Search results for: academic learning stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12185

Search results for: academic learning stress

6185 The Effect of Foot Progression Angle on Human Lower Extremity

Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae

Abstract:

The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 318
6184 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 72
6183 Effects of Classroom Management Strategies on Students’ Well-Being at Secondary Level

Authors: Saba Latif

Abstract:

The study is about exploring the Impact of Classroom Management Techniques on students’ Well-being at the secondary level. The objectives of the study are to identify the classroom management practices of teachers and their impact on students’ achievement. All secondary schools of Lahore city are the population of study. The researcher randomly selected ten schools, and from these schools, two hundred students participated in this study. Data has been collected by using Classroom Management and Students’ Wellbeing questionnaire. Frequency analysis has been applied. The major findings of the study are calculated as follows: The teacher’s instructional activities affect classroom management. The secondary school students' seating arrangement can influence the learning-teaching process. Secondary school students strongly disagree with the statement that the large size of the class affects the teacher’s classroom management. The learning environment of the class helps students participate in question-and-answer sessions. All the activities of the teachers are in accordance with practices in the class. The discipline of the classroom helps the students to learn more. The role of the teacher is to guide, and it enhances the performance of the teacher. The teacher takes time on disciplinary rules and regulations of the classroom. The teacher appreciates them when they complete the given task. The teacher appreciates teamwork in the class.

Keywords: classroom management, strategies, wellbeing, practices

Procedia PDF Downloads 33
6182 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness

Authors: Marzieh Karimihaghighi, Carlos Castillo

Abstract:

This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.

Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism

Procedia PDF Downloads 135
6181 The Factors Affecting Pupil Psychological Well-Being in Mainstream Schools: A Systematic Review

Authors: Chantelle Francis, Karen McKenzie, Charlotte Emmerson

Abstract:

In the context of the rise in mental health difficulties amongst pupils, this review explores the factors that have been indicated as affecting psychological well-being in mainstream school contexts. Search terms relating to school-based psychological well-being were entered into five databases, and twenty-two studies were included in the review. The results suggested that pupil psychological well-being is affected by both direct and indirect factors. The former included a sense of belonging and inclusion, relationships with teachers, and academic attainment. The latter included family socioeconomic status, whole-school approaches, and individual differences factors, such as gender and Special Educational Needs. The implications for policymakers and practitioners are discussed.

Keywords: psychological wellbeing, mainstream schools, special educational needs, school-based wellbeing

Procedia PDF Downloads 101
6180 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 128
6179 Design Thinking and Project-Based Learning: Opportunities, Challenges, and Possibilities

Authors: Shoba Rathilal

Abstract:

High unemployment rates and a shortage of experienced and qualified employees appear to be a paradox that currently plagues most countries worldwide. In a developing country like South Africa, the rate of unemployment is reported to be approximately 35%, the highest recorded globally. At the same time, a countrywide deficit in experienced and qualified potential employees is reported in South Africa, which is causing fierce rivalry among firms. Employers have reported that graduates are very rarely able to meet the demands of the job as there are gaps in their knowledge and conceptual understanding and other 21st-century competencies, attributes, and dispositions required to successfully negotiate the multiple responsibilities of employees in organizations. In addition, the rates of unemployment and suitability of graduates appear to be skewed by race and social class, the continued effects of a legacy of inequitable educational access. Higher Education in the current technologically advanced and dynamic world needs to serve as an agent of transformation, aspiring to develop graduates to be creative, flexible, critical, and with entrepreneurial acumen. This requires that higher education curricula and pedagogy require a re-envisioning of our selection, sequencing, and pacing of the learning, teaching, and assessment. At a particular Higher education Institution in South Africa, Design Thinking and Project Based learning are being adopted as two approaches that aim to enhance the student experience through the provision of a “distinctive education” that brings together disciplinary knowledge, professional engagement, technology, innovation, and entrepreneurship. Using these methodologies forces the students to solve real-time applied problems using various forms of knowledge and finding innovative solutions that can result in new products and services. The intention is to promote the development of skills for self-directed learning, facilitate the development of self-awareness, and contribute to students being active partners in the application and production of knowledge. These approaches emphasize active and collaborative learning, teamwork, conflict resolution, and problem-solving through effective integration of theory and practice. In principle, both these approaches are extremely impactful. However, at the institution in this study, the implementation of the PBL and DT was not as “smooth” as anticipated. This presentation reports on the analysis of the implementation of these two approaches within higher education curricula at a particular university in South Africa. The study adopts a qualitative case study design. Data were generated through the use of surveys, evaluation feedback at workshops, and content analysis of project reports. Data were analyzed using document analysis, content, and thematic analysis. Initial analysis shows that the forces constraining the implementation of PBL and DT range from the capacity to engage with DT and PBL, both from staff and students, educational contextual realities of higher education institutions, administrative processes, and resources. At the same time, the implementation of DT and PBL was enabled through the allocation of strategic funding and capacity development workshops. These factors, however, could not achieve maximum impact. In addition, the presentation will include recommendations on how DT and PBL could be adapted for differing contexts will be explored.

