Search results for: Cancer Stem Cells
4597 Designing the Lesson Instructional Plans for Exploring the STEM Education and Creative Learning Processes to Students' Logical Thinking Abilities with Different Learning Outcomes in Chemistry Classes
Authors: Pajaree Naramitpanich, Natchanok Jansawang, Panwilai Chomchid
Abstract:
The aims of this are compared between the students’ logical thinking abilities of their learning for designing the 5-lesson instructional plans of the 2-instructional methods, namely; the STEM Education and the Creative Learning Process (CLP) for developing students’ logical thinking abilities that a sample consisted of 90 students from two chemistry classes of different learning outcomes in Wapi Phathum School with the cluster random sampling technique was used at the 11th grade level. To administer of their learning environments with the 45-experimenl student group by the STEM Education method and the 45-controlling student group by the Creative Learning Process. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of the STEM Education and the Creative Learning Process to enhance the logical thinking tests on Mineral issue were used. The efficiency of the Creative Learning Processes (CLP) Model and the STEM Education’s innovations of these each five instructional lesson plans based on criteria are higher than of 80/80 standard level with the IOC index from the expert educators. The averages mean scores of students’ learning achievement motives were assessed with the Pre and Post Techniques and Logical Thinking Ability Test (LTAT) and dependent t-test analysis were differentiated between the CLP and the STEM, significantly. Students’ perceptions of their chemistry classroom environment inventories with the MCI with the CLP and the STEM methods also were found, differently. Associations between students’ perceptions of their chemistry classroom learning environment inventories on the CLP Model and the STEM Education learning designs toward their logical thinking abilities toward chemistry, the predictive efficiency of R2 values indicate that 68% and 76% of the variances in students’ logical thinking abilities toward chemistry to their controlling and experimental chemistry classroom learning environmental groups with the MCI were correlated at .05 levels, significantly. Implementations of this result are showed the students’ learning by the CLP of the potential thinking life-changing roles in most their logical thinking abilities that it is revealed that the students perceive their abilities to be highly learning achievement in chemistry group are differentiated with the STEM education of students’ outcomes.Keywords: design, the lesson instructional plans, the stem education, the creative learning process, logical thinking ability, different, learning outcome, student, chemistry class
Procedia PDF Downloads 3214596 Oncolytic H-1 Parvovirus Entry in Cancer Cells through Clathrin-Mediated Endocytosis
Authors: T. Ferreira, A. Kulkarni, C. Bretscher, K. Richter, M. Ehrlich, A. Marchini
Abstract:
H-1 protoparvovirus (H-1PV) is a virus with inherent oncolytic and oncosuppressive activities while remaining non-pathogenic in humans. H-1PV was the first oncolytic parvovirus to undergo clinical testing. Results from trials in patients with glioblastoma or pancreatic carcinoma showed an excellent safety profile and first signs of efficacy. H-1PV infection is vastly dependent on cellular factors, from cell attachment and entry to viral replication and egress. Hence, we believe that the characterisation of the parvovirus life cycle would ultimately help further improve H-1PV clinical outcome. In the present study, we explored the entry pathway of H-1PV in cervical HeLa and glioma NCH125 cancer cell lines. Electron and confocal microscopy showed viral particles associated with clathrin-coated pits and vesicles, providing the first evidence that H-1PV cell entry occurs through clathrin-mediated endocytosis. Accordingly, we observed that by blocking clathrin-mediated endocytosis with hypertonic sucrose, chlorpromazine, or pitstop 2, H-1PV transduction was markedly decreased. Accordingly, siRNA-mediated knockdown of AP2M1, which retains a crucial role in clathrin-mediated endocytosis, verified the reliance of H-1PV on this route to enter HeLa and NCH125 cancer cells. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. Indeed, pre-treatment of cells with nystatin or methyl-β-cyclodextrin, both inhibitors of caveolae-mediated endocytosis, did not affect viral transduction levels. Unexpectedly, siRNA-mediated knockdown of caveolin-1, the main driver of caveolae-mediated endocytosis, increased H-1PV transduction, suggesting caveolin-1 is a negative modulator of H-1PV infection. We also show that H-1PV entry is dependent on dynamin, a protein responsible for mediating the scission of vesicle neck and promoting further internalisation. Furthermore, since dynamin inhibition almost completely abolished H-1PV infection, makes it unlikely that H-1PV uses macropinocytosis as an alternative pathway to enter cells. After viral internalisation, H-1PV passes through early to late endosomes as observed by confocal microscopy. Inside these endocytic compartments, the acidic environment proved to be crucial for a productive infection. Inhibition of acidification of pH dramatically reduced H-1PV transduction. Besides, a fraction of H-1PV particles was observed inside LAMP1-positive lysosomes, most likely following a non-infectious route. To the author's best knowledge, this is the first study to characterise the cell entry pathways of H-1PV. Along these lines, this work will further contribute to understand H-1PV oncolytic properties as well as to improve its clinical potential in cancer virotherapy.Keywords: clathrin-mediated endocytosis, H-1 parvovirus, oncolytic virus, virus entry
Procedia PDF Downloads 1554595 Potential Activities of Human Endogenous Retroviral kDNA in Melanoma Pathogenesis and HIV-1 Infection
Authors: Jianli Dong, Fangling Xu, Gengming Huang
Abstract:
