Search results for: induced resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5700

Search results for: induced resistance

5130 Inhibition and Breaking of Advanced Glycation End Products with Nuts and Polyphenols

Authors: Moon Ho Do, Sin-Hee Park, Jae Hyuk Lee, Kyo Hee Cho, Jae Kyung Chae, Sun Yeou Kim

Abstract:

Long-term hyperglycemic conditions associated with diabetes lead to the formation of advanced glycation end-products (AGEs). Highly reactive glucose metabolites, methylglyoxal (MGO) and glyoxal (GO), induced carbonyl stress and it may induce cellular damage, cross-linking of proteins, and glycation, playing an important role in the impairment of kidney function. Small molecules that have the ability to inhibit AGE formation, and even break preformed AGEs have a beneficial impact on metabolic syndrome, diabetes, and cancer. We quantified contents of polyphenols in nuts and investigated the protective effect of nuts and polyphenols on MGO-induced cytotoxicity in porcine kidney epithelial cells (LLC-PK1). Moreover, we evaluated the inhibitory effect of AGEs formation in the presence of MGO or GO and possess the ability to break preformed AGEs. In this study, we confirmed twenty polyphenols in diverse nuts using LC-MS/MS system. Nuts and polyphenols play a protective role in LLC-PK1 cells by reducing MGO-induced cytotoxicity. They could also prevent the formation of MGO or GO-mediated AGEs and Break AGEs crosslink. It can be surmised that increased consumption of nuts would be an effective means of preventing diabetic diseases.

Keywords: advanced glycation end products, LLC-PK1, methylglyoxal, nut, polyphenol

Procedia PDF Downloads 256
5129 The Role of Okra (Abelmoschus esculentus Linn.) on Lipopolysaccharide-Induced Reactive Oxygen Species and Inflammatory Mediator in BV2 Microglial Cells

Authors: Nootchanat Mairuae, Walaiporn Tongjaroenbuangam, Chalisa Louicharoen Cheepsunthorn, Poonlarp Cheepsunthorn

Abstract:

The aim of this study was to investigate the anti-oxidative effect, the anti-inflammatory effects, and the molecular mechanisms of okra (Abelmoschus esculentus Linn.) on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The BV2 cells were treated with LPS in the presence or absence of okra. Reactive oxygen species (ROS) and nitric oxide (NO) production were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. The phosphorylation levels of nuclear factor-kappa B (NF-kB) p65 was detected by Western blot assay. Treatment of BV2 microglia cells with okra was found to significantly suppress the LPS-induced inflammatory mediator NO as well as ROS compared to untreated cells. The levels of LPS-induced NF-kB p65 phosphorylation were significantly decreased following okra treatment too. These results show that okra exerts anti-oxidative and anti-inflammatory effects in LPS-stimulated BV2 microglial cells by suppressing the NF-κB pathway. This suggests okra might be a valuable agent for treatment of anti-neuroinflammatory diseases mediated by microglial cells.

Keywords: Abelmoschus esculentus Linn, microglia, neuroinflammation, reactive oxygen spicy

Procedia PDF Downloads 273
5128 Investigation of Heating Behaviour of E-Textile Structures

Authors: Hande Sezgin, Senem Kursun Bahadır, Yakup Erhan Boke, Fatma Kalaoğlu

Abstract:

Electronic textiles (e-textiles) are fabrics that contain electronics and interconnections with them. In this study, two types of base yarns (cotton and acrylic) and three conductive steel yarns with different linear resistance values (14Ω/m, 30Ω/m, 70Ω/m) were used to investigate the effect of base yarn type and linear resistance of conductive yarns on thermal behavior of e-textile structures. Thermal behavior of samples were examined by thermal camera.

Keywords: conductive yarn, e-textiles, smart textiles, thermal analysis

Procedia PDF Downloads 541
5127 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe

Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati

Abstract:

This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).

Keywords: loop heat pipe, nanofluid, optimization, thermal resistance

Procedia PDF Downloads 447
5126 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents

Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux

Abstract:

The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.