Keywords: design thinking, project based learning, innovative higher education pedagogy, student and staff capacity development

Procedia PDF Downloads 58
6178 Reading Behavior of Undergraduate Students at Suan Sunandha Rajabhat University

Authors: Ratanavadee Takerngsukvatana

Abstract:

The purposes of this research were to study reading behavior of undergraduate students at Suan Sunandha Rajabhat University. A stratified random sample of 380 participants was collected. A Likert five-scale questionnaire was developed to collect data and to obtain students’ opinions regarding their reading behavior. The findings revealed that the majority of respondents read mainly for academic purpose. They preferred to read magazines. The majority of respondents read an average of 3-7 pages a day. The places to read were home and library. Buying with their own money and borrowing from the library were two main sources of books. The suggested activity to promote is planning the curriculum to suit students’ reading behavior.

Keywords: reading, reading behavior, undergraduate students, Suan Sunandha Rajabhat University

Procedia PDF Downloads 280
6177 Covid-19 Associated Stress and Coping Strategies

Authors: Bar Shapira-Youngster, Sima Amram-Vaknin, Yuliya Lipshits-Braziler

Abstract:

The study examined how 811 Israelis experienced and coped with the COVID-19 lockdown. Stress, uncertainty, and loss of control were reported as common emotional experiences. Two main difficulties were reported: Loneliness and health and emotional concerns. Frequent explanations for the virus's emergence were: scientific or faith reasoning. The most prevalent coping strategies were distraction activities and acceptance. Reducing the use of maladaptive coping strategies has important implications for mental health outcomes. Objectives: COVID-19 has been recognized as a collective, continuous traumatic stressor. The present study examined how individuals experienced, perceived, and coped with this traumatic event during the lockdown in Israel in April 2020. Method: 811 Israelis (71.3% were women; mean age 43.7, SD=13.3)completed an online semi-structured questionnaire consisting two sections: In the first section, participants were asked to report background information. In the second section, they were asked to answer 8 open-ended questions about their experience, perception, and coping with the covid-19 lockdown. Participation was voluntary, and anonymity was assured, they were not offered compensation of any kind. The data were subjected to qualitative content analysis that seeks to classify the participants` answers into an effective number of categories that represent similar meanings. Our content analysis of participants’ answers extended far beyond simple word counts; our objective was to try to identify recurrent categories that characterized participants’ responses to each question. We sought to ensure that the categories regarding the different questions are as mutually exclusive and exhaustive as possible. To ensure robust analysis, the data were initially analyzed by the first author, and a second opinion was then sought from research colleagues. Contribution: The present research expands our knowledge of individuals' experiences, perceptions, and coping mechanisms with continuous traumatic events. Reducing the use of maladaptive coping strategies has important implications for mental health outcomes.

Keywords: Covid-19, emotional distress, coping, continuous traumatic event

Procedia PDF Downloads 116
6176 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes

Authors: Sima Aznavi, Poria Fajri, Hanif Livani

Abstract:

Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.

Keywords: energy management, renewable energy sources, smart grid, smart home

Procedia PDF Downloads 225
6175 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir "monty" Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 21
6174 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 130
6173 Unfolding Simulations with the Use of Socratic Questioning Increases Critical Thinking in Nursing Students

Authors: Martha Hough RN

Abstract:

Background: New nursing graduates lack the critical thinking skills required to provide safe nursing care. Critical thinking is essential in providing safe, competent, and skillful nursing interventions. Educational institutions must provide a curriculum that improves nursing students' critical thinking abilities. In addition, the recent pandemic resulted in nursing students who previously received in-person clinical but now most clinical has been converted to remote learning, increasing the use of simulations. Unfolding medium and high-fidelity simulations and Socratic questioning are used in many simulations debriefing sessions. Methodology: Google Scholar was researched with the keywords: critical thinking of nursing students with unfolding simulation, which resulted in 22,000 articles; three were used. A second search was implemented with critical thinking of nursing students Socratic questioning, which resulted in two articles being used. Conclusion: Unfolding simulations increase nursing students' critical thinking, especially during the briefing (pre-briefing and debriefing) phases, where most learning occurs. In addition, the use of Socratic questions during the briefing phases motivates other questions, helps the student analyze and critique their thinking, and assists educators in probing students' thinking, which further increases critical thinking.

Keywords: briefing, critical thinking, Socratic thinking, unfolding simulations

Procedia PDF Downloads 164
6172 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals

Authors: Ibrahim Khan, Waqas Khalid

Abstract:

The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.

Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning

Procedia PDF Downloads 43
6171 Application of GeoGebra into Teaching and Learning of Linear and Quadratic Equations amongst Senior Secondary School Students in Fagge Local Government Area of Kano State, Nigeria

Authors: Musa Auwal Mamman, S. G. Isa

Abstract:

This study was carried out in order to investigate the effectiveness of GeoGebra software in teaching and learning of linear and quadratic equations amongst senior secondary school students in Fagge Local Government Area, Kano State–Nigeria. Five research items were raised in objectives, research questions and hypotheses respectively. A random sampling method was used in selecting 398 students from a population of 2098 of SS2 students. The experimental group was taught using the GeoGebra software while the control group was taught using the conventional teaching method. The instrument used for the study was the mathematics performance test (MPT) which was administered at the beginning and at the end of the study. The results of the study revealed that students taught with GeoGebra software (experimental group) performed better than students taught with traditional teaching method. The t- test was used to analyze the data obtained from the study.

Keywords: GeoGebra Software, mathematics performance, random sampling, mathematics teaching

Procedia PDF Downloads 232
6170 Teaching Synonyms for Non-Arabic Speakers

Authors: Loay Badran

Abstract:

This article on synonymy came into existence to meet the academic needs of students who specialize in this field. The article has two parts: the first part discusses the forms that authors of textbooks and dictionaries assumed when explaining a word as well as explaining the precision or lack of it thereof in delivering an understandable and clear meaning of using such forms. Meanwhile, the second part of this research article focuses on the application of synonymy and at taking into consideration the point of view of others who dismissed synonymy in its minute details, especially Alaskari in his book “Linguistic Differences” “Al Forouq Alloqhawiyyah”. The author determined that collecting the most commonly-used synonymous notions scattered in Alaskari’s book and compiling them in tables would be of great importance in easing lessons according to the Arabic Alphabet System meanwhile citing all that pertains to the corresponding scattered pages in “Linguistic Differences”.

Keywords: synonymy, semantics, camel, teaching, non-native

Procedia PDF Downloads 55
6169 Play in College: Shifting Perspectives and Creative Problem-Based Play

Authors: Agni Stylianou-Georgiou, Eliza Pitri

Abstract:

This study is a design narrative that discusses researchers’ new learning based on changes made in pedagogies and learning opportunities in the context of a Cognitive Psychology and an Art History undergraduate course. The purpose of this study was to investigate how to encourage creative problem-based play in tertiary education engaging instructors and student-teachers in designing educational games. Course instructors modified content to encourage flexible thinking during game design problem-solving. Qualitative analyses of data sources indicated that Thinking Birds’ questions could encourage flexible thinking as instructors engaged in creative problem-based play. However, student-teachers demonstrated weakness in adopting flexible thinking during game design problem solving. Further studies of student-teachers’ shifting perspectives during different instructional design tasks would provide insights for developing the Thinking Birds’ questions as tools for creative problem solving.

Keywords: creative problem-based play, educational games, flexible thinking, tertiary education

Procedia PDF Downloads 277
6168 Online Metacognitive Reading Strategies Use by Postgraduate Libyan EFL Students

Authors: Najwa Alsayed Omar

Abstract:

With the increasing popularity of the Internet, online reading has become an essential source for EFL readers. Using strategies to comprehend information on online reading texts play a crucial role in students’ academic success. Metacognitive reading strategies are effective factors that enhance EFL learners reading comprehension. This study aimed at exploring the use of online metacognitive reading strategies by postgraduate Libyan EFL students. Quantitative data was collected using the Survey of Online Reading Strategies (OSORS). The findings revealed that the participants were moderate users of metacognitive online reading strategies. Problem solving strategies were the most frequently reported used strategies, while support reading strategies were the least. The five most and least frequently reported strategies were identified. Based on the findings, some future research recommendations were presented.

Keywords: metacognitive strategies, online reading, online reading strategies, postgraduate students

Procedia PDF Downloads 302
6167 A Question of Ethics and Faith

Authors: Madhavi-Priya Singh, Liam Lowe, Farouk Arnaout, Ludmilla Pillay, Giordan Perez, Luke Mischker, Steve Costa

Abstract:

An Emergency Department consultant identified the failure of medical students to complete the task of clerking a patient in its entirety. As six medical students on our first clinical placement, we recognised our own failure and endeavoured to examine why this failure was consistent among all medical students that had been given this task, despite our best motivations as adult learner. Our aim is to understand and investigate the elements which impeded our ability to learn and perform as medical students in the clinical environment, with reference to the prescribed task. We also aim to generate a discussion around the delivery of medical education with potential solutions to these barriers. Six medical students gathered together to have a comprehensive reflective discussion to identify possible factors leading to the failure of the task. First, we thoroughly analysed the delivery of the instructions with reference to the literature to identify potential flaws. We then examined personal, social, ethical, and cultural factors which may have impacted our ability to complete the task in its entirety. Through collation of our shared experiences, with support from discussion in the field of medical education and ethics, we identified two major areas that impacted our ability to complete the set task. First, we experienced an ethical conflict where we believed the inconvenience and potential harm inflicted on patients did not justify the positive impact the patient interaction would have on our medical learning. Second, we identified a lack of confidence stemming from multiple factors, including the conflict between preclinical and clinical learning, perceptions of perfectionism in the culture of medicine, and the influence of upward social comparison. After discussions, we found that the various factors we identified exacerbated the fears and doubts we already had about our own abilities and that of the medical education system. This doubt led us to avoid completing certain aspects of the tasks that were prescribed and further reinforced our vulnerability and perceived incompetence. Exploration of philosophical theories identified the importance of the role of doubt in education. We propose the need for further discussion around incorporating both pedagogic and andragogic teaching styles in clinical medical education and the acceptance of doubt as a driver of our learning. Doubt will continue to permeate our thoughts and actions no matter what. The moral or psychological distress that arises from this is the key motivating factor for our avoidance of tasks. If we accept this doubt and education embraces this doubt, it will no longer linger in the shadows as a negative and restrictive emotion but fuel a brighter dialogue and positive learning experience, ultimately assisting us in achieving our full potential.

Keywords: medical education, clinical education, andragogy, pedagogy

Procedia PDF Downloads 107
6166 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 270
6165 Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances

Authors: Candida Petrogalli, Giovanni Incerti, Luigi Solazzi

Abstract:

This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.

Keywords: crane, dynamic model, overloading condition, vibration

Procedia PDF Downloads 555
6164 Nephrotoxicity and Hepatotoxicity Induced by Chronic Aluminium Exposure in Rats: Impact of Nutrients Combination versus Social Isolation and Protein Malnutrition

Authors: Azza A. Ali, Doaa M. Abd El-Latif, Amany M. Gad, Yasser M. A. Elnahas, Karema Abu-Elfotuh

Abstract:

Background: Exposure to Aluminium (Al) has been increased recently. It is found in food products, food additives, drinking water, cosmetics and medicines. Chronic consumption of Al causes oxidative stress and has been implicated in several chronic disorders. Liver is considered as the major site for detoxification while kidney is involved in the elimination of toxic substances and is a target organ of metal toxicity. Social isolation (SI) or protein malnutrition (PM) also causes oxidative stress and has negative impact on Al-induced nephrotoxicity as well as hepatotoxicity. Coenzyme Q10 (CoQ10) is a powerful intracellular antioxidant with mitochondrial membrane stabilizing ability while wheat grass is a natural product with antioxidant, anti-inflammatory and different protective activities, cocoa is also potent antioxidants and can protect against many diseases. They provide different degrees of protection from the impact of oxidative stress. Objective: To study the impact of social isolation together with Protein malnutrition on nephro- and hepato-toxicity induced by chronic Al exposure in rats as well as to investigate the postulated protection using a combination of Co Q10, wheat grass and cocoa. Methods: Eight groups of rats were used; four served as protected groups and four as un-protected. Each of them received daily for five weeks AlCl3 (70 mg/kg, IP) for Al-toxicity model groups except one group served as control. Al-toxicity model groups were divided to Al-toxicity alone, SI- associated PM (10% casein diet) and Al- associated SI&PM groups. Protection was induced by oral co-administration of CoQ10 (200mg/kg), wheat grass (100mg/kg) and cocoa powder (24mg/kg) combination together with Al. Biochemical changes in total bilirubin, lipids, cholesterol, triglycerides, glucose, proteins, creatinine and urea as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate deshydrogenase (LDH) were measured in serum of all groups. Specimens of kidney and liver were used for assessment of oxidative parameters (MDA, SOD, TAC, NO), inflammatory mediators (TNF-α, IL-6β, nuclear factor kappa B (NF-κB), Caspase-3) and DNA fragmentation in addition to evaluation of histopathological changes. Results: SI together with PM severely enhanced nephro- and hepato-toxicity induced by chronic Al exposure. Co Q10, wheat grass and cocoa combination showed clear protection against hazards of Al exposure either alone or when associated with SI&PM. Their protection were indicated by the significant decrease in Al-induced elevations in total bilirubin, lipids, cholesterol, triglycerides, glucose, creatinine and urea levels as well as ALT, AST, ALP, LDH. Liver and kidney of the treated groups also showed significant decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation, together with significant increase in total proteins, SOD and TAC. Biochemical results were confirmed by the histopathological examinations. Conclusion: SI together with PM represents a risk factor in enhancing nephro- and hepato-toxicity induced by Al in rats. CoQ10, wheat grass and cocoa combination provide clear protection against nephro- and hepatotoxicity as well as the consequent degenerations induced by chronic Al-exposure even when associated with the risk of SI together with PM.