Human endogenous retroviral elements (HERVs) comprise approximately 8% of the human genome. They are thought to be germline-integrated genetic remnants of retroviral infections. Although HERV sequences are highly defective, some, especially the K type (HERV-K), have been shown to be expressed and may have biological activities in the pathogenesis of cancer, chronic inflammation and autoimmune diseases. We found that HERV-K GAG and ENV proteins were strongly expressed in pleomorphic melanoma cells. We also detected a critical role of HERV-K ENV in mediating intercellular fusion and colony formation of melanoma cells. Interestingly, we found that levels of HERV-K GAG and ENV expression correlated with the activation of ERK and loss of p16INK4A in melanoma cells, and inhibition of MEK or CDK4, especially in combination, reduced HERV-K expression in melanoma cells. We also performed a reverse transcription-polymerase chain reaction (RT-PCR) assay using DNase I digestion to remove “contaminating” HERV-K genomic DNA and examined HERV-K RNA expression in plasma samples from HIV-1 infected individuals. We found a covariation between HERV-K RNA expression and CD4 cell counts in HIV-1 positive samples. Although a causal link between HERV-K activation and melanoma development, and between HERV-K activation, HIV-1 infection and CD4 cell count have yet to be determined, existing data support the further research efforts in HERV-K.Keywords: CD4 cell, HERV-K, HIV-1, melanoma
Procedia PDF Downloads 2324594 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence
Authors: Sehreen Moorat, Mussarat Lakho
Abstract:
A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.Keywords: medical imaging, cancer, processing, neural network
Procedia PDF Downloads 2594593 Antioxidant and Anticancer Activities of Ethanolic Extract from Monascus purpureus
Authors: M. Pourshirazi, M. Esmaelifar, A. Aliahmadi, F. Yazdian, A. S. Hatamian Zarami, S. J. Ashrafi
Abstract:
Medicinal fungi are the new potential source of drugs to improve the treatment of diseases with association to oxidative agents such as cancers. Monascus purpureus contains functional components potentially effective in improving human health. In the present work, ethanolic extract of Monascus purpureus (EEM) was evaluated for health improving potential mainly focusing on antioxidant and anticancer activities. Ferric ion reducing power (FRAP), scavenging of DPPH radicals and determining viability of breast carcinoma MCF-7 and cervical carcinoma HeLa cells with MTT assay were evaluated. Our data showed a significant antioxidant activity of EEM with 142.45 µg/ml inhibition concentration of 50% DPPH radicals and 2112.33 µg eq.Fe2+/mg extract of FRAP assay. These results might be caused by antioxidant components such as pigments and phenolic compounds. Further, the results demonstrated that EEM caused significant reduction in the viability of MCF-7 with IC50 of 7 µg/ml but not have good effect against viability of HeLa cells. Accordingly, Monascus purpureus is presented as a strong potential of breast cancer treatment. In further study, the mechanistic studies are needed to determine the mechanisms of anticancer activity of EEM.Keywords: Monascus purpureus, antioxidant, cancer, ethanolic extract
Procedia PDF Downloads 4154592 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 4284591 Numerical Simulation of a Single Cell Passing through a Narrow Slit
Authors: Lanlan Xiao, Yang Liu, Shuo Chen, Bingmei Fu
Abstract:
Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.Keywords: dissipative particle dynamics, deformability, surface area increase, cell migration
Procedia PDF Downloads 3344590 Biochemical Effects of Low Dose Dimethyl Sulfoxide on HepG2 Liver Cancer Cell Line
Authors: Esra Sengul, R. G. Aktas, M. E. Sitar, H. Isan
Abstract:
Hepatocellular carcinoma (HCC) is a hepatocellular tumor commonly found on the surface of the chronic liver. HepG2 is the most commonly used cell type in HCC studies. The main proteins remaining in the blood serum after separation of plasma fibrinogen are albumin and globulin. The fact that the albumin showed hepatocellular damage and reflect the synthesis capacity of the liver was the main reason for our use. Alpha-Fetoprotein (AFP) is an albumin-like structural embryonic globulin found in the embryonic cortex, cord blood, and fetal liver. It has been used as a marker in the follow-up of tumor growth in various malign tumors and in the efficacy of surgical-medical treatments, so it is a good protein to look at with albumins. We have seen the morphological changes of dimethyl sulfoxide (DMSO) on HepG2 and decided to investigate its biochemical effects. We examined the effects of DMSO, which is used in cell cultures, on albumin, AFP and total protein at low doses. Material Method: Cell Culture: Medium was prepared in cell culture using Dulbecco's Modified Eagle Media (DMEM), Fetal Bovine Serum Dulbecco's (FBS), Phosphate Buffered Saline and trypsin maintained at -20 ° C. Fixation of Cells: HepG2 cells, which have been appropriately developed at the end of the first week, were fixed with acetone. We stored our cells in PBS at + 4 ° C until the fixation was completed. Area Calculation: The areas of the cells are calculated in the ImageJ (IJ). Microscope examination: The examination was performed with a Zeiss Inverted Microscope. Daytime photographs were taken at 40x, 100x 200x and 400x. Biochemical Tests: Protein (Total): Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Albumin: Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Alpha-fetoprotein: Serum sample was analyzed by ECLIA method. Results: When liver cancer cells were cultured in medium with 1% DMSO for 4 weeks, a significant difference was observed when compared with the control group. As a result, we have seen that DMSO can be used as an important agent in the treatment of liver cancer. Cell areas were reduced in the DMSO group compared to the control group and the confluency ratio increased. The ability to form spheroids was also significantly higher in the DMSO group. Alpha-fetoprotein was lower than the values of an ordinary liver cancer patient and the total protein amount increased to the reference range of the normal individual. Because the albumin sample was below the specimen value, the numerical results could not be obtained on biochemical examinations. We interpret all these results as making DMSO a caretaking aid. Since each one was not enough alone we used 3 parameters and the results were positive when we refer to the values of a normal healthy individual in parallel. We hope to extend the study further by adding new parameters and genetic analyzes, by increasing the number of samples, and by using DMSO as an adjunct agent in the treatment of liver cancer.Keywords: hepatocellular carcinoma, HepG2, dimethyl sulfoxide, cell culture, ELISA
Procedia PDF Downloads 1354589 The Predictive Significance of Metastasis Associated in Colon Cancer-1 (MACC1) in Primary Breast Cancer
Authors: Jasminka Mujic, Karin Milde-Langosch, Volkmar Mueller, Mirza Suljagic, Tea Becirevic, Jozo Coric, Daria Ler
Abstract:
MACC1 (metastasis associated in colon cancer-1) is a prognostic biomarker for tumor progression, metastasis, and survival of a variety of solid cancers. MACC1 also causes tumor growth in xenograft models and acts as a master regulator of the HGF/MET signaling pathway. In breast cancer, the expression of MACC1 determined by immunohistochemistry was significantly associated with positive lymph node status and advanced clinical stage. The aim of the present study was to further investigate the prognostic or predictive value of MACC1 expression in breast cancer using western blot analysis and immunohistochemistry. The results of our study have shown that high MACC1 expression in breast cancer is associated with shorter disease-free survival, especially in node-negative tumors. The MACC1 might be a suitable biomarker to select patients with a higher probability of recurrence which might benefit from adjuvant chemotherapy. Our results support a biologic role and potentially open the perspective for the use of MACC1 as predictive biomarker for treatment decision in breast cancer patients.Keywords: breast cancer, biomarker, HGF/MET, MACC1
Procedia PDF Downloads 2334588 Lymphomas as Estrogen-Regulated Cancers
Authors: M. S. Hasni, J. Guan, K. Yakimchuk, M. Berglund, B. Sander, G. Enblad, R. M. Amini, S. Okret
Abstract:
Lymphomas are generally not considered as endocrine-related cancers. However, most lymphoid malignancies show gender differences in incidence and show prognosis with males being more affected. Furthermore, some epidemiological data indicate a protective role of estrogens against Non-Hodgkin lymphomas. Recent studies have demonstrated estrogen receptor β (ERβ) to be the major ER expressed in normal and malignant cells of lymphoid origin. We have analyzed the effects of estradiol and selective ERα and ERβ agonists on lymphoma growth in culture and in vivo. Treating lymphoma cells with estradiol or ERα selective agonist had minor or no effect on cell growth while selective ERβ agonist treatment showed an antiproliferative effect. When grafting mice with murine T lymphoma cells, male mice developed larger tumors compared to female mice, a difference that was abolished following ovariectomy, demonstrating estrogen-dependent growth in vivo. When subcutaneously grafting lymphoma cells to mice, so far growth of all tested human B lymphoma tumors (Raji and Ramos Burkitt lymphoma, SU.DHL4 (GC) and U2932 (ABC) DLBCL, Granta-519, Maver1 and Z138 MCL cells), were reduced following treatment with ERβ selective agonist (ref. 2 and unpublished). Moreover, the number and size of liver foci of disseminating Raji cells was reduced. We have identified target genes and mechanism that could explain the above effects of ERβ agonists. This included effects on angio and lymphangiogenesis. Now we have further analyzed effects of ERβ agonists on Ibrutinib-sensitive and -insensitive MCL cells in xenograft experiments as well as ERβ expression in primary lymphoma material (DLBCL). Preliminary statistical analysis has been done correlating ERβ expression to other biomarkers and clinical data.Keywords: lymphomas, estrogen receptors, cancer, liver foci
Procedia PDF Downloads 4114587 Comet Assay: A Promising Tool for the Risk Assessment and Clinical Management of Head and Neck Tumors
Authors: Sarim Ahmad
Abstract:
The Single Cell Gel Electrophoresis Assay (SCGE, known as comet assay) is a potential, uncomplicated, sensitive and state-of-the-art technique for quantitating DNA damage at individual cell level and repair from in vivo and in vitro samples of eukaryotic cells and some prokaryotic cells, being popular in its widespread use in various areas including human biomonitoring, genotoxicology, ecological monitoring and as a tool for research into DNA damage or repair in different cell types in response to a range of DNA damaging agents, cancer risk and therapy. The method involves the encapsulation of cells in a low-melting-point agarose suspension, lysis of the cells in neutral or alkaline (pH > 13) conditions, and electrophoresis of the suspended lysed cells, resulting in structures resembling comets as observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend towards the anode. This is followed by visual analysis with staining of DNA and calculating fluorescence to determine the extent of DNA damage. This can be performed by manual scoring or automatically by imaging software. The assay can, therefore, predict an individual’s tumor sensitivity to radiation and various chemotherapeutic drugs and further assess the oxidative stress within tumors and to detect the extent of DNA damage in various cancerous and precancerous lesions of oral cavity.Keywords: comet assay, single cell gel electrophoresis, DNA damage, early detection test
Procedia PDF Downloads 2924586 Effect of Oxytocin on Cytosolic Calcium Concentration of Alpha and Beta Cells in Pancreas
Authors: Rauza Sukma Rita, Katsuya Dezaki, Yuko Maejima, Toshihiko Yada
Abstract:
Oxytocin is a nine-amino acid peptide synthesized in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. Oxytocin promotes contraction of the uterus during birth and milk ejection during breast feeding. Although oxytocin receptors are found predominantly in the breasts and uterus of females, many tissues and organs express oxytocin receptors, including the pituitary, heart, kidney, thymus, vascular endothelium, adipocytes, osteoblasts, adrenal gland, pancreatic islets, and many cell lines. On the other hand, in pancreatic islets, oxytocin receptors are expressed in both α-cells and β-cells with stronger expression in α- cells. However, to our knowledge there are no reports yet about the effect of oxytocin on cytosolic calcium reaction on α and β-cell. This study aims to investigate the effect of oxytocin on α-cells and β-cells and its oscillation pattern. Islet of Langerhans from wild type mice were isolated by collagenase digestion. Isolated and dissociated single cells either α-cells or β-cells on coverslips were mounted in an open chamber and superfused in HKRB. Cytosolic concentration ([Ca2+]i) in single cells were measured by fura-2 microfluorimetry. After measurement of [Ca2+]i, α-cells were identified by subsequent immunocytochemical staining using an anti-glucagon antiserum. In β-cells, the [Ca2+]i increase in response to oxytocin was observed only under 8.3 mM glucose condition, whereas in α-cells, [Ca2+]i an increase induced by oxytocin was observed in both 2.8 mM and 8.3 mM glucose. The oscillation incidence was induced more frequently in β-cells compared to α-cells. In conclusion, the present study demonstrated that oxytocin directly interacts with both α-cells and β-cells and induces increase of [Ca2+]i and its specific patterns.Keywords: α-cells, β-cells, cytosolic calcium concentration, oscillation, oxytocin
Procedia PDF Downloads 1924585 An Activatable Prodrug for the Treatment of Metastatic Tumors
Authors: Eun-Joong Kim, Sankarprasad Bhuniya, Hyunseung Lee, Hyun Min Kim, Chaejoon Cheong, Su-khendu Maiti, Kwan Soo Hong, Jong Seung Kim
Abstract:
Metastatic cancers have historically been difficult to treat. However, metastatic tumors have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential anti-metastatic therapy. In this study, prodrug 7 was designed to be activated by H2O2-mediated boronate oxidation, resulting in activation of the fluorophore for detection and release of the therapeutic agent, SN-38. Drug release from prodrug 7 was investigated by monitoring fluorescence after addition of H2O2 to the cancer cells. Prodrug 7 activated by H2O2 selectively inhibited tumor cell growth. Furthermore, intratracheally administered prodrug 7 showed effective anti-tumor activity in a mouse model of metastatic lung disease. Thus, this H2O2-responsive prodrug has therapeutic potential as a novel treatment for metastatic cancer via cellular imaging with fluorescence as well as selective release of the anti-cancer drug, SN-38.Keywords: hydrogen peroxide, prodrug, metastatic tumors, fluorescence
Procedia PDF Downloads 4534584 Radio Frequency Heating of Iron-Filled Carbon Nanotubes for Cancer Treatment
Authors: L. Szymanski, S. Wiak, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska
Abstract:
There exist more than one hundred different types of cancer, and therefore no particular treatment is offered to people struggling with this disease. The character of treatment proposed to a patient will depend on a variety of factors such as type of the cancer diagnosed, advancement of the disease, its location in the body, as well as personal preferences of a patient. None of the commonly known methods of cancer-fighting is recognised as a perfect cure, however great advances in this field have been made over last few decades. Once a patient is diagnosed with cancer, he is in need of medical care and professional treatment for upcoming months, and in most cases even for years. Among the principal modes of treatment offered by medical centres, one can find radiotherapy, chemotherapy, and surgery. All of them can be applied separately or in combination, and the relative contribution of each is usually determined by medical specialist in agreement with a patient. In addition to the conventional treatment option, every day more complementary and alternative therapies are integrated into mainstream care. There is one promising cancer modality - hyperthermia therapy which is based on exposing body tissues to high temperatures. This treatment is still being investigated and is not widely available in hospitals and oncological centres. There are two kinds of hyperthermia therapies with direct and indirect heating. The first is not commonly used due to low efficiency and invasiveness, while the second is deeply investigated and a variety of methods have been developed, including ultrasounds, infrared sauna, induction heating and magnetic hyperthermia. The aim of this work was to examine possibilities of heating magnetic nanoparticles under the influence of electromagnetic field for cancer treatment. For this purpose, multiwalled carbon nanotubes used as nanocarriers for iron particles were investigated for its heating properties. The samples were subjected to an alternating electromagnetic field with frequency range between 110-619 kHz. Moreover, samples with various concentrations of carbon nanotubes were examined. The lowest frequency of 110 kHz and sample containing 10 wt% of carbon nanotubes occurred to influence the most effective heating process. Description of hyperthermia therapy aiming at enhancing currently available cancer treatment was also presented in this paper. Most widely applied conventional cancer modalities such as radiation or chemotherapy were also described. Methods for overcoming the most common obstacles in conventional cancer modalities, such as invasiveness and lack of selectivity, has been presented in magnetic hyperthermia characteristics, which explained the increasing interest of the treatment.Keywords: hyperthermia, carbon nanotubes, cancer colon cells, ligands
Procedia PDF Downloads 2664583 Changes in Knowledge and Awareness for a Community-Based Cancer Screening Educational Program
Authors: Shenghui Wu, Patricia Chalela, Amelie G. Ramirez
Abstract:
Background: Cervical cancer (CC), colorectal cancer (CRC), and breast cancer (BC) are diseases that can be prevented/detected through early test. Through educational programs, individuals can become better informed about these cancers and understand the importance of screening and early detection. A community-based educational program was developed to improve knowledge and awareness toward the screening of the three cancer types in a South Texas underserved population. Methods: Residents living in Laredo, Texas were invited to participate in the present study. From January 2020 to April 2021, participants were recruited using social media and flyer distributions in general community. Participants received a free live web cancer education presentation delivered by bilingual community health educators, and online pre- and post-education surveys for CC, CRC, and BC separately. Pre-post changes in knowledge for individual items were compared using McNemar’s chi-squared tests. Results: Overall, participants demonstrated increases in CC (n=237), CRC (n=59), and BC (n=56) screening knowledge and awareness after receiving the cancer screening education (Ps<0.05). After receiving the cancer screening education, 85-97% of participants had an intent to talk to a healthcare provider about CC/CRC/BC screening, 88-97% had an intent to get a CC/CRC/BC screening test in the next 12 months or at the next routine appointment, and 90-97% had an intent to talk about CC/CRC/BC with their family members or friends. Conclusion: A community-based educational program can help increase knowledge and awareness about cervical, colorectal, and breast cancer screening, promote positive changes in population's knowledge and awareness about the benefits of cancer screening.Keywords: cervical cancer, colorectal cancer, breast cancer, educational program, health knowledge, awareness, Hispanics, screening, health education
Procedia PDF Downloads 1074582 Infused Mesenchymal Stem Cells Ameliorate Organs Morphology in Cerebral Malaria Infection
Authors: Reva Sharan Thakur, Mrinalini Tiwari, Jyoti das
Abstract:
Cerebral malaria-associated over expression of pro-inflammatory cytokines and chemokines ultimately results in the up-regulation of adhesion molecules in the brain endothelium leading to sequestration of mature parasitized RBCs in the brain. The high-parasitic load subsequently results in increased mortality or development of neurological symptoms within a week of infection. Studies in the human and experimental cerebral malaria have implicated the breakdown of the integrity of blood-brain barrier during the lethal course of infection, cerebral dysfunction, and fatal organ pathologies that result in multi-organ failure. In the present study, using Plasmodium berghei Anka as a mouse model and in vitro conditions, we have investigated the effect of MSCs to attenuate cerebral malaria pathogenesis by diminishing the effect of inflammation altered organ morphology, reduced parasitemia, and increased survival of the mice. MSCs are also validated for their role in preventing BBB dysfunction and reducing malarial toxins. It was observed that administration of MSCs significantly reduced parasitemia and increased survival in Pb A infected mice. It was further demonstrated that MSCs play a significant role in reversing neurological complexities associated with cerebral malaria. Infusion of MSCs in infected mice decreased hemozoin deposition; oedema, and haemorrhagic lesions in vascular organs. MSCs administration also preserved the integrity of the blood-brain barrier and reduced neural inflammation. Taken together, our results demonstrate the potential of MSCs as an emerging anti-malarial candidate.Keywords: cerebral malaria, mesenchymal stem cells, erythropoesis, cell death
Procedia PDF Downloads 1034581 Activation of Spermidine/Spermine N1-Acetyltransferase 1 (SSAT-1) as Biomarker in Breast Cancer
Authors: Rubina Ghani, Sehrish Zia, Afifa Fatima Rafique, Shaista Emad
Abstract:
Background: Cancer is a leading cause of death worldwide, with breast cancer being the most common cancer in women. Pakistan has the highest rate of breast cancer cases among Asian countries. Early and accurate diagnosis is crucial for treatment outcomes and quality of life. Method: It is a case-control study with a sample size of 150. There were 100 suspected cancer cases, 25 healthy controls, and 25 diagnosed cancer cases. To analyze SSAT-1 mRNA expression in whole blood, Zymo Research Quick-RNA Miniprep and Innu SCRIPT—One Step RT-PCR Syber Green kits were used. Patients were divided into three groups: 100 suspected cancer cases, 25 controls, and 25 confirmed breast cancer cases. Result: The total mRNA was isolated, and the expression of SSAT-1 was measured using RT-qPCR. The threshold cycle (Ct) values were used to determine the amount of each mRNA. Ct values were then calculated by taking the difference between the CtSSAT-1 and Ct GAPDH, and further Ct values were calculated with the median absolute deviation for all the samples within the same experimental group. Samples that did not correlate with the results were taken as outliers and excluded from the analysis. The relative fold change is shown as 2^-Ct values. Suspected cases showed a maximum fold change of 32.24, with a control fold change of 1.31. Conclusion: The study reveals an overexpression of SSAT-1 in breast cancer. Furthermore, we can use SSAT-1 as a diagnostic, prognostic, and therapeutic marker for early diagnosis of cancer.Keywords: breast cancer, spermidine/spermine, qPCR, mRNA
Procedia PDF Downloads 374580 Functionalization of Carboxylated Single-Walled Carbon Nanotubes with 2-En 4-Hydroxy Cyclo 1-Octanon and Toxicity Investigation
Authors: D. ChobfroushKhoei, S. K. Heidari , Sh. Dariadel
Abstract:
Carbon nanotubes were used in medical sciences especially in drug delivery system and cancer therapy. In this study, we functionalized carboxylated single-wall carbon nanotubes (SWNT-COOH) with 2-en 4-hydroxy cyclo 1-octanon. Synthesized sample was characterized by FT-IR, Raman spectroscopy, SEM, TGA and cellular investigations. The results showed well formation of SWNT-Ester. Cell viability assay results and microscopic observations demonstrated that cancerous cells were killed in the sample. The synthesized sample can be used as a toxic material for cancer therapy.Keywords: MWNT-COOH, functionalization, phenylisocyanate, phenylisothiocyanate, 1, 4-phenylendiamine, toxicity investigation
Procedia PDF Downloads 4524579 An Overview of Paclitaxel as an Anti-Cancer Agent in Avoiding Malignant Metastatic Cancer Therapy
Authors: Nasrin Hosseinzad, Ramin Ghasemi Shayan
Abstract:
Chemotherapy is the most common procedure in the treatment of advanced cancers but is justsoberlyoperativeand toxic. Nevertheless, the efficiency of chemotherapy is restrictedowing to multiple drug resistance(MDR). Lately, plentiful preclinical experiments have revealedthatPaclitaxel-Curcumin could be an ultimateapproach to converse MDR and synergistically increase their efficiency. The connotationsamongst B-cell-lymphoma2(BCL-2) and multi-drug-resistance-associated-P-glycoprotein(MDR1) consequence of patients forecast the efficiency of paclitaxel-built chemoradiotherapy. There are evidences of the efficacy of paclitaxel in the treatment of surface-transmission of bladder-cell-carcinoma by manipulating bio-adhesive microspheres accomplishedthroughout measured release of drug at urine epithelium. In Genetically-Modified method, muco-adhesive oily constructionoftricaprylin, Tween 80, and paclitaxel group showed slighter toxicity than control in therapeutic dose. Postoperative chemotherapy-Paclitaxel might be more advantageous for survival than adjuvant chemo-radio-therapy, and coulddiminish postoperative complications in cervical cancer patients underwent a radical hysterectomy.HA-Se-PTX(Hyaluronic acid, Selenium, Paclitaxel) nanoparticles could observablyconstrain the proliferation, transmission, and invasion of metastatic cells and apoptosis. Furthermore, they exhibitedvast in vivo anti-tumor effect. Additionally, HA-Se-PTX displayedminor toxicity on mice-chef-organs. Briefly, HA-Se-PTX mightprogress into a respectednano-scale agentinrespiratory cancers. To sum up, Paclitaxel is considered a profitable anti-cancer drug in the treatment and anti-progress symptoms in malignant cancers.Keywords: cancer, paclitaxel, chemotherapy, tumor
Procedia PDF Downloads 1324578 Impact of Mammographic Screening on Ethnic Inequalities in Breast Cancer Stage at Diagnosis and Survival in New Zealand
Authors: Sanjeewa Seneviratne, Ian Campbell, Nina Scott, Ross Lawrenson
Abstract:
Introduction: Indigenous Māori women experience a 60% higher breast cancer mortality rate compared with European women in New Zealand. We explored the impact of difference in the rate of screen detected breast cancer between Māori and European women on more advanced disease at diagnosis and lower survival in Māori women. Methods: All primary in-situ and invasive breast cancers diagnosed in screening age women (as defined by the New Zealand National Breast Cancer Screening Programme) between 1999 and 2012 in the Waikato area were identified from the Waikato Breast Cancer Register and the national screening database. Association between screen versus non-screen detection and cancer stage at diagnosis and survival were compared by ethnicity and socioeconomic deprivation. Results: Māori women had 50% higher odds of being diagnosed with more advance staged cancer compared with NZ European women, a half of which was explained by the lower rate of screen detected cancer in Māori women. Significantly lower breast cancer survival rates were observed for Māori compared with NZ European and most deprived compared with most affluent socioeconomic groups for symptomatically detected breast cancer. No significant survival differences by ethnicity or socioeconomic deprivation were observed for screen detected breast cancer. Conclusions: Low rate of screen detected breast cancer appears to be a major contributor for more advanced stage disease at diagnosis and lower breast cancer survival in Māori compared with NZ European women. Increasing screening participation for Māori has the potential to substantially reduce breast cancer mortality inequity between Māori and NZ European women.Keywords: breast cancer, screening, ethnicity, inequity
Procedia PDF Downloads 5144577 The Use of Medical Biotechnology to Treat Genetic Disease
Authors: Rachel Matar, Maxime Merheb
Abstract:
Chemical drugs have been used for many centuries as the only way to cure diseases until the novel gene therapy has been created in 1960. Gene therapy is based on the insertion, correction, or inactivation of genes to treat people with genetic illness (1). Gene therapy has made wonders in Parkison’s, Alzheimer and multiple sclerosis. In addition to great promises in the healing of deadly diseases like many types of cancer and autoimmune diseases (2). This method implies the use of recombinant DNA technology with the help of different viral and non-viral vectors (3). It is nowadays used in somatic cells as well as embryos and gametes. Beside all the benefits of gene therapy, this technique is deemed by some opponents as an ethically unacceptable treatment as it implies playing with the genes of living organisms.Keywords: gene therapy, genetic disease, cancer, multiple sclerosis
Procedia PDF Downloads 5414576 The Conjugated Polymers in improving the Organic Solar Cells Efficiency
Authors: Samia Moulebhar, Chahrazed Bendenia, Souhila Bendenia, Hanaa Merad-dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri
Abstract:
The photovoltaic solar field is today experiencing exponential advancement with the exploitation of new technological sectors of nanoparticles, namely the field of solar cells based on organic polymer materials. These cells are flexible, easy to process and low cost. This work includes a presentation of the conjugated polymer materials used in the design of photovoltaic technology devices while determining their properties and then the models used for the modeling of thin film photovoltaic cells heterojunction.Keywords: photovoltaic, cells, nanoparticles, organic
Procedia PDF Downloads 854575 Effect of a Synthetic Platinum-Based Complex on Autophagy Induction in Leydig TM3 Cells
Authors: Ezzati Givi M., Hoveizi E., Nezhad Marani N.
Abstract:
Platinum-based anticancer therapeutics are the most widely used drugs in clinical chemotherapy but have major limitations and various side effects in clinical applications. Gonadotoxicity and sterility is one of the most common complications for cancer survivors, which seem to be drug-specific and dose-related. Therefore, many efforts have been dedicated to discovering a new structure of platinum-based anticancer agents with improved therapeutic index, fewer side effects. In this regard, new Pt(II)-phosphane complexes containing heterocyclic thionate ligands (PCTL) have been synthesized, which show more potent antitumor activities in comparison to cisplatin. Cisplatin, the best leading metal-based antitumor drug in the field, induces testicular toxicity on Leydig and Sertoli cells leading to serious side effects such as azoospermia and infertility. Therefore in the present study, we aimed to investigate the cytotoxicity effect of PCTL on mice TM4 Sertoli cells with particular emphasis on the role of autophagy in comparison to cisplatin. In this study, an MTT assay was performed to evaluate the IC50 of PCTL and to analyze the TM3 Leydig cell's viability. Cells morphology was evaluated via invert microscope and Changing in morphology for nuclei swelling or autophagic vacuoles formation were assessed by DAPI and MDC staining. Testosterone production in the culture medium was measured using an ELISA kit. Finally, the expression of Autophagy-related genes, Atg5, Beclin1 and p62, were analyzed by qPCR. Based on the obtained results by MTT, the IC50 value of PCTL was 50 μM in TM3 cells and cytotoxic effects was in a dose- and time-dependent manner. Cells morphological changes investigated by inverted microscopy, DAPI, and MDC staining which showed the cytotoxic concentrations of PCTL was significantly higher than cisplatin in the treated TM3 Leydig cells. The results of PCR showed a lack of expression of the p62, Atg5 and Beclin1 gene in TM3 cells treated with PCTL in comparison to cisplatin and control groups. It should be noted that the effects of 25 μM PCTL concentration on TM3 cells have been associated with increased testosterone production and secretion, which requires further study to explain the possible causes and involved molecular mechanisms. The results of the study showed that the PCTL had less-lethal effects on TM3 cells in comparison to cisplatin and probably did not induce autophagy in TM3 cells.Keywords: platinum-based anticancer agents, cisplatin, Leydig TM3 cells, autophagy
Procedia PDF Downloads 1284574 Mathematical Modelling of Blood Flow with Magnetic Nanoparticles as Carrier for Targeted Drug Delivery in a Stenosed Artery
Authors: Sreeparna Majee, G. C. Shit
Abstract:
A study on targeted drug delivery is carried out in an unsteady flow of blood infused with magnetic NPs (nanoparticles) with an aim to understand the flow pattern and nanoparticle aggregation in a diseased arterial segment having stenosis. The magnetic NPs are supervised by the magnetic field which is significant for therapeutic treatment of arterial diseases, tumor and cancer cells and removing blood clots. Coupled thermal energy have also been analyzed by considering dissipation of energy because of the application of the magnetic field and the viscosity of blood. Simulation technique used to solve the mathematical model is vorticity-stream function formulations in the diseased artery. An elevation in SLP (Specific loss power) is noted in the aortic bloodstream when the agglomeration of nanoparticles is higher. This phenomenon has potential application in the treatment of hyperthermia. The study focuses on the lowering of WSS (Wall Shear Stress) with increasing particle concentration at the downstream of the stenosis which depicts the vigorous flow circulation zone. These low shear stress regions prolong the residing time of the nanoparticles carrying drugs which soaks up the LDL (Low Density Lipoprotein) deposition. Moreover, an increase in NP concentration enhances the Nusselt number which marks the increase of heat transfer from the arterial wall to the surrounding tissues to destroy tumor and cancer cells without affecting the healthy cells. The results have a significant influence in the study of medicine, to treat arterial diseases such as atherosclerosis without the need for surgery which can minimize the expenditures on cardiovascular treatments.Keywords: magnetic nanoparticles, blood flow, atherosclerosis, hyperthermia
Procedia PDF Downloads 1414573 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing
Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila
Abstract:
Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing
Procedia PDF Downloads 1764572 Metabolomics Profile Recognition for Cancer Diagnostics
Authors: Valentina L. Kouznetsova, Jonathan W. Wang, Igor F. Tsigelny
Abstract:
Metabolomics has become a rising field of research for various diseases, particularly cancer. Increases or decreases in metabolite concentrations in the human body are indicative of various cancers. Further elucidation of metabolic pathways and their significance in cancer research may greatly spur medicinal discovery. We analyzed the metabolomics profiles of lung cancer. Thirty-three metabolites were selected as significant. These metabolites are involved in 37 metabolic pathways delivered by MetaboAnalyst software. The top pathways are glyoxylate and dicarboxylate pathway (its hubs are formic acid and glyoxylic acid) along with Citrate cycle pathway followed by Taurine and hypotaurine pathway (the hubs in the latter are taurine and sulfoacetaldehyde) and Glycine, serine, and threonine pathway (the hubs are glycine and L-serine). We studied interactions of the metabolites with the proteins involved in cancer-related signaling networks, and developed an approach to metabolomics biomarker use in cancer diagnostics. Our analysis showed that a significant part of lung-cancer-related metabolites interacts with main cancer-related signaling pathways present in this network: PI3K–mTOR–AKT pathway, RAS–RAF–ERK1/2 pathway, and NFKB pathway. These results can be employed for use of metabolomics profiles in elucidation of the related cancer proteins signaling networks.Keywords: cancer, metabolites, metabolic pathway, signaling pathway
Procedia PDF Downloads 4014571 Effects of Some Characteristics of Gynecological Cancer Diagnosis and Treatment on Women's Sexual Life Quality
Authors: Buse Bahitli, Samiye Mete
Abstract:
The aim of the study was to evaluate the quality of sexual life of women with diagnosed gynecological cancer and receive treatment. The study was a descriptive and cross-sectional type, and it was carried out with 276 women. Information Form and Sexual Quality of Life Scale-Female (SQOL) form was used in the study. The data was evaluated using Mann-Whitney U and Kruskal-Wallis test. In the study, Sexual Quality of Life Scale-Female average score was 68.83 ± 21.17. The %43.1 of women was endometrial cancer, %30.8 was cervical cancer, %24.6 was ovarian cancer, and %1.4 was vulvar cancer. The average time to diagnosis of patients is 41.80 ± 47.64 months. There was no significant difference mean SQOL according to individual/sociodemographic characteristics like age, education. Gynecological cancer-related characteristics like gynaecological cancer type, treatment type, surgery type were found not to affect the mean score of SQOL. However, it was found that the difference was due to the higher SQOL score in the group with a diagnosis time of 25 months and over (X²KW= 6.356, p= 0.046). The reason of significant difference means SQOL according to diagnosis over time might be that women adapted to cancer diagnosis. While women with gynaecologic cancer are evaluating their sexual lives, it is necessary to evaluate them with good evaluation tools.Keywords: gynecological cancers, sexuality, quality of sexual life, SQOL
Procedia PDF Downloads 3804570 NS5ABP37 Inhibits Liver Cancer by Impeding Lipogenesis and Cholesterogenesis
Authors: Shenghu Feng, Jun Cheng
Abstract:
The molecular mechanism underlying nonalcoholic fatty liver disease (NAFLD) progression to hepatocellular carcinoma (HCC) remains unknown. In this study, immunohistochemistry staining result showed that NS5ABP37 protein expression decreased as with increasing degree of HCC malignancy. In agreement, NS5ABP37 protein overexpression significantly suppressed cell proliferation, caused G1/S cell cycle arrest, and induced apoptosis by increasing caspase-3/7 activity and cleaved caspase-3 levels. In addition, NS5ABP37 overexpression resulted in decreased intracellular TG and TC contents, with level reduction in SREBPs and downstream effectors. Furthermore, NS5ABP37 overexpression decreased SREBP1c and SREBP2 levels by inducing their respective promoters. Finally, ROS levels and ER-stress were both induced by NS5ABP37 overexpression. These findings together demonstrate that NS5ABP37 inhibits cancer cell proliferation and promotes apoptosis, by altering SREBP-dependent lipogenesis and cholesterogenesis in HepG2 cells and inducing oxidative stress and ER stress.Keywords: NS5ABP37, liver cancer, lipid metabolism, oxidative stress, ER stress
Procedia PDF Downloads 1544569 The Involvement of the Homing Receptors CCR7 and CD62L in the Pathogenesis of Graft-Versus-Host Disease
Authors: Federico Herrera, Valle Gomez García de Soria, Itxaso Portero Sainz, Carlos Fernández Arandojo, Mercedes Royg, Ana Marcos Jimenez, Anna Kreutzman, Cecilia MuñozCalleja
Abstract:
Introduction: Graft-versus-host disease (GVHD) still remains the major complication associated with allogeneic stem cell transplantation (SCT). The pathogenesis involves migration of donor naïve T-cells into recipient secondary lymphoid organs. Two molecules are important in this process: CD62L and CCR7, which are characteristically expressed in naïve/central memory T-cells. With this background, we aimed to study the influence of CCR7 and CD62L on donor lymphocytes in the development and severity of GVHD. Material and methods: This single center study included 98 donor-recipient pairs. Samples were collected prospectively from the apheresis product and phenotyped by flow cytometry. CCR7 and CD62L expression in CD4+ and CD8+ T-cells were compared between patients who developed acute (n=40) or chronic GVHD (n=33) and those who did not (n=38). Results: The patients who developed acute GVHD were transplanted with a higher percentage of CCR7+CD4+ T-cells (p = 0.05) compared to the no GVHD group. These results were confirmed when these patients were divided in degrees according to the severity of the disease; the more severe disease, the higher percentage of CCR7+CD4+ T-cells. Conversely, chronic GVHD patients received a higher percentage of CCR7+CD8+ T-cells (p=0.02) in comparison to those who did not develop the complication. These data were also confirmed when patients were subdivided in degrees of the disease severity. A multivariable analysis confirmed that percentage of CCR7+CD4+ T-cells is a predictive factor of acute GVHD whereas the percentage of CCR7+CD8+ T-cells is a predictive factor of chronic GVHD. In vitro functional assays (migration and activation assays) supported the idea of CCR7+ T-cells were involved in the development of GVHD. As low levels of CD62L expression were detected in all apheresis products, we tested the hypothesis that CD62L was shed during apheresis procedure. Comparing CD62L surface levels in T-cells from the same donor immediately before collecting the apheresis product, and the final apheresis product we found that this process down-regulated CD62L in both CD4+ and CD8+ T cells (p=0.008). Interestingly, when CD62L levels were analysed in days 30 or 60 after engraftment, they recovered to baseline (p=0.008). However, to investigate the relation between CD62L expression and the development of GVHD in the recipient samples after the engraftment, no differences were observed comparing patients with GVHD to those who did not develop the disease. Discussion: Our prospective study indicates that the CCR7+ T-cells from the donor, which include naïve and central memory T-cells, contain the alloreactive cells with a high ability to mediate GVHD (in the case of both migration and activation). Therefore we suggest that the proportion and functional properties of CCR7+CD4+ and CCR7+CD8+ T-cells in the apheresis could act as a predictive biomarker to both acute and chronic GVