proposals made in this paper if totally utilized may go far in ensuring a sufficient standard in the application of the rules of international humanitarian law as it relates to an increasingly frequent phenomenon of contemporary developments in technologies of warfare which has in recent past, made it more difficult for the most ideal application of the rules of international humanitarian law. This paper deduces that for a sustainable global peace to be achieved, the rules of International Humanitarian Law as it relates to the utilization of new technologies of warfare should be completely clung to and should be made a strict liability offense. Likewise, this paper further recommends the introduction of domestic criminal law punishment of serious contraventions of the rules of international humanitarian law.

Keywords: international, humanitarian law, new technologies, warfare

Procedia PDF Downloads 304
2231 The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study

Authors: C. Paglia, C. Mosca

Abstract:

Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground.

Keywords: resin, floor, damage, durability

Procedia PDF Downloads 162
2230 Drastic Increase of Wave Dissipation within Metastructures Having Negative Stiffness Inclusions

Authors: D. Chronopoulos, I. Antoniadis, V. Spitas, D. Koulocheris, V. Polenta

Abstract:

A concept of a simple linear oscillator, incorporating a negative stiffness element is demonstrated to exhibit extraordinary damping properties. This oscillator shares the same overall (static) stiffness, the same mass and the same damping element with a reference classical linear SDOF oscillator. However, it differs from the original SDOF oscillator by appropriately redistributing the component spring stiffness elements and by re-allocating the damping element. Despite the fact that the proposed oscillator incorporates a negative stiffness element, it is designed to be both statically and dynamically stable. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDOF system, especially in cases where the original damping of the SDOF system is low. This damping behavior is not a result of a novel additional extraordinary energy dissipation mechanism, but a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper re-distribution of the stiffness and the damper elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Next, Acoustic or Phononic Meta-materials are considered, in which one atom is replaced by the concept of the above simple linear oscillator. The results indicate that not only the damping of the meta-material verifies and exceeds the one expected from the so-called "meta-damping" behavior, but also that the band gap of the meta-material can be significantly increased.

Keywords: wave propagation, periodic structures, wave damping, mechanical engineering

Procedia PDF Downloads 357
2229 Molecular-Dynamics Study of H₂-C₃H₈-Hydrate Dissociation: Non-Equilibrium Analysis

Authors: Mohammad Reza Ghaani, Niall English

Abstract:

Hydrogen is looked upon as the next-generation clean-energy carrier; the search for an efficient material and method for storing hydrogen has been, and is, pursued relentlessly. Clathrate hydrates are inclusion compounds wherein guest gas molecules like hydrogen are trapped in a host water-lattice framework. These types of materials can be categorised as potentially attractive hosting environments for physical hydrogen storage (i.e., no chemical reaction upon storage). Non-equilibrium molecular dynamics (NEMD) simulations have been performed to investigate thermal-driven break-up of propane-hydrate interfaces with liquid water at 270-300 K, with the propane hydrate containing either one or no hydrogen molecule in each of its small cavities. In addition, two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water: a 001-direct surface cleavage and one with completed cages. The geometric hydrate-ice-liquid distinction criteria of Báez and Clancy were employed to distinguish between the hydrate, ice lattices, and liquid-phase. Consequently, the melting temperatures of interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. The different hydrate-edge terminations for the hydrate-water interface led to statistically-significant differences in the observed melting point and dissociation profile: it was found that the clathrate with the planar interface melts at around 280 K, whilst the melting temperature of the cage-completed interface was determined to be circa 270 K.