Keywords: aluminum, nephrotoxicity, hepatotoxicity, isolation and protein malnutrition, coenzyme Q10, wheatgrass, cocoa, nutrients combinations

Procedia PDF Downloads 236
6163 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 94
6162 Failure Mechanism of Slip-Critical Connections on Curved Surface

Authors: Bae Doobyong, Yoo Jaejun, Park Ilgyu, Choi Seowon, Oh Chang Kook

Abstract:

Variation of slip coefficient in slip-critical connections of curved plates. This paper presents the results of analytical investigations of slip coefficients in slip-critical bolted connections of curved plates. It may depend on the contact stress distribution at interface and the flexibility of spliced plate. Non-linear FEM analyses have been made to simulate the behavior of bolted connections of curved plates with various radiuses of curvature and thicknesses.

Keywords: slip coefficient, curved plates, slip-critical bolted connection, radius of curvature

Procedia PDF Downloads 499
6161 Planning Fore Stress II: Study on Resiliency of New Architectural Patterns in Urban Scale

Authors: Amir Shouri, Fereshteh Tabe

Abstract:

Master planning and urban infrastructure’s thoughtful and sequential design strategies will play the major role in reducing the damages of natural disasters, war and or social/population related conflicts for cities. Defensive strategies have been revised during the history of mankind after having damages from natural depressions, war experiences and terrorist attacks on cities. Lessons learnt from Earthquakes, from 2 world war casualties in 20th century and terrorist activities of all times. Particularly, after Hurricane Sandy of New York in 2012 and September 11th attack on New York’s World Trade Centre (WTC) in 21st century, there have been series of serious collaborations between law making authorities, urban planners and architects and defence related organizations to firstly, getting prepared and/or prevent such activities and secondly, reduce the human loss and economic damages to minimum. This study will work on developing a model of planning for New York City, where its citizens will get minimum impacts in threat-full time with minimum economic damages to the city after the stress is passed. The main discussion in this proposal will focus on pre-hazard, hazard-time and post-hazard transformative policies and strategies that will reduce the “Life casualties” and will ease “Economic Recovery” in post-hazard conditions. This proposal is going to scrutinize that one of the key solutions in this path might be focusing on all overlaying possibilities on architectural platforms of three fundamental infrastructures, the transportation, the power related sources and defensive abilities on a dynamic-transformative framework that will provide maximum safety, high level of flexibility and fastest action-reaction opportunities in stressful periods of time. “Planning Fore Stress” is going to be done in an analytical, qualitative and quantitative work frame, where it will study cases from all over the world. Technology, Organic Design, Materiality, Urban forms, city politics and sustainability will be discussed in deferent cases in international scale. From the modern strategies of Copenhagen for living friendly with nature to traditional approaches of Indonesian old urban planning patterns, the “Iron Dome” of Israel to “Tunnels” in Gaza, from “Ultra-high-performance quartz-infused concrete” of Iran to peaceful and nature-friendly strategies of Switzerland, from “Urban Geopolitics” in cities, war and terrorism to “Design of Sustainable Cities” in the world, will all be studied with references and detailed look to analysis of each case in order to propose the most resourceful, practical and realistic solutions to questions on “New City Divisions”, “New City Planning and social activities” and “New Strategic Architecture for Safe Cities”. This study is a developed version of a proposal that was announced as winner at MoMA in 2013 in call for ideas for Rockaway after Sandy Hurricane took place.