Keywords: antibiotic resistance, mobile genetic elements, wastewater, wastewater treatment plants

Procedia PDF Downloads 204
5125 Curative Role of Bromoenol Lactone, an Inhibitor of Phospholipase A2 Enzyme, during Cigarette Smoke Condensate Induced Anomalies in Lung Epithelium

Authors: Subodh Kumar, Sanjeev Kumar Sharma, Gaurav Kaushik, Pramod Avti, Phulen Sarma, Bikash Medhi, Krishan Lal Khanduja

Abstract:

Background: It is well known that cigarette smoke is one of the causative factors in various lung diseases especially cancer. Carcinogens and oxidant molecules present in cigarette smoke not only damage the cellular constituents (lipids, proteins, DNA) but may also regulate the molecular pathways involved in inflammation and cancer. Continuous oxidative stress caused by the constituents of cigarette smoke leads to higher PhospholipaseA₂ (PLA₂) activity, resulting in elevated levels of secondary metabolites whose role is well defined in cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites, we checked the curative potential of PLA₂ inhibitor Bromoenol Lactone (BEL) during continuous exposure of cigarette smoke condensate (CSC). Aim: To check the therapeutic potential of Bromoenol Lactone (BEL), an inhibitor of PhospholipaseA₂s, in pathways of CSC-induced changes in type I and type II alveolar epithelial cells. Methods: Effect of BEL on CSC-induced PLA2 activity were checked using colorimetric assay, cellular toxicity using cell viability assay, membrane integrity using fluorescein di-acetate (FDA) uptake assay, reactive oxygen species (ROS) levels and apoptosis markers through flow cytometry, and cellular regulation using MAPKinases levels, in lung epithelium. Results: BEL significantly mimicked CSC-induced PLA₂ activity, ROS levels, apoptosis, and kinases level whereas improved cellular viability and membrane integrity. Conclusions: Current observations revealed that BEL may be a potential therapeutic agent during Cigarette smoke-induced anomalies in lung epithelium.

Keywords: cigarette smoke condensate, phospholipase A₂, oxidative stress, alveolar epithelium, bromoenol lactone

Procedia PDF Downloads 170
5124 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks

Authors: Bachir Chemani, Halima Chemani

Abstract:

The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.

Keywords: clay, coal, resistance to compression, insulating bricks

Procedia PDF Downloads 317
5123 Sequential Padding: A Method to Improve the Impact Resistance in Body Armor Materials

Authors: Ankita Srivastava, Bhupendra S. Butola, Abhijit Majumdar

Abstract:

Application of shear thickening fluid (STF) has been proved to increase the impact resistance performance of the textile structures to further use it as a body armor material. In the present research, STF was applied on Kevlar woven fabric to make the structure lightweight and flexible while improving its impact resistance performance. It was observed that getting a fair amount of add-on of STF on Kevlar fabric is difficult as Kevlar fabric comes with a pre-coating of PTFE which hinders its absorbency. Hence, a method termed as sequential padding is developed in the present study to improve the add-on of STF on Kevlar fabric. Contrary to the conventional process, where Kevlar fabric is treated with STF once using any one pressure, in sequential padding method, the Kevlar fabrics were treated twice in a sequential manner using combination of two pressures together in a sample. 200 GSM Kevlar fabrics were used in the present study. STF was prepared by adding PEG with 70% (w/w) nano-silica concentration. Ethanol was added with the STF at a fixed ratio to reduce viscosity. A high-speed homogenizer was used to make the dispersion. Total nine STF treated Kevlar fabric samples were prepared by using varying combinations and sequences of three levels of padding pressure {0.5, 1.0 and 2.0 bar). The fabrics were dried at 80°C for 40 minutes in a hot air oven to evaporate ethanol. Untreated and STF treated fabrics were tested for add-on%. Impact resistance performance of samples was also tested on dynamic impact tester at a fixed velocity of 6 m/s. Further, to observe the impact resistance performance in actual condition, low velocity ballistic test with 165 m/s velocity was also performed to confirm the results of impact resistance test. It was observed that both add-on% and impact energy absorption of Kevlar fabrics increases significantly with sequential padding process as compared to untreated as well as single stage padding process. It was also determined that impact energy absorption is significantly better in STF treated Kevlar fabrics when 1st padding pressure is higher, and 2nd padding pressure is lower. It is also observed that impact energy absorption of sequentially padded Kevlar fabric shows almost 125% increase in ballistic impact energy absorption (40.62 J) as compared to untreated fabric (18.07 J).The results are owing to the fact that the treatment of fabrics at high pressure during the first padding is responsible for uniform distribution of STF within the fabric structures. While padding with second lower pressure ensures the high add-on of STF for over-all improvement in the impact resistance performance of the fabric. Therefore, it is concluded that sequential padding process may help to improve the impact performance of body armor materials based on STF treated Kevlar fabrics.

Keywords: body armor, impact resistance, Kevlar, shear thickening fluid

Procedia PDF Downloads 228
5122 Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments

Authors: Turin Datta, Kisor K. Sahu

Abstract:

Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing.

Keywords: DSS 2205, polarization, pitting, SEM

Procedia PDF Downloads 255
5121 Optimization of Carbon Nanotube Content of Asphalt Nanocomposites with Regard to Resistance to Permanent Deformation

Authors: João V. Staub de Melo, Glicério Trichês, Liseane P. Thives

Abstract:

This paper presents the results of the development of asphalt nanocomposites containing carbon nanotubes (CNTs) with high resistance to permanent deformation, aiming to increase the performance of asphalt surfaces in relation to the rutting problem. Asphalt nanocomposites were prepared with the addition of different proportions of CNTs (1%, 2% and 3%) in relation to the weight of asphalt binder. The base binder used was a conventional binder (50-70 penetration) classified as PG 58-22. The optimum percentage of CNT addition in the asphalt binder (base) was determined through the evaluation of the rheological and empirical characteristics of the nanocomposites produced. In order to evaluate the contribution and the effects of the nanocomposite (optimized) in relation to the rutting, the conventional and nanomodified asphalt mixtures were tested in a French traffic simulator (Orniéreur). The results obtained demonstrate the efficient contribution of the asphalt nanocomposite containing CNTs to the resistance to permanent deformation of the asphalt mixture.

Keywords: asphalt nanocomposites, asphalt mixtures, carbon nanotubes, nanotechnology, permanent deformation

Procedia PDF Downloads 270
5120 Effect of Antioxidant-Rich Nutraceutical on Serum Glucose, Lipid Profile and Oxidative Stress Markers of Salt-Induced Metabolic Syndrome in Rats

Authors: Nura Lawal, Lawal Suleiman Bilbis, Rabiu Aliyu Umar, Anas A. Sabir

Abstract:

Metabolic syndrome (MS) a high-risk condition involving obesity, dyslipidemia, hypertension, and diabetes mellitus is prevalent in Nigeria. The study aims to formulate an antioxidant-rich nutraceutical from locally available foodstuff (onion, garlic, ginger, tomato, lemon, palm oil, watermelon seeds) and investigate their effects on blood pressure, body weight, serum glucose, lipid profile, insulin and oxidative stress markers in salt-induced rats. The rats were placed on 8% salt diet for 6 weeks and then supplementation and treatment with nutraceutical and nifedipine in the presence of salt diet for additional 4 weeks. Feeding rats with salt diet for 6 weeks increased blood pressure and body weight of the salt-loaded rats relative to control. Significant (P < 0.001) increase in serum blood glucose and lipid profile, and the decrease in high-density lipoprotein-cholesterol (HDL-C) was observed in salt-loaded rats as compared with control. Both supplementation and treatment (nifedipine) lowered the blood pressure but the only supplementation lowered the body weight. Supplementation with nutraceutical resulted in significant (P < 0.001) decrease in the serum blood glucose, lipid profile, malonyldialdehyde (MDA), insulin levels, insulin resistance, and increased HDL-C and antioxidant indices. The percentage protection against atherogenesis was 76.5±2.13%. There is strong positive correlation between blood pressure, body weight and serum blood glucose, lipid profile, markers of oxidative stress and strong negative correlation with HDL-C and antioxidant status. The results suggest that the nutraceuticals are useful in reversing most of the component of metabolic syndrome and might be beneficial in the treatment of patients with metabolic syndrome.

Keywords: metabolic syndrome, hypertension, diabetes mallitus, obesity

Procedia PDF Downloads 231
5119 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control

Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi

Abstract:

In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.

Keywords: impedance control, control system, robots, interaction

Procedia PDF Downloads 414
5118 A 2D Numerical Model of Viscous Flow-Cylinder Interaction

Authors: Bang-Fuh Chen, Chih-Chun Chu

Abstract:

The flow induced cylinder vibration or earthquake-induced cylinder motion are moving in an arbitrary direction with time. The phenomenon of flow across cylinder is highly nonlinear and a linear-superposition of flow pattern across separated oscillating direction of cylinder motion is not valid to obtain the flow pattern across a cylinder oscillating in multiple directions. A novel finite difference scheme is developed to simulate the viscous flow across an arbitrary moving circular cylinder and we call this a complete 2D (two-dimensional) flow-cylinder interaction. That is, the cylinder is simultaneously oscillating in x- and y- directions. The time-dependent domain and meshes associated with the moving cylinder are mapped to a fixed computational domain and meshes, which are time independent. The numerical results are validated by several bench mark studies. Several examples are introduced including flow across steam-wise, transverse oscillating cylinder and flow across rotating cylinder and flow across arbitrary moving cylinder. The Morison’s formula can not describe the complex interaction phenomenon between cross flow and oscillating circular cylinder. And the completed 2D computational fluid dynamic analysis should be made to obtain the correct hydrodynamic force acting on the cylinder.

Keywords: 2D cylinder, finite-difference method, flow-cylinder interaction, flow induced vibration

Procedia PDF Downloads 499
5117 Numerical Assessment on the Unsaturated Behavior of Silty Sand

Authors: Seyed Abolhassan Naeini, Ali Namaei

Abstract:

This investigation presents the behavior of the unsaturated silty sand by calculating the shear resistance of the specimens by numerical method. In order to investigate this behavior, a series of triaxial tests have been simulated in constant water condition. The finite difference software FLAC3D has been carried out for analyzing the shear resistance and the results are compared with findings from a previous laboratory tests. Constant water tests correspond to a field condition where the rate of the loading is much quicker than the rate at which the pore water is able to drain out of the soil. Tests were simulated on two groups of the silty sands. The obtained results show that the FLAC software may be able to simulate the behavior of specimens with the low suction value magnitude. As the initial suction increased, the differences between numerical and experimental results increased, especially in loose sand. Since some assumptions were used for input parameters, a conclusive result needs more investigations.

Keywords: finite difference, shear resistance, unsaturated silty sand, constant water test

Procedia PDF Downloads 107
5116 Solid Dosages Form Tablet: A Summary on the Article by Shashank Tiwari

Authors: Shashank Tiwari

Abstract:

The most common method of drug delivery is the oral solid dosage form, of which tablets and capsules are predominant. The tablet is more widely accepted and used compared to capsules for a number of reasons, such as cost/price, tamper resistance, ease of handling and packaging, ease of identification, and manufacturing efficiency. Over the past several years, the issue of tamper resistance has resulted in the conversion of most over-the-counter (OTC) drugs from capsules to predominantly all tablets.

Keywords: capsule, drug delivery, dosages, solid, tablet

Procedia PDF Downloads 422
5115 Evaluation of Erosive Wear Resistance of Commercial Hard Coatings with Plasma Nitride and Without Plasma Nitride in Aluminium Die Casting

Authors: A. Mohammed, R. Lewis, M. Marshall

Abstract:

Commonly used coatings to protect tools in die casting were used. A heat treatment and then surface coating can have a large effect on erosion damage. Samples have been tested to evaluate their resistances to erosive wear and to assess how this compares with behaviour seen for untreated material. Five commercial (PN + TiN), (PN + TiAlCN), (TiN X 2), (TiN), and (TiAlCN) coatings have been evaluated for their wear resistance. The objective was to permit an optimized selection of coatings to be used to give good resistance to erosive wear. A test-Rig has been developed to study the erosive wear in aluminium die casting and provide an environment similar to industrial operation that is more practical than using actual machines. These surfaces were analysed using a Scanning Electron Microscope (SEM) and Optical Microscopes each with a different level of resolution. Examination of coating materials revealed an important parameter associated with the failure of the coating materials.This was adhesion of the coating material to the substrate surface. A well-adhered coating withstands wear much better compared to the poorest-adhering coating.

Keywords: solid particle erosion, PVD-coatings, steel, erosion testing

Procedia PDF Downloads 231
5114 Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis

Authors: Kreso Ivandic, Filip Dodigovic, Damir Stuhec

Abstract:

The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors.