Keywords: hydrogen storage, clathrate hydrate, molecular dynamics, thermal dissociation

Procedia PDF Downloads 276
2228 Super-Exchange Coupling in Oxygen Rich Rare-Earth Based Sm₂MnRuO₆₊δ Double Perovskite

Authors: S. Nqayi, B. Sondezi

Abstract:

A rare-earth-based Sm₂MnRuO₆₊δ (SMRO) double perovskite was prepared using a high-temperature solid-state reaction. The structural, morphological, chemical, thermodynamic, and magnetic properties were measured with X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoemission spectroscopy (XPS), and vibrating sample magnetometer (VSM), respectively. The XRD revealed a tetragonal structure belonging to the I4/mmm space group, number 139, with linear Mn−O−Ru bonds. Replacing the well-studied alkaline earth metal with a rare-earth element increased the Mn-O bond length difference between the shorter equatorial (Mn-Oab) and the axial (Mn-Oc) bonds by approximately 6.3%. The elemental composition showed an O-rich double perovskite with a Ru deficit, which encourages the formation of a Ru⁶⁺ (d²) state. XPS spectra of Sm-3d, Ru-3d, and Mn-2p revealed the coexistence of a double oxidation state for each cation; Sm²⁺, Sm³⁺, Ru³⁺, Ru⁶⁺, Mn²⁺ , and Mn³⁺, in varying proportions. Entropy studies showed drastic ordering of spins at low temperatures (up to 12.4 K), whilst increasing temperatures above this point resulted in a drastic increase of disorder of the spins (up to 43.26 K), beyond which a constant slope of entropy is observed. Magnetic measurements revealed two magnetic ground states at TN = 12.4 K and TC = 43.3 K ordering antiferromagnetically (AFM) and ferromagnetically (FM), respectively. Kneller fit further showed that the materials become completely paramagnetic at TB = 88.1 K, (the blocking temperature). The existence of ferromagnetic (FM) super-exchange coupling in this work originating from Mn³⁺ (t³₂𝓰e¹𝓰)−O−Ru³⁺ (t⁵₂𝓰e⁰𝓰) and Mn²⁺ (t³₂𝓰e²𝓰−O−Ru⁶⁺ (t²₂𝓰e⁰𝓰) which plays an important role in suppressing the Mn/Ru−O−Mn/Ru antiferromagnetic (AFM) interactions.

Keywords: solid-state reaction, super-exchange coupling, ferromagnetic, Kneller’s law, entropy

Procedia PDF Downloads 20
2227 An Electromyographic Study of Muscle Coordination during Dynamic Glenohumeral Joint Elevation

Authors: Omid Khaiyat, David Hawkes

Abstract:

Introduction: There remains a lack of information on sophisticated coordination patterns across shoulder girdle muscles. Considering the stability of the shoulder being heavily dependent on coordinated muscle activity during its wide-ranging movements, it is important that key intermuscular relationships are well-defined for a better understanding of underlying pathology. This study investigated shoulder intermuscular coordination during different planes of shoulder elevation. Materials and Methods: EMG was recorded from 14 shoulder muscles in 20 healthy participants during shoulder flexion, scapula plane elevation, abduction, and extension. Cross-correlation by means of Pearson Correlation Coefficient (PCC) was used to examine the coordination between different muscles and muscle groups. Results: Coordination between rotator cuff and deltoid muscle groups was significantly higher (p =0.020-0.035) during the initial (PCC) = 0.79) and final (PCC = 0.74) phases of elevation compared to the mid-range (PCC = 0.34). Furthermore, a high level of coordination (PCC = 0.89) was noted between the deltoid group and the adductor group (latissimus dorsi and teres major) during the initial stage of shoulder elevation. Conclusion: The destabilising force of the deltoid during the initial stage of shoulder elevation is balanced by coordinated activity of rotator cuff, latissimus dorsi, and teres major. This is also the case for the end-range of movement, where increased demand for stability again leads to higher coordination between the deltoid and rotator cuff muscle groups. Appreciation of the sophistication of normal shoulder function evidence-based rehabilitation strategies for conditions such as subacromial impingement syndrome or shoulder instability can be developed.

Keywords: shoulder, coordination, EMG, muscle activity, upper limb

Procedia PDF Downloads 167
2226 Usage of Biosorbent Material for the Removal of Nitrate from Wastewater

Authors: M. Abouleish, R. Umer, Z. Sara

Abstract:

Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate.

Keywords: biosorption, nitrates, plant material, water, and wastewater treatment

Procedia PDF Downloads 153
2225 Physical Property Characterization of Adult Dairy Nutritional Products for Powder Reconstitution

Authors: Wei Wang, Martin Chen

Abstract:

The reconstitution behaviours of nutritional products could impact user experience. Reconstitution issues such as lump formation and white flecks sticking to bottles surfaces could be very unappealing for the consumers in milk preparation. The controlling steps in dissolving instant milk powders include wetting, swelling, sinking, dispersing, and dissolution as in the literature. Each stage happens simultaneously with the others during milk preparation, and it is challenging to isolate and measure each step individually. This study characterized three adult nutritional products for different properties including particle size, density, dispersibility, stickiness, and capillary wetting to understand the relationship between powder physical properties and their reconstitution behaviours. From the results, the formation of clumps can be caused by different factors limiting the critical steps of powder reconstitution. It can be caused by small particle size distribution, light particle density limiting powder wetting, or the rapid swelling and dissolving of particle surface materials to impede water penetration in the capillary channels formed by powder agglomerates. For the grain or white flecks formation in milk preparation, it was believed to be controlled by dissolution speed of the particles after dispersion into water. By understanding those relationship between fundamental powder structure and their user experience in reconstitution, this information provides us new and multiple perspectives on how to improve the powder characteristics in the commercial manufacturing.

Keywords: characterization, dairy nutritional powder, physical property, reconstitution

Procedia PDF Downloads 103
2224 Biohydrogen Production from Rice Water Using Bacteria Isolated from Wetland Sediment

Authors: Jerry John T. M., Sylas V. P., Shijo Joy

Abstract:

Hydrogen is the most essential gas that can be used for many purposes. During the production of hydrogen using raw materials like Soil and leftover cooked rice water (kanjivellam), the major by-product formed is water. Soil is collected from three different places in kottayam district: Kallara, Meenachilar, and Athirampuzha. Collected samples are mixed with rice water and tested for traces of hydrogen using a biohydrogen sensor after 72 hours. The result was the presence of hydrogen in all the 3 samples. After streaking, PCR and gel electrophoresis detected the bacteria which produced the hydrogen. RGCB Thiruvananthapuram conducted the sequencing of the PCR resultant. And identified the bacterial strains. Five variants of Bacillus bacteria ( (1) Bacillus cereus strain JTM GenBank: OP278839.1 (2) Bacillus toyonensis strain JTM2 GenBank: OP278841.1 (3) Bacillus anthracis strain JTM_SR2989-3-R_H08 GenBank: OP278960.1 (4) Bacillus thuringiensis strain JRY1 GenBank: OP278976.1 (5) Bacillus anthracis strain JTM_SR2989-3-F_H07 GenBank: OP278959.1 ) are identified and successfully registered in NCBI Gen bank. These Bacillus bacteria are major types of Rhizobacteria that can form spores and can survive in the soil for a long time period under harsh environmental conditions. Also, plant growth is enhanced by PGPR (Plant growth promoting rhizobacteria) through the induction of systemic resistance, antibiosis, and competitive omission. The molecular sequencing was submitted to the NCBI Gen Bank, and the accession numbers were allotted for the bacterial cultures.

Keywords: bio hydrogen production, bacterial bio hydrogen production, plant related to bacillus bacteria., bacillus bacteria study

Procedia PDF Downloads 66
2223 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 103
2222 Prevalence and Evaluation of Antimicrobial Activity of Dodonaea viscosa Extract and Antibacterial Agents against Salmonella spp. Isolated from Poultry

Authors: Shayma Munqith Al-Baker, Fadhl Ahmed Saeed Al-Gasha’a, Samira Hamid Hanash, Ahmed Ali Al-Hazmi

Abstract:

A total of 200 samples (180 fecal materials and 20 organ samples) were collected from (5 different poultry farms, 10 local poultry shops, 5 houses poultry, 5 Eggs stores shops and 5 hand slaughters centers) in Ibb city, Yemen, 2014. According to morphological, cultural, as well as biochemical characterization and serological tests, 59 29.5% isolates were identified as Salmonella spp. and all Salmonella isolates were categorized by serotype, which comprised of, 37 62.71% Salmonella Typhimurium serovar, 21 35.59%. Salmonella Enteritidis serovar and 11.69% Salmonella Heidelberg serovar. Antibiotic sensitivity test was done for bacterial isolates and the results showed there were clear differences in antibiotic resistant. Antimicrobial susceptibility of the isolates varies as follows: Ofloxacin 79.66%, Ciprofloxacin 67.80%, Colistin 59.32% and Gentamycin 52.54%. All of isolates were resistant to Erythromycin, Penicillin and Lincomycin. Antibacterial activity was done for both aqueous and ethanol extracts of Dodonaea viscosa plant by using well and disc diffusion assay. The results indicated that well diffusion assay had best results than disc diffusion assay, the highest inhibition zone was 22 mm for well diffusion and 15 mm for disc diffusion assay, the results observed that ethanol extract had best antibacterial effect than aqueous extract which the percentage of bacterial isolates affected with ethanol extract was 71.19% comparing with aqueous extract 28.81% by using disc diffusion assay, while the percentage of bacterial isolates affected with ethanol extract was 88.13% comparing with aqueous extract 52.54% by using will diffusion assay.

Keywords: Salmonella spp, Dodonaea viscosa, antimicrobial and salmonellosis

Procedia PDF Downloads 474
2221 Investigating the Minimum RVE Size to Simulate Poly (Propylene carbonate) Composites Reinforced with Cellulose Nanocrystals as a Bio-Nanocomposite

Authors: Hamed Nazeri, Pierre Mertiny, Yongsheng Ma, Kajsa Duke

Abstract:

The background of the present study is the use of environment-friendly biopolymer and biocomposite materials. Among the recently introduced biopolymers, poly (propylene carbonate) (PPC) has been gaining attention. This study focuses on the size of representative volume elements (RVE) in order to simulate PPC composites reinforced by cellulose nanocrystals (CNCs) as a bio-nanocomposite. Before manufacturing nanocomposites, numerical modeling should be implemented to explore and predict mechanical properties, which may be accomplished by creating and studying a suitable RVE. In other studies, modeling of composites with rod shaped fillers has been reported assuming that fillers are unidirectionally aligned. But, modeling of non-aligned filler dispersions is considerably more difficult. This study investigates the minimum RVE size to enable subsequent FEA modeling. The matrix and nano-fillers were modeled using the finite element software ABAQUS, assuming randomly dispersed fillers with a filler mass fraction of 1.5%. To simulate filler dispersion, a Monte Carlo technique was employed. The numerical simulation was implemented to find composite elastic moduli. After commencing the simulation with a single filler particle, the number of particles was increased to assess the minimum number of filler particles that satisfies the requirements for an RVE, providing the composite elastic modulus in a reliable fashion.

Keywords: biocomposite, Monte Carlo method, nanocomposite, representative volume element

Procedia PDF Downloads 443
2220 The Use of Sustainability Criteria on Infrastructure Design to Encourage Sustainable Engineering Solutions on Infrastructure Projects

Authors: Shian Saroop, Dhiren Allopi

Abstract:

In order to stay competitive and to meet upcoming stricter environmental regulations and customer requirements, designers have a key role in designing civil infrastructure so that it is environmentally sustainable. There is an urgent need for engineers to apply technologies and methods that deliver better and more sustainable performance of civil infrastructure as well as a need to establish a standard of measurement for greener infrastructure, rather than merely use tradition solutions. However, there are no systems in place at the design stage that assesses the environmental impact of design decisions on township infrastructure projects. This paper identifies alternative eco-efficient civil infrastructure design solutions and developed sustainability criteria and a toolkit to analyse the eco efficiency of infrastructure projects. The proposed toolkit is aimed at promoting high-performance, eco-efficient, economical and environmentally friendly design decisions on stormwater, roads, water and sanitation related to township infrastructure projects. These green solutions would bring a whole new class of eco-friendly solutions to current infrastructure problems, while at the same time adding a fresh perspective to the traditional infrastructure design process. A variety of projects were evaluated using the green infrastructure toolkit and their results are compared to each other, to assess the results of using greener infrastructure verses the traditional method of designing infrastructure. The application of ‘green technology’ would ensure a sustainable design of township infrastructure services assisting the design to consider alternative resources, the environmental impacts of design decisions, ecological sensitivity issues, innovation, maintenance and materials, at the design stage of a project.

Keywords: eco-efficiency, green infrastructure, infrastructure design, sustainable development

Procedia PDF Downloads 227
2219 Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration

Authors: Zohreh Fallah, Edward P. L. Roberts

Abstract:

One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed.

Keywords: adsorption, electrochemical regeneration, emulsified oil, produced water

Procedia PDF Downloads 582
2218 Green approach of Anticorrosion Coating of Steel Based on Polybenzoxazine/Henna Nanocomposites

Authors: Salwa M. Elmesallamy, Ahmed A. Farag, Magd M. Badr, Dalia S. Fathy, Ahmed Bakry, Mona A. El-Etre

Abstract:

The term green environment is an international trend. It is become imperative to treat the corrosion of steel with a green coating to protect the environment. From the potential adverse effects of the traditional materials.A series of polybenzoxazine/henna composites (PBZ/henna), with different weight percent (3,5, and 7 wt % (of henna), were prepared for corrosion protection of carbon steel. The structures of the prepared composites were verified using FTIR analysis. The mechanical properties of the resins, such as adhesion, hardness, binding, and tensile strength, were also measured. It was found that the tensile strength increases by henna loading up to 25% higher than the tidy resin. The thermal stability was investigated by thermogravimetric analysis (TGA) the loading of lawsone (henna) molecules into the PBZ matrix increases the thermal stability of the composite. UV stability was tested by the UV weathering accelerator to examine the possibility that henna can also act as an aging UV stabilizer. The effect of henna content on the corrosion resistance of composite coatings was tested using potentiostatic polarization and electrochemical spectroscopy. The presence of henna in the coating matrix enhances the protection efficiency of polybenzoxazine coats. Increasing henna concentration increases the protection efficiency of composites. The quantum chemical calculations for polybenzoxazine/henna composites have resulted that the highest corrosion inhibition efficiency, has the highest EHOMO and lowest ELUMO; which is in good agreement with results obtained from experiments.

Keywords: polybenzoxazine, corrosion, green chemistry, carbon steel

Procedia PDF Downloads 96
2217 Enhanced Performance of Perovskite Solar Cells by Modifying Interfacial Properties Using MoS2 Nanoflakes

Authors: Kusum Kumari, Ramesh Banoth, V. S. Reddy Channu

Abstract:

Organic-inorganic perovskite solar cells (PrSCs) have emerged as a promising solar photovoltaic technology in terms of realizing high power conversion efficiency (PCE). However, their limited lifetime and poor device stability limits their commercialization in future. In this regard, interface engineering of the electron transport layer (ETL) using 2D materials have been currently used owing to their high carrier mobility, high thermal stability and tunable work function, which in turn enormously impact the charge carrier dynamics. In this work, we report an easy and effective way of simultaneously enhancing the efficiency of PrSCs along with the long-term stability through interface engineering via the incorporation of 2D-Molybdenum disulfide (2D-MoS₂, few layered nanoflakes) in mesoporous-Titanium dioxide (mp-TiO₂)scaffold electron transport buffer layer, and using poly 3-hexytheophene (P3HT) as hole transport layers. The PSCs were fabricated in ambient air conditions in device configuration, FTO/c-TiO₂/mp-TiO₂:2D-MoS₂/CH3NH3PbI3/P3HT/Au, with an active area of 0.16 cm². The best device using c-TiO₂/mp-TiO₂:2D-MoS₂ (0.5wt.%) ETL exhibited a substantial increase in PCE ~13.04% as compared to PCE ~8.75% realized in reference device fabricated without incorporating MoS₂ in mp-TiO₂ buffer layer. The incorporation of MoS₂ nanoflakes in mp-TiO₂ ETL not only enhances the PCE to ~49% but also leads to better device stability in ambient air conditions without encapsulation (retaining PCE ~86% of its initial value up to 500 hrs), as compared to ETLs without MoS₂.

Keywords: perovskite solar cells, MoS₂, nanoflakes, electron transport layer

Procedia PDF Downloads 76