Keywords: urban scale, city safety, natural disaster, war and terrorism, city divisions, architecture for safe cities

Procedia PDF Downloads 461
6160 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 68
6159 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction

Authors: Talal Alsulaiman, Khaldoun Khashanah

Abstract:

In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.

Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks

Procedia PDF Downloads 335
6158 Increase of Quinoa Tolerance to High Salinity Involves Agrophysiological Parameters Improvement by Soil Amendments

Authors: Bourhim Mohammad Redouane, Cheto Said, Qaddoury Ahmed, Hirich Abdelaziz, Ghoulam Cherki

Abstract:

Several abiotic stresses cause disruptions in the properties of agricultural soils and hence their loss worldwide. Among these abiotic stresses, Salinity to which most crops were exposed caused an important reduction in their productivity. Therefore, in order to deal with this challenging problem, we rely on cultivating alternative plants that can tolerate the adverse salinity stress, such as quinoa (Chenopodium quinoa). Although even it was qualified as tolerant to Salinity, the quinoa’s performance could be negatively affected under high salinity levels. Thus, our study aims to assess the effects of the application of soil amendments to improve quinoa tolerance levels under high Salinity. Thus, three quinoa varieties (Puno, ICBA-Q5, and Titicaca) were grown on agricultural soil under a greenhouse with five amendments; Biochar “Bc,” compost “Cp,” black soldier insect frass “If,” cow manure “Fb” and phosphogypsum “Pg.” Two controls without amendment were adopted consisting of the salinized negative one “T(-)” and the non-salinized positive one “T(+).” After 20 days from sowing, the plants were irrigated with a saline solution of 16 dS/m prepared with NaCl for a period of 60 days. Then plant tolerance was assessed based on agrophysiological parameters. The results showed that salinity stress negatively affected the quinoa plants for all the analyzed agrophysiological parameters in the three varieties compared to their corresponding controls “T(+).” However, most of these parameters were significantly enhanced by the application of soil amendments compared to their negative controls “T(-).” For instance, the biomass was improved by 91.8% and 69.4%, respectively, for Puno and Titicaca varieties amended with “Bc.” The total nitrogen amount was increased by 220% for Titicaca and ICBA-Q5 plants cultivated in the soil amended with “If.” One of the most important improvements was noted for potassium content in Titicaca amended with “Pg,” which was six times higher compared to the negative control. Besides, the plants of Puno amended with “Cp” showed an improvement of 75.9% for the stomatal conductance and 58.5% for nitrate reductase activity. Nevertheless, the pronounced varietal difference was registered between Puno and Titicaca, presenting the highest performances mainly for the soil amended with “If,” “Bc,” and “Pg.”

Keywords: chenopodium quinoa, salinity, soil amendments, growth, nutrients, nitrate reductase

Procedia PDF Downloads 55
6157 Education for Sustainability Using PBL on an Engineering Course at the National University of Colombia

Authors: Hernán G. Cortés-Mora, José I. Péna-Reyes, Alfonso Herrera-Jiménez

Abstract:

This article describes the implementation experience of Project-Based Learning (PBL) in an engineering course of the Universidad Nacional de Colombia, with the aim of strengthening student skills necessary for the exercise of their profession under a sustainability framework. Firstly, we present a literature review on the education for sustainability field, emphasizing the skills and knowledge areas required for its development, as well as the commitment of the Faculty of Engineering of the Universidad Nacional de Colombia, and other engineering faculties of the country, regarding education for sustainability. This article covers the general aspects of the course, describes how students team were formed, and how their experience was during the first semester of 2017. During this period two groups of students decided to develop their course project aiming to solve a problem regarding a Non-Governmental Organization (NGO) that works with head-of-household mothers in a low-income neighborhood in Bogota (Colombia). Subsequently, we show how sustainability is involved in the course, how tools are provided to students, and how activities are developed as to strengthen their abilities, which allows them to incorporate sustainability in their projects while also working on the methodology used to develop said projects. Finally, we introduce the results obtained by the students who sent the prototypes of their projects to the community they were working on and the conclusions reached by them regarding the course experience.

Keywords: sustainability, project-based learning, engineering education, higher education for sustainability

Procedia PDF Downloads 334
6156 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 81