Keywords: action-resistance factor design, classic approach, embedded retaining wall, Eurocode 7, limit states, material factor design

Procedia PDF Downloads 223
5113 An Experimental Study on the Influence of Mineral Admixtures on the Fire Resistance of High-Strength Concrete

Authors: Ki-seok Kwon, Dong-woo Ryu, Heung-Youl Kim

Abstract:

Although high-strength concrete has many advantages over generic concrete at normal temperatures (around 20℃), it undergoes spalling at high temperatures, which constitutes its structurally fatal drawback. In this study, fire resistance tests were conducted for 3 hours in accordance with ASTM E119 on bearing wall specimens which were 3,000mm x 3,000mm x 300mm in dimensions to investigate the influence the type of admixtures would exert on the fire resistance performance of high-strength concrete. Portland cement, blast furnace slag, fly ash and silica fume were used as admixtures, among which 2 or 3 components were combined to make 7 types of mixtures. In 56MPa specimens, the severity of spalling was in order of SF5 > F25 > S65SF5 > S50. Specimen S50 where an admixture consisting of 2 components was added did not undergo spalling. In 70MPa specimens, the severity of spalling was in order of SF5 > F25SF5 > S45SF5 and the result was similar to that observed in 56MPa specimens. Acknowledgements— This study was conducted by the support of the project, “Development of performance-based fire safety design of the building and improvement of fire safety” (18AUDP-B100356-04) which is under the management of Korea Agency for Infrastructure Technology Advancement as part of the urban architecture research project for the Ministry of Land, Infrastructure and Transport, for which we extend our deep thanks.

Keywords: high strength concrete, mineral admixture, fire resistance, social disaster

Procedia PDF Downloads 132
5112 Protective Effect of Nigella sativa Oil and Its Neutral Lipid Fraction on Ethanol-Induced Hepatotoxicity in Rat Model

Authors: Asma Mosbah, Hanane Khither, Kamelia Mosbah, Noreddine Kacem Chaouche, Mustapha Benboubetra

Abstract:

In the present investigation, total oil (TO) and its neutral lipid fraction (NLF) extracted from the seed of the well know studied medicinal plant Nigella sativa were tested for their therapeutically effect on alcohol-induced liver injury in rat model. Male Albino rats were divided into five groups of eight animals each and fed a Lieber–DeCarli liquid diet containing 5% ethanol for experimental groups and dextran for control group, for a period of six weeks. Afterwards, rats received, orally, treatments with Nigella sativa extracts (TO, NLF) and N- acetylcysteine (NAC) as a positive control for four weeks. Activities of antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), as well as malondialdehyde (MDA) and reduced glutathione (GSH). Biochemical parameters for kidney and liver functions, in treated and non treated rats, were evaluated throughout the time course of an experiment. Liver histological changes were taken into account. Enzymatic activities of both SOD and CAT increased significantly in rats treated with NLF and TO. While MDA level decreased in TO and NLF treated rats, GSH level increased significantly in TO and NLF treated rats. We noted equally a decrease in liver enzymes AST, ALT, and ALP. Microscopic observation of slides from the liver of ethanol treated rats showed a severe hepatotoxicity with lesions. Treatment with fractions leads to an improvement in liver lesions and a marked reduction in necrosis and infiltration. As a conclusion, both extracts of Nigella sativa seeds, TO and NLF, possess an important therapeutic protective potential against ethanol-induced hepatotoxicity in rats.

Keywords: alcohol-induced hepatotoxicity, antioxidant enzymes, Nigella sativa seeds, oil fractions

Procedia PDF Downloads 156
5111 Investigating Physician-Induced Demand among Mental Patients in East Azerbaijan, Iran: A Multilevel Approach of Hierarchical Linear Modeling

Authors: Hossein Panahi, Firouz Fallahi, Sima Nasibparast

Abstract:

Background & Aim: Unnecessary growth in health expenditures of developing countries in recent decades, and also the importance of physicians’ behavior in health market, have made the theory of physician-induced demand (PID) as one of the most important issues in health economics. Therefore, the main objective of this study is to investigate the hypothesis of induced demand among mental patients who receive services from either psychologists or psychiatrists in East Azerbaijan province. Methods: Using data from questionnaires in 2020 and employing the theoretical model of Jaegher and Jegers (2000) and hierarchical linear modeling (HLM), this study examines the PID hypothesis of selected psychologists and psychiatrists. The sample size of the study, after removing the questionnaires with missing data, is 45 psychologists and 203 people of their patients, as well as 30 psychiatrists and 160 people of their patients. Results: The results show that, although psychiatrists are ‘profit-oriented physicians’, there is no evidence of inducing unnecessary demand by them (PID), and the difference between the behavior of employers and employee doctors is due to differences in practice style. However, with regard to psychologists, the results indicate that they are ‘profit-oriented’, and there is a PID effect in this sector. Conclusion: According to the results, it is suggested that in order to reduce competition and eliminate the PID effect, the admission of students in the field of psychology should be reduced, patient information on mental illness should be increased, and government monitoring and control over the national health system must be increased.

Keywords: physician-induced demand, national health system, hierarchical linear modeling methods, multilevel modela

Procedia PDF Downloads 124
5110 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: adverse space weather, DST index, geomagnetically induced currents, KP index, reactive power

Procedia PDF Downloads 99
5109 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders

Authors: Brad Stappenbelt

Abstract:

The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.

Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy

Procedia PDF Downloads 136
5108 Lipopolysaccharide Induced Avian Innate Immune Expression in Heterophils

Authors: Rohita Gupta, G. S. Brah, R. Verma, C. S. Mukhopadhayay

Abstract:

Although chicken strains show differences in susceptibility to a number of diseases, the underlying immunological basis is yet to be elucidated. In the present study, heterophils were subjected to LPS stimulation and total RNA extraction, further differential gene expression was studied in broiler, layer and indigenous Aseel strain by Real Time RT-PCR at different time periods before and after induction. The expression of the 14 AvBDs and chTLR 1, 2, 3, 4, 5, 7, 15 and 21 was detectable in heterophils. The expression level of most of the AvBDs significantly increased (P<0.05) 3 hours post in vitro lipopolysaccharide challenge. Higher expression level and stronger activation of most AvBDs, NFkB-1 and IRF-3 in heterophils was observed, with the stimulation of LPS in layer compared to broiler, and in Aseel compared to both layer and broiler. This investigation will allow more refined interpretation of immuno-genetic basis of the variable disease resistance/susceptibility in divergent stock of chicken including indigenous breed. Moreover this study will be helpful in formulation of strategy for isolation of antimicrobial peptides from heterophils.

Keywords: differential expression, heterophils, cytokines, defensin, TLR

Procedia PDF Downloads 601
5107 Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway

Authors: Nor-Edine Abriak, Mahfoud Benzerzour, Mouhamadou Amar, Abdeljalil Zri

Abstract:

In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads.

Keywords: sediment, lime, cement, roadway

Procedia PDF Downloads 256
5106 Flow Characterization in Complex Terrain for Aviation Safety

Authors: Adil Rasheed, Mandar Tabib

Abstract:

The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.

Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system

Procedia PDF Downloads 401
5105 Effect of the Alloying Elements on Mechanical Properties of TWIP Steel

Authors: Yuksel Akinay, Fatih Hayat

Abstract:

The influence of the alloying element on mechanical properties and micro structures of the Fe-22Mn-0.6C-0,6Si twinning induced plasticity (TWIP) steel were investigated at different temperatures. This composition was fabricated by a vacuum induction melting method. This steel was homogenized at 1200◦C for 8h. After heat treatment it was hot-rolled at 1100◦C to 6 mm thickness. The hot rolled plates were cold rolled to 3 mm and annealed at 700 800 and 900 °C for 60 and 150 minute and then air-cooled. X-ray diffractometry (XRD), optic microscope and field emission scanning electron microscope (FESEM), hardness and tensile tests were used to analyse the relationship between mechanical properties and micro structure after annealing process. The results show that, the excellent mechanical properties were obtained after heat treatment process. The tensile strength of material was decreased and the ductility of material was improved with increasing annealing temperature. Ni element were increased the mechanical resistance of specimens and because of carbide precipitation the hardness of specimen annealed at 700 C is higher than others.

Keywords: high manganese, heat treatment, SEM, XRD, cold-rolling

Procedia PDF Downloads 494
5104 Influence of Aluminum Content on the Microstructural, Mechanical and Tribological Properties of TiAlN Coatings for Using in Dental and Surgical Instrumentation

Authors: Hernan D. Mejia, Gilberto B. Gaitan, Mauricio A. Franco

Abstract:

420 steel is normally used in the manufacture of dental and surgical instrumentation, as well as parts in the chemical, pharmaceutical, and food industries, among others, where they must withstand heavy loads and often be in contact with corrosive environments, which leads to wear and deterioration of these steels in relatively short times. In the case of medical applications, the instruments made of this steel also suffer wear and corrosion during the repetitive sterilization processes due to the relatively low achievable hardness of just 50 HRC and its hardly acceptable resistance to corrosion. In order to improve the wear resistance of 420 steel, TiAlN coatings were deposited, increasing the aluminum content in the alloy by varying the power applied to the aluminum target of 900, 1100, and 1300 W. Evaluations using XRD, Micro Raman, XPS, AFM, SEM, and TEM showed a columnar growth crystal structure with an average thickness of 2 microns and consisting of the TiN and TiAlN phases, whose roughness and grain size decrease with a higher Al content. The AlN phase also appears in the sample deposited at 1300W. The hardness, determined by nanoindentation, initially increases with the aluminum content from 9.7 GPa to 17.1 GPa, but then decreases to 15.4 GPa for the sample with the highest aluminum content due to the appearance of hexagonal AlN and a decrease of harder TiN and TiAlN phases. It was observed that the wear coefficient had a contrary behavior, which took values of 2.7; 1.7 and 6.6x10⁻⁶ mm³/N.m, respectively. All the coated samples significantly improved the wear resistance of the uncoated 420 steel.

Keywords: hard coatings, magnetron sputtering, TiAlN coatings, surgical instruments, wear resistance

Procedia PDF Downloads 112
5103 Surveillance of Artemisinin Resistance Markers and Their Impact on Treatment Outcomes in Malaria Patients in an Endemic Area of South-Western Nigeria

Authors: Abiodun Amusan, Olugbenga Akinola, Kazeem Akano, María Hernández-Castañeda, Jenna Dick, Akintunde Sowunmi, Geoffrey Hart, Grace Gbotosho

Abstract:

Introduction: Artemisinin-based Combination Therapy (ACTs) is the cornerstone malaria treatment option in most malaria-endemic countries. Unfortunately, the malaria control effort is constantly being threatened by resistance of Plasmodium falciparum to ACTs. The recent evidence of artemisinin resistance in East Africa and its possibility of spreading to other African regions portends an imminent health catastrophe. This study aimed at evaluating the occurrence, prevalence, and influence of artemisinin-resistance markers on treatment outcomes in Ibadan before and after post-adoption of artemisinin combination therapy (ACTs) in Nigeria in 2005. Method: The study involved day zero dry blood spot (DBS) obtained from malaria patients during retrospective (2000-2005) and prospective (2021) studies. A cohort in the prospective study received oral dihydroartemisinin-piperaquine and underwent a 42-day follow-up to observe treatment outcomes. Genomic DNA was extracted from the DBS samples using a QIAamp blood extraction kit. Fragments of P. falciparum kelch13 (Pfkelch13), P. falciparum coronin (Pfcoronin), P. falciparum multidrug resistance 2 (PfMDR2), and P. falciparum chloroquine resistance transporter (PfCRT) genes were amplified and sequenced on a sanger sequencing platform to identify artemisinin resistance-associated mutations. Mutations were identified by aligning sequenced data with reference sequences obtained from the National Center for Biotechnology Information. Data were analyzed using descriptive statistics and student t-tests. Results: Mean parasite clearance time (PCT) and fever clearance time (FCT) were 2.1 ± 0.6 days (95% CI: 1.97-2.24) and 1.3 ± 0.7 days (95% CI: 1.1-1.6) respectively. Four mutations, K189T [34/53(64.2%)], R255K [2/53(3.8%)], K189N [1/53(1.9%)] and N217H [1/53(1.9%)] were identified within the N-terminal (Coiled-coil containing) domain of Pfkelch13. No artemisinin resistance-associated mutation usually found within the β-propeller domain of the Pfkelch13 gene was found in these analyzed samples. However, K189T and R255K mutations showed a significant correlation with longer parasite clearance time in the patients (P<0.002). The observed Pfkelch13 gene changes did not influence the baseline mean parasitemia (P = 0.44). P76S [17/100 (17%)] and V62M [1/100 (1%)] changes were identified in the Pfcoronin gene fragment without any influence on the parasitological parameters. No change was observed in the PfMDR2 gene, while no artemisinin resistance-associated mutation was found in the PfCRT gene. Furthermore, a sample each in the retrospective study contained the Pfkelch13 K189T and Pfcoronin P76S mutations. Conclusion: The study revealed absence of genetic-based evidence of artemisinin resistance in the study population at the time of study. The high frequency of K189T Pfkelch13 mutation and its correlation with increased parasite clearance time in this study may depict geographical variation of resistance mediators and imminent artemisinin resistance, respectively. The study also revealed an inherent potential of parasites to harbour drug-resistant genotypes before the introduction of ACTs in Nigeria.

Keywords: artemisinin resistance, plasmodium falciparum, Pfkelch13 mutations, Pfcoronin

Procedia PDF Downloads 33
5102 Protective Effects of Genistein against Cyclophosphamide-Induced Hepatotoxicity in Rats: Involvement of Anti-Inflammatory and Anti-Oxidant Activities

Authors: Dina F. Mansour, Dalia O. Saleh, Rasha E. Mostafa

Abstract:

Cyclophosphamide (CP), the most commonly used chemotherapeutic agent, was reported to cause many side effects including urotoxicity, cardiotoxicity, gonadotoxicity, and hepatotoxicity; this limits its clinical practice. In the present study, the protective effect of genistein (GEN), the major phytoestrogen in soy products that possesses various pharmacological activities, has been investigated against CP-induced acute liver damage in rats. Forty adult Sprague-Dawley rats were allocated into five groups. The first group received the vehicles and act as normal control. In the other groups, rats were injected with a single dose of CP (200 mg/kg, i.p). The last three groups were pretreated with subcutaneous GEN at doses of 0.5, 1 and 2 mg/kg/day, respectively, for 15 consecutive days prior CP injection. Forty-eight hours following CP injection, rats of all groups were investigated for the serum levels of alanine transaminase and aspartate transaminase, as well as the liver contents of reduced glutathione, malondialdehyde, nitrite, interleukin-1β, and myeloperoxidase. Histopathological examination of liver tissues was also conducted. CP resulted in acute liver damage in rats as evidenced by alteration of liver function biomarkers, oxidative stress, and inflammatory markers; that was confirmed by the histopathological outcomes. Pretreatment of rats with GEN significantly protected against CP-induced deterioration of liver function and showed marked anti-oxidant and anti-inflammatory properties that were demonstrated by the biochemical and histopathological findings. In conclusion, the present findings demonstrated the protective effects of GEN against CP-induced liver damage and suggested role of its antioxidant and anti-inflammatory activities.

Keywords: cyclophosphamide, genistein, inflammation, interleukin-1β, liver, myeloperoxidase, oxidative stress

Procedia PDF Downloads 291
5101 An Original and Suitable Induction Method of Repeated Hypoxic Stress by Hydralazine to Investigate the Integrity of an in Vitro Contact Co-Culture Blood Brain Barrier Model

Authors: Morgane Chatard, Clémentine Puech, Nathalie Perek, Frédéric Roche

Abstract:

Several neurological disorders are linked to repeated hypoxia. The impact of such repeated hypoxic stress, on endothelial cells function of the blood-brain barrier (BBB) is little studied in the literature. Indeed, the study of hypoxic stress in cellular pathways is complex using hypoxia exposure because HIF 1α (factor induced by hypoxia) has a short half life. Our study presents an innovative induction method of repeated hypoxic stress, more reproducible, which allows us to study its impacts on an in vitro contact co-culture BBB model. Repeated hypoxic stress was induced by hydralazine (a mimetic agent of hypoxia pathway) during two hours and repeated during 24 hours. Then, BBB integrity was assessed by permeability measurements (transendothelial electrical resistance and membrane permeability), tight junction protein expressions (cell-ELISA and confocal microscopy) and by studying expression and activity of efflux transporters. First, this study showed that repeated hypoxic stress leads to a BBB’s dysfunction illustrated by a significant increase in permeability. This loss of membrane integrity was linked to a significant decrease of tight junctions’ protein expressions, facilitating a possible transfer of potential cytotoxic compounds in the brain. Secondly, we demonstrated that brain microvascular endothelial cells had set-up defence mechanism. These endothelial cells significantly increased the activity of their efflux transporters which was associated with a significant increase in their expression. In conclusion, repeated hypoxic stress lead to a loss of BBB integrity with a decrease of tight junction proteins. In contrast, endothelial cells increased the expression of their efflux transporters to fight against cytotoxic compounds brain crossing. Unfortunately, enhanced efflux activity could also lead to reducing pharmacological drugs delivering to the brain in such hypoxic conditions.

Keywords: BBB model, efflux transporters, repeated hypoxic stress, tigh junction proteins

Procedia PDF Downloads 285