Search results for: seashore degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1696

Search results for: seashore degradation

1126 The Effect of Filter Design and Face Velocity on Air Filter Performance

Authors: Iyad Al-Attar

Abstract:

Air filters installed in HVAC equipment and gas turbine for power generation confront several atmospheric contaminants with various concentrations while operating in different environments (tropical, coastal, hot). This leads to engine performance degradation, as contaminants are capable of deteriorating components and fouling compressor assembly. Compressor fouling is responsible for 70 to 85% of gas turbine performance degradation leading to reduction in power output and availability and an increase in the heat rate and fuel consumption. Therefore, filter design must take into account face velocities, pleat count and its corresponding surface area; to verify filter performance characteristics (Efficiency and Pressure Drop). The experimental work undertaken in the current study examined two groups of four filters with different pleating densities were investigated for the initial pressure drop response and fractional efficiencies. The pleating densities used for this study is 28, 30, 32 and 34 pleats per 100mm for each pleated panel and measured for ten different flow rates ranging from 500 to 5000 m3/h with increment of 500m3/h. This experimental work of the current work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase in face velocity and pleat density. The reasons that led to surface area losses of filtration media are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. It is evident from entire array of experiments that as the particle size increases, the efficiency decreases until the MPPS is reached. Beyond the MPPS, the efficiency increases with increase in particle size. The MPPS shifts to a smaller particle size as the face velocity increases, while the pleating density and orientation did not have a pronounced effect on the MPPS. Throughout the study, an optimal pleat count which satisfies initial pressure drop and efficiency requirements may not have necessarily existed. The work has also suggested that a valid comparison of the pleat densities should be based on the effective surface area that participates in the filtration action and not the total surface area the pleat density provides.

Keywords: air filters, fractional efficiency, gas cleaning, glass fibre, HEPA filter, permeability, pressure drop

Procedia PDF Downloads 123
1125 Photocatalytic Removal of Methylene Blue Dye: Fabrication and Optimization of Adsorbant Material and a Photocatlyst in Unilayer and Bilayer System

Authors: M. Z. Mahmood, S. Ismail

Abstract:

A reusable immobilized unilayer thin coating of adsorbent material bentonite and photocatalyst (TiO₂) was fabricated on the glass beaker to remove aqueous methylene blue solution. The dye removal efficiency of photocatalyst was much lower with pure titanium dioxide. In the preliminary experiments, different compositions of TiO₂ – bentonite were tested on unilayer and bilayer system, and it was observed that 0.50:0.50 ratios are best for maximum photocatalytic degradation of methylene blue in aqueous medium when applied on unilayer coating system.

Keywords: adsorption, photocatalyst, bentonite, TiO₂

Procedia PDF Downloads 88
1124 Monitoring and Prediction of Intra-Crosstalk in All-Optical Network

Authors: Ahmed Jedidi, Mesfer Mohammed Alshamrani, Alwi Mohammad A. Bamhdi

Abstract:

Optical performance monitoring and optical network management are essential in building a reliable, high-capacity, and service-differentiation enabled all-optical network. One of the serious problems in this network is the fact that optical crosstalk is additive, and thus the aggregate effect of crosstalk over a whole AON may be more nefarious than a single point of crosstalk. As results, we note a huge degradation of the Quality of Service (QoS) in our network. For that, it is necessary to identify and monitor the impairments in whole network. In this way, this paper presents new system to identify and monitor crosstalk in AONs in real-time fashion. particular, it proposes a new technique to manage intra-crosstalk in objective to relax QoS of the network.

Keywords: all-optical networks, optical crosstalk, optical cross-connect, crosstalk, monitoring crosstalk

Procedia PDF Downloads 434
1123 The Composting Process from a Waste Management Method to a Remediation Procedure

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, F. Gorini, I. Rosellini, B. Pezzarossa

Abstract:

Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils.

Keywords: agriculture, biopile, compost, soil clean-up, waste recycling

Procedia PDF Downloads 297
1122 Bearing Condition Monitoring with Acoustic Emission Techniques

Authors: Faisal AlShammari, Abdulmajid Addali

Abstract:

Monitoring the conditions of rotating machinery as bearing is important in order to improve its stability of works. Acoustic emission (AE) and vibration analysis are some of the most accomplished techniques used for this purpose. Acoustic emission has the ability to detect the initial phase of component degradation. Moreover, it has been observed that the success of vibration analysis does not take place below 100 rpm rotational speed. This because the energy generated below 100 rpm rotational speed is not detectable using conventional vibration. From this pint, this paper has presented a focused review of using acoustic emission techniques for monitoring bearings condition.

Keywords: condition monitoring, stress wave analysis, low-speed bearings, bearing defect diagnosis

Procedia PDF Downloads 295
1121 Performance of LTE Multicast Systems in the Presence of the Colored Noise Jamming

Authors: S. Malisuwan, J. Sivaraks, N. Madan, N. Suriyakrai

Abstract:

The ever going evolution of advanced wireless technologies makes it financially impossible for military operations to completely manufacture their own equipment. Therefore, Commercial-Off-The-Shelf (COTS) and Modified-Off-The-Shelf (MOTS) are being considered in military mission with low-cost modifications. In this paper, we focus on the LTE multicast systems for military communication systems under tactical environments with jamming condition. We examine the influence of the colored noise jamming on the performance of the LTE multicast systems in terms of the average throughput. The simulation results demonstrate the degradation of the average throughput for different dynamic ranges of the colored noise jamming versus average SNR.

Keywords: performance, LTE, multicast, jamming, throughput

Procedia PDF Downloads 402
1120 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 51
1119 Applications of Space Technology in Flood Risk Mapping in Parts of Haryana State, India

Authors: B. S. Chaudhary

Abstract:

The severity and frequencies of different disasters on the globe is increasing in recent years. India is also facing the disasters in the form of drought, cyclone, earthquake, landslides, and floods. One of the major causes of disasters in northern India is flood. There are great losses and extensive damage to the agricultural crops, property, human, and animal life. This is causing environmental imbalances at places. The annual global figures for losses due to floods run into over 2 billion dollar. India is a vast country with wide variations in climate and topography. Due to widespread and heavy rainfall during the monsoon months, floods of varying magnitude occur all over the country during June to September. The magnitude depends upon the intensity of rainfall, its duration and also the ground conditions at the time of rainfall. Haryana, one of the agriculturally dominated northern states is also suffering from a number of disasters such as floods, desertification, soil erosion, land degradation etc. Earthquakes are also frequently occurring but of small magnitude so are not causing much concern and damage. Most of the damage in Haryana is due to floods. Floods in Haryana have occurred in 1978, 1988, 1993, 1995, 1998, and 2010 to mention a few. The present paper deals with the Remote Sensing and GIS applications in preparing flood risk maps in parts of Haryana State India. The satellite data of various years have been used for mapping of flood affected areas. The Flooded areas have been interpreted both visually and digitally and two classes-flooded and receded water/ wet areas have been identified for each year. These have been analyzed in GIS environment to prepare the risk maps. This shows the areas of high, moderate and low risk depending on the frequency of flood witness. The floods leave a trail of suffering in the form of unhygienic conditions due to improper sanitation, water logging, filth littered in the area, degradation of materials and unsafe drinking water making the people prone to many type diseases in short and long run. Attempts have also been made to enumerate the causes of floods. The suggestions are given for mitigating the fury of floods and proper management issues related to evacuation and safe places nearby.

Keywords: flood mapping, GIS, Haryana, India, remote sensing, space technology

Procedia PDF Downloads 193
1118 Molecular Characterization of Two Thermoplastic Biopolymer-Degrading Fungi Utilizing rRNA-Based Technology

Authors: Nuha Mansour Alhazmi, Magda Mohamed Aly, Fardus M. Bokhari, Ahmed Bahieldin, Sherif Edris

Abstract:

Out of 30 fungal isolates, 2 new isolates were proven to degrade poly-β-hydroxybutyrate (PHB). Enzyme assay for these isolates indicated the optimal environmental conditions required for depolymerase enzyme to induce the highest level of biopolymer degradation. The two isolates were basically characterized at the morphological level as Trichoderma asperellum (isolate S1), and Aspergillus fumigates (isolate S2) using standard approaches. The aim of the present study was to characterize these two isolates at the molecular level based on the highly diverged rRNA gene(s). Within this gene, two domains of the ribosome large subunit (LSU) namely internal transcribed spacer (ITS) and 26S were utilized in the analysis. The first domain comprises the ITS1/5.8S/ITS2 regions ( > 500 bp), while the second domain comprises the D1/D2/D3 regions ( > 1200 bp). Sanger sequencing was conducted at Macrogen (Inc.) for the two isolates using primers ITS1/ITS4 for the first domain, while primers LROR/LR7 for the second domain. Sizes of the first domain ranged between 594-602 bp for S1 isolate and 581-594 bp for S2 isolate, while those of the second domain ranged between 1228-1238 bp for S1 isolate and 1156-1291 for S2 isolate. BLAST analysis indicated 99% identities of the first domain of S1 isolate with T. asperellum isolates XP22 (ID: KX664456.1), CTCCSJ-G-HB40564 (ID: KY750349.1), CTCCSJ-F-ZY40590 (ID: KY750362.1) and TV (ID: KU341015.1). BLAST of the first domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other T. asperellum and A. fumigatus isolates and strains showed high level of identities with S1 and S2 isolates, respectively, based on the diversity of the first domain. BLAST of the second domain of S1 isolate indicated 99 and 100% identities with only two strains of T. asperellum namely TR 3 (ID: HM466685.1) and G (ID: KF723005.1), respectively. However, other T. species (ex., atroviride, hamatum, deliquescens, harzianum, etc.) also showed high level of identities. BLAST of the second domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other A. fumigatus isolates and strains showed high level of identities with S2 isolate. Overall, the results of molecular characterization based on rRNA diversity for the two isolates of T. asperellum and A. fumigatus matched those obtained by morphological characterization. In addition, ITS domain proved to be more sensitive than 26S domain in diversity profiling of fungi at the species level.

Keywords: Aspergillus fumigates, Trichoderma asperellum, PHB, degradation, BLAST, ITS, 26S, rRNA

Procedia PDF Downloads 141
1117 Coupling of Reticular and Fuzzy Set Modelling in the Analysis of the Action Chains from Socio-Ecosystem, Case of the Renewable Natural Resources Management in Madagascar

Authors: Thierry Ganomanana, Dominique Hervé, Solo Randriamahaleo

Abstract:

Management of Malagasy renewable natural re-sources allows, in the case of forest, the mobilization of several actors with norms and/or territory. The interaction in this socio-ecosystem is represented by a graph of two different relationships in which most of action chains, from individual activities under the continuous of forest dynamic and discrete interventions by institutional, are also studied. The fuzzy set theory is adapted to graduate the elements of the set Illegal Activities in the space of sanction’s institution by his severity and in the space of degradation of forest by his extent.

Keywords: fuzzy set, graph, institution, renewable resource, system

Procedia PDF Downloads 72
1116 Reduced Complexity Iterative Solution For I/Q Imbalance Problem in DVB-T2 Systems

Authors: Karim S. Hassan, Hisham M. Hamed, Yassmine A. Fahmy, Ahmed F. Shalash

Abstract:

The mismatch between in-phase and quadrature signals in Orthogonal frequency division multiplexing (OFDM) systems, such as DVB-T2, results in a severe degradation in performance. Several general solutions have been proposed in the past, but these are largely computationally intensive, leading to complex implementations. In this paper, we propose a relatively simple iterative solution, which provides good results in relatively few iterations, using fixed precision arithmetic. An additional advantage is that complex digital blocks, such as dividers and square root, are not required. Thus, the proposed solution may be implemented in relatively simple hardware.

Keywords: OFDM, DVB-T2, I/Q imbalance, I/Q mismatch, iterative method, fixed point, reduced complexity

Procedia PDF Downloads 518
1115 Establishing a Sustainable Construction Industry: Review of Barriers That Inhibit Adoption of Lean Construction in Lesotho

Authors: Tsepiso Mofolo, Luna Bergh

Abstract:

The Lesotho construction industry fails to embrace environmental practices, which has then lead to excessive consumption of resources, land degradation, air and water pollution, loss of habitats, and high energy usage. The industry is highly inefficient, and this undermines its capability to yield the optimum contribution to social, economic and environmental developments. Sustainable construction is, therefore, imperative to ensure the cultivation of benefits from all these intrinsic themes of sustainable development. The development of a sustainable construction industry requires a holistic approach that takes into consideration the interaction between Lean Construction principles, socio-economic and environmental policies, technological advancement and the principles of construction or project management. Sustainable construction is a cutting-edge phenomenon, forming a component of a subjectively defined concept called sustainable development. Sustainable development can be defined in terms of attitudes and judgments to assist in ensuring long-term environmental, social and economic growth in society. The key concept of sustainable construction is Lean Construction. Lean Construction emanates from the principles of the Toyota Production System (TPS), namely the application and adaptation of the fundamental concepts and principles that focus on waste reduction, the increase in value to the customer, and continuous improvement. The focus is on the reduction of socio-economic waste, and protestation of environmental degradation by reducing carbon dioxide emission footprint. Lean principles require a fundamental change in the behaviour and attitudes of the parties involved in order to overcome barriers to cooperation. Prevalent barriers to adoption of Lean Construction in Lesotho are mainly structural - such as unavailability of financing, corruption, operational inefficiency or wastage, lack of skills and training and inefficient construction legislation and political interferences. The consequential effects of these problems trigger down to quality, cost and time of the project - which then result in an escalation of operational costs due to the cost of rework or material wastage. Factor and correlation analysis of these barriers indicate that they are highly correlated, which then poses a detrimental potential to the country’s welfare, environment and construction safety. It is, therefore, critical for Lesotho’s construction industry to develop a robust governance through bureaucracy reforms and stringent law enforcement.

Keywords: construction industry, sustainable development, sustainable construction industry, lean construction, barriers to sustainable construction

Procedia PDF Downloads 260
1114 Key Roles of the N-Type Oxide Layer in Hybrid Perovskite Solar Cells

Authors: Thierry Pauporté

Abstract:

Wide bandgap n-type oxide layers (TiO2, SnO2, ZnO etc.) play key roles in perovskite solar cells. They act as electron transport layers, and they permit the charge separation. They are also the substrate for the preparation of perovskite in the direct architecture. Therefore, they have a strong influence on the perovskite loading, its crystallinity and they can induce a degradation phenomenon upon annealing. The interface between the oxide and the perovskite is important, and the quality of this heterointerface must be optimized to limit the recombination of charges phenomena and performance losses. One can also play on the oxide and use two oxide contact layers for improving the device stability and durability. These aspects will be developed and illustrated on the basis of recent results obtained at Chimie-ParisTech.

Keywords: oxide, hybrid perovskite, solar cells, impedance

Procedia PDF Downloads 297
1113 Study of the Toughening by Crack Bridging in Mullite Alumina Zirconia Ceramics

Authors: F. Gheldane, S. Bouras

Abstract:

Crack propagation behaviour of alumina mullite zirconia ceramic is investigated under monotonic and cyclic loading by means SENB bending method. This material show R-curve effects, i.e. an increase in crack growth resistance with increasing crack depth. The morphological study showed that the resistance of the crack propagation is mainly connected to the crack bridging. The value of bridging stress is in good agreement with the literature. Furthermore, cyclic-loading fatigue is caused by a decrease in the stress-shielding effect, due to degradation of bridging sites under cyclic loading.

Keywords: alumina mullite zirconia, R-curve, bridging, toughening, crack

Procedia PDF Downloads 510
1112 Experimental Study of Local Scour Depth around Cylindrical Bridge Pier

Authors: Mohammed T. Shukri

Abstract:

The failure of bridges due to excessive local scour during floods poses a challenging problem to hydraulic engineers. The failure of bridges piers is due to many reasons such as localized scour combined with general riverbed degradation. In this paper, we try to estimate the temporal variation of scour depth at nonuniform cylindrical bridge pier, by experimental work conducted in hydraulic laboratories of Gaziantep University Civil Engineering Department on a flume having dimensions of 8.3 m length, 0.8 m width and 0.9 m depth. The experiments will be carried on 20 cm depth of sediment layer having d50=0.4 mm. Three bridge pier shapes having different scaled models will be constructed in a 1.5m of test section in the channel.

Keywords: scour, local scour, bridge piers, scour depth

Procedia PDF Downloads 243
1111 Legacy of Islamic Hadith and Biodiversity

Authors: Mohsen Nouraei, M. Amouei

Abstract:

Islamic studies are considered in both the Quran and Hadith. Hadith is defined as a set of reports that narrated the words, and behaviors, of infallible persons such as the holy Prophet (pbuh) or the Infallible Imams (as). The issue of biodiversity which is the one of the most important environmental aspects is considered in the field of Hadith. The present paper has investigated biodiversity on the basis of descriptive-analytical methods and with the approach of library-documentary. The household of the Prophet (as) have referred biodiversity that were included diversity of animals, plants, climate etc. In addition to, they also have emphasized on the human need to keep diversity and no damage. It should be noted that they have expressed the rights of the animals and plants for correct using of human, so that human can use these rights in conservation of diversity and their generation.

Keywords: biodiversity, conservation of biodiversity, degradation of biodiversity, extinction of biodiversity

Procedia PDF Downloads 445
1110 Formulation and Characterization of Antimicrobial Herbal Mouthwash from Some Herbal Extracts for Treatment of Periodontal Diseases

Authors: Reenu Yadav, Abhay Asthana, S. K. Yadav

Abstract:

Purpose: The aim of the present work was to develop an oral gel for brushing with an antimicrobial activity which will cure/protect from various periodontal diseases such as periodontitis, gingivitis, and pyorrhea. Methods: Plant materials procured from local suppliers, extracted and standardized. Screening of antimicrobial activity was carried out with the help of disk diffusion method. The gel was formulated by dried extracts of Beautea monosperma and Cordia obliquus. Gels were evaluated on various parameters and standardization of the formulation was performed. The release of drugs was studied in pH 6.8 using a mastication device.Total phenolic and flavonoid contents were estimated by folin-Ciocalteu and aluminium chloride method, and stability studies were performed (40°C and RH 75% ± 5% for 90 days) to assess the effect of temperature and humidity on the concentration of phenolic and flavonoid contents. The results of accelerated stability conditions were compared with that of samples kept at controlled conditions (RT). The control samples were kept at room temperature (25°C, 35% RH for 180 days). Results: Results are encouraging; extracts possess significant antimicrobial activity at very low concentration (15µg/disc, 20µg/disc and 15 µg/ disc) on oral pathogenic bacteria. The formulation has optimal characteristics, as well as has a pleasant appearance, fragrance, texture, and taste, is highly acceptable by the volunteers. The diffusion coefficient values ranged from 0.6655 to 0.9164. Since the R values of korsmayer papas were close to 1, Drug release from formulation follows matrix diffusion kinetics. Hence, diffusion was the mechanism of the drug release. Formulation follows non-Fickian transport mechanism. Most Formulations released 50 % of their contents within 25-30 minutes. Results obtained from the accelerated stability studies are indicative of a slight reduction in flavonoids and phenolic contents with time on long time storage. When measured degradation under ambient conditions, degradation was significantly lower than in accelerated stability study. Conclusion: Plant extracts possess compounds with antimicrobial properties can be used as. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations oral gel including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.

Keywords: herbal gel, dental care, ambient conditions, commercial scale

Procedia PDF Downloads 425
1109 Relationship between Legacy of Islamic Hadith and Biodiversity

Authors: Mohsen Nouraei, Maryam Amouei

Abstract:

Islamic studies are considered in both the Quran and Hadith. Hadith is defined as a set of reports that narrated the words and behaviors of infallible persons such as the holy Prophet (pbuh) or the Infallible Imams (as). The issue of biodiversity which is the one of the most important environmental aspects is considered in the field of Hadith. The present paper has investigated biodiversity on the basis of descriptive-analytical methods and with the approach of library-documentary. The household of the Prophet (as) have referred biodiversity that were included diversity of animals, plants, climate etc. In addition, they also have emphasized on the human need to keep diversity and no damage. It should be noted that they have expressed the rights of the animals and plants for correct using of human, so that human can use these rights in conservation of diversity and their generation.

Keywords: biodiversity, conservation of biodiversity, degradation of biodiversity, extinction of biodiversity

Procedia PDF Downloads 432
1108 Wireless Battery Charger with Adaptive Rapid-Charging Algorithm

Authors: Byoung-Hee Lee

Abstract:

Wireless battery charger with adaptive rapid charging algorithm is proposed. The proposed wireless charger adopts voltage regulation technique to reduce the number of power conversion steps. Moreover, based on battery models, an adaptive rapid charging algorithm for Li-ion batteries is obtained. Rapid-charging performance with the proposed wireless battery charger and the proposed rapid charging algorithm has been experimentally verified to show more than 70% charging time reduction compared to conventional constant-current constant-voltage (CC-CV) charging without the degradation of battery lifetime.

Keywords: wireless, battery charger, adaptive, rapid-charging

Procedia PDF Downloads 347
1107 Area Exclosure as a Government Strategy to Restore Woody Plant Species Diversity: Case Study in Southern Ethiopia

Authors: Tsegaw Abebe, Temesgen Abebe

Abstract:

Land degradation is one of a serious environmental challenge in Ethiopia and is one of the major underlying causes for declining agricultural productivity. The Ethiopia government realized the significance of environmental restoration specifically on deforested and degraded land after the 1973 and 1984/85 major famines that struck the country. Among the various conservation strategies, the establishment of area exclosures have been regarded as an effective response to halt and reverse the problems of land degradation. There are limited studies in Ethiopia dealing how the conversion of free grazing lands and degraded lands by closures increase biomass accumulation. However, these studies are not sufficient to conclude about the strength of area closures to restore degraded vegetations at the diverse agro-ecological condition. The overall objective of this study was, therefore, to assess and evaluate the usefulness of area closure technique in enhancing rehabilitation of degraded ecosystem and thereby increase the natural capital in the study site (southern Ethiopia). Woody plant species were collected from area exclosure for eight year and adjacent degraded land with similar landscape positions using systematic sampling plot design technique. Woody species diversity was determined by Shannon diversity. Comparative assessment result of woody plant species analysis showed that the density of woody species in the exclosure and degraded site were 778 and 222 individuals per hectare, respectively. A total of 16 woody species, representing 12 families were recorded in the study site. Out of the 12 families, all were recorded in the exclosure while 5 were recorded in the degraded site. Out of the 16 species, 15 were recorded in the exclosure while six were in the degraded site. A total of 10 species were recorded in the exclosure, which were absent in the degraded site. Similarly, one species was recorded in the degraded site which was not present in the exclosure. The results showed that protecting of degraded site from human and animal disturbances promotes woody plant species regenerations and productivity Apart from increasing woody plant species, the local communities have benefited from the exclosure in the form of both products (grass harvesting) and services (ecological). Due to this reason the local communities have positive attitudes and contribute a lot for the success of enclosures in the study site. The present study clearly showed that area closure interventions should be oriented towards managing and improving the productivity of the degraded land, in such a way that both the need for conservation of biodiversity and environmental sustainability, and the demands of the local people for biomass resources can be achieved.

Keywords: degraded land, exclosure, land restoration, woody vegetation

Procedia PDF Downloads 399
1106 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering

Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris

Abstract:

Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility

Keywords: biomaterials, nanocomposites, scaffolds, tissue engineering

Procedia PDF Downloads 294
1105 Spatial and Temporal Analysis of Forest Cover Change with Special Reference to Anthropogenic Activities in Kullu Valley, North-Western Indian Himalayan Region

Authors: Krisala Joshi, Sayanta Ghosh, Renu Lata, Jagdish C. Kuniyal

Abstract:

Throughout the world, monitoring and estimating the changing pattern of forests across diverse landscapes through remote sensing is instrumental in understanding the interactions of human activities and the ecological environment with the changing climate. Forest change detection using satellite imageries has emerged as an important means to gather information on a regional scale. Kullu valley in Himachal Pradesh, India is situated in a transitional zone between the lesser and the greater Himalayas. Thus, it presents a typical rugged mountainous terrain with moderate to high altitude which varies from 1200 meters to over 6000 meters. Due to changes in agricultural cropping patterns, urbanization, industrialization, hydropower generation, climate change, tourism, and anthropogenic forest fire, it has undergone a tremendous transformation in forest cover in the past three decades. The loss and degradation of forest cover results in soil erosion, loss of biodiversity including damage to wildlife habitats, and degradation of watershed areas, and deterioration of the overall quality of nature and life. The supervised classification of LANDSAT satellite data was performed to assess the changes in forest cover in Kullu valley over the years 2000 to 2020. Normalized Burn Ratio (NBR) was calculated to discriminate between burned and unburned areas of the forest. Our study reveals that in Kullu valley, the increasing number of forest fire incidents specifically, those due to anthropogenic activities has been on a rise, each subsequent year. The main objective of the present study is, therefore, to estimate the change in the forest cover of Kullu valley and to address the various social aspects responsible for the anthropogenic forest fires. Also, to assess its impact on the significant changes in the regional climatic factors, specifically, temperature, humidity, and precipitation over three decades, with the help of satellite imageries and ground data. The main outcome of the paper, we believe, will be helpful for the administration for making a quantitative assessment of the forest cover area changes due to anthropogenic activities and devising long-term measures for creating awareness among the local people of the area.

Keywords: Anthropogenic Activities, Forest Change Detection, Normalized Burn Ratio (NBR), Supervised Classification

Procedia PDF Downloads 155
1104 Current Environmental Accounting Disclosure Requirements and Compliance by Nigerian Oil Companies

Authors: Amina Jibrin Ahmed

Abstract:

The environment is mankind's natural habitat. Industrial activities over time have taken their toll on it in the form of deterioration and degradation. The petroleum industry is particularly notorious for its negative impact on its host environments. The realization that this poses a threat to sustainability led to the increased awareness and subsequent recognition of the importance of environmental disclosure in financial statements. This paper examines the laws and regulations put in place by the Nigerian Government to mitigate this impact, and the level of compliance by Shell Nigeria, the pioneer and largest oil company in the country. Based on the disclosure made, this paper finds there is indeed a high level of compliance by that company, and voluntary disclosure moreover.

Keywords: environmental accounting, legitimacy theory, environmental impact assessment, environmental disclosure, host communities

Procedia PDF Downloads 494
1103 Urban Green Transitioning in The Face of Current Global Change: The Management Role of the Local Government and Residents

Authors: Titilope F. Onaolapo, Christiana A. Breed, Maya Pasgaard, Kristine E. Jensen, Peta Brom

Abstract:

In the face of fast-growing urbanization in most of the world's developing countries, there is a need to understand and address the risk and consequences involved in the indiscriminate use of urban green space. Tshwane city in South Africa has the potential to become one of the world's top biodiversity cities as South Africa is ranked one of the mega countries in biodiversity conservation, and Tshwane metropolitan municipality is the city with the wealthiest biodiversity with grassland biomes. In this study, we focus on the potentials and challenges of urban green transitioning from the Global South perspective with Tshwane city as the case study. We also address the issue of management conflicts that have resulted in informal and illegal activities in and around green spaces, with consequences such as land degradation, loss of livelihoods and biodiversity, and socio-ecological imbalances. A desk study review of eight policy frameworks related to green urban planning and development was done based on four GI principles: multifunctionality, connectivity, interdisciplinary and social inclusion. We interviewed 15 key informants in related departments in the city and administered 200 survey questionnaires among residents. We also had several workshops the other researchers and experts on biodiversity and ecosystem. We found out there is no specific document dedicated to green space management, and where green infrastructure was mentioned, it was focused on as an approach to climate mitigation and adaptation. Also, residents perceive green and open spaces as extra land that could be developed at will. We demonstrated the use of collaborative learning approaches in ecological and development research and the tying research to the existing frameworks, programs, and strategies. Based on this understanding. We outlined the need to incorporate principles of green infrastructure in policy frameworks on spatial planning and environmental development. Furthermore, we develop a model for co-management of green infrastructures by stakeholders, such as residents, developers, policymakers, and decision-makers, to maximize benefits. Our collaborative, interdisciplinary projects pursue SDG multifunctionality of goals 11 and 15 by simultaneously addressing issues around Sustainable Cities and Communities, Climate Action, Life on Land, and Strong Institutions, and halt and reverse land degradation and biodiversity.

Keywords: governance, green infrastructure, South Africa, sustainable development, urban planning, Tshwane

Procedia PDF Downloads 99
1102 The Research of Reliability of MEMS Device under Thermal Shock Test in Space Mission

Authors: Liu Ziyu, Gao Yongfeng, Li Muhua, Zhao Jiahao, Meng Song

Abstract:

The effect of thermal shock on the operation of micro electromechanical systems (MEMS) were examined. All MEMS device were tested before and after three different conditions of thermal shock (from -55℃ to 85℃, from -65℃ to 125℃, from -65℃ to 200℃). The micro lens showed no changes after thermal shock, which shows that the design of the micro lens can be well adapted to the application environment in the space. The design of the micro mirror can be well adapted to the space application environment. The micro-magnetometer, RF MEMS switch and the micro accelerometer exhibited degradation and parameter drift after thermal shock, potential mechanical was proposed.

Keywords: MEMS, thermal shock test, reliability, space environment

Procedia PDF Downloads 563
1101 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light

Authors: W. Y. Zhu, X. L. Yan, Y. Zhou

Abstract:

Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.

Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide

Procedia PDF Downloads 340
1100 Assessing Adaptive Capacity to Climate Change and Agricultural Productivity of Farming Households of Makueni County in Kenya

Authors: Lilian Mbinya Muasa

Abstract:

Climate change is inevitable and a global challenge with long term implications to the sustainable development of many countries today. The negative impacts of climate change are creating far reaching social, economic and environmental problems threatening lives and livelihoods of millions of people in the world. Developing countries especially sub-Saharan countries are more vulnerable to climate change due to their weak ecosystem, low adaptive capacity and high dependency on rain fed agriculture. Countries in Sub-Saharan Africa are more vulnerable to climate change impacts due to their weak adaptive capacity and over-reliance on rain fed agriculture. In Kenya, 78% of the rural communities are poor farmers who heavily rely on rain fed agriculture thus are directly affected by climate change impacts.Currently, many parts of Kenya are experiencing successive droughts which are contributing to persistently unstable and declining agricultural productivity especially in semi arid eastern Kenya. As a result, thousands of rural communities repeatedly experience food insecurity which plunge them to an ever over-reliance on relief food from the government and Non-Governmental Organization In addition, they have adopted poverty coping strategies to diversify their income, for instance, deforestation to burn charcoal, sand harvesting and overgrazing which instead contribute to environmental degradation.This research was conducted in Makueni County which is classified as one of the most food insecure counties in Kenya and experiencing acute environmental degradation. The study aimed at analyzing the adaptive capacity to climate change across farming households of Makueni County in Kenya by, 1) analyzing adaptive capacity to climate change and agricultural productivity across farming households, 2) identifying factors that contribute to differences in adaptive capacity across farming households, and 3) understanding the relationship between climate change, agricultural productivity and adaptive capacity. Analytical Hierarchy Process (AHP) was applied to determine adaptive capacity and Total Factor Productivity (TFP) to determine Agricultural productivity per household. Increase in frequency of prolonged droughts and scanty rainfall. Preliminary findings indicate a magnanimous decline in agricultural production in the last 10 years in Makueni County. In addition, there is an over reliance of households on indigenous knowledge which is no longer reliable because of the unpredictability nature of climate change impacts. These findings on adaptive capacity across farming households provide the first step of developing and implementing action-oriented climate change policies in Makueni County and Kenya.

Keywords: adaptive capacity, agricultural productivity, climate change, vulnerability

Procedia PDF Downloads 309
1099 Impact of Solar Radiation Effects on the Physicochemical Properties of Unformulated Polyethylene (PE) Plastic Film

Authors: A. Adelhafidhi, I. M. Babaghayou, S. F. Chabira, M. Sebaa

Abstract:

This study deals with the photodegradation of unformulated polyethylene films for greenhouse covering. The UV range of solar light appears as the most deleterious factor of plastic degradation in outdoor exposure. The reasons of this photosensitivity are structural defects which are light-absorbing. The use of FTIR as an investigation tool has revealed that the material reacts with surrounding oxygen via a photooxidation process. Although the photochemical process is quite complex, it appears through this study than crosslinking and chain scissions are the most important events taking place during aging These two key reactions change irremediably the average molecular weight affecting thus drastically the mechanical properties and reducing, in the same way, the service lifetime of the films.

Keywords: polyethylene, films, unformulated, FTIR, ageing

Procedia PDF Downloads 345
1098 Thermal Technologies Applications for Soil Remediation

Authors: A. de Folly d’Auris, R. Bagatin, P. Filtri

Abstract:

This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.

Keywords: desorption kinetics, hydrocarbons, thermal desorption, thermogravimetric measurements

Procedia PDF Downloads 270
1097 Bioincision of Gmelina Arborea Roxb. Heartwood with Inonotus Dryophilus (Berk.) Murr. for Improved Chemical Uptake and Penetration

Authors: A. O. Adenaiya, S. F. Curling, O. Y. Ogunsanwo, G . A. Ormondroyd

Abstract:

Treatment of wood with chemicals in order to prolong its service life may prove difficult in some refractory wood species. This impermeability in wood is usually due to biochemical changes which occur during heartwood formation. Bioincision, which is a short-term, controlled microbial decomposition of wood, is one of the promising approaches capable of improving the amenability of refractory wood to chemical treatments. Gmelina Arborea, a mainstay timber species in Nigeria, has impermeable heartwood due to the excessive tyloses which occlude its vessels. Therefore, the chemical uptake and penetration in Gmelina arborea heartwood bioincised with Inonotus dryophilus fungus was investigated. Five mature Gmelina Arborea trees were harvested at the Departmental plantation in Ajibode, Ibadan, Nigeria and a bolt of 300 cm was obtained from the basal portion of each tree. The heartwood portion of the bolts was extracted and converted into dimensions 20 mm x 20 mm x 60 mm and subsequently conditioned (200C at 65% Relative Humidity). Twenty wood samples each were bioincised with the white-rot fungus Inonotus dryophilus (ID, 999) for 3, 5, 7 and 9 weeks using standard procedure, while a set of sterile control samples were prepared. Ten of each bioincised and control sample were pressure-treated with 5% tanalith preservative, while the other ten of each bioincised and control samples were pressure-treated with a liquid dye for easy traceability of the chemical in the wood, both using a full cell treatment process. The bioincised and control samples were evaluated for their Weight Loss before chemical treatment (WL, %), Preservative Absorption (PA, Kg/m3), Preservative Retention (PR, Kg/m3), Axial Absorption (AA, Kg/m3), Lateral Absorption (LA, Kg/m3), Axial Penetration Depth (APD, mm), Radial Penetration Depth (RPD, mm), and Tangential Penetration Depth (TPD, mm). The data obtained were analyzed using ANOVA at α0.05. Results show that the weight loss was least in the samples bioincised for three weeks (0.09%) and highest after 7 weeks of bioincision (0.48%). The samples bioincised for 3 weeks had the least PA (106.72 Kg/m3) and PR (5.87 Kg/m3), while the highest PA (134.9 Kg/m3) and PR were observed after 7 weeks of bioincision (7.42 Kg/m3). The AA ranged from 27.28 Kg/m3 (3 weeks) to 67.05 Kg/m3 (5 weeks), while the LA was least after 5 weeks of incubation (28.1 Kg/m3) and highest after 9 weeks (71.74 Kg/m3). Significantly lower APD was observed in control samples (6.97 mm) than in the samples bioincised after 9weeks (19.22 mm). The RPD increased from 0.08 mm (control samples) to 3.48 mm (5 weeks), while TPD ranged from 0.38 mm (control samples) to 0.63 mm (9 weeks), implying that liquid flow in the wood was predominantly through the axial pathway. Bioincising G. arborea heartwood with I. dryophilus fungus for 9 weeks is capable of enhancing chemical uptake and deeper penetration of chemicals in the wood through the degradation of the occluding vessel tyloses, which is accompanied by a minimal degradation of the polymeric wood constituents.

Keywords: Bioincision, chemical uptake, penetration depth, refractory wood, tyloses

Procedia PDF Downloads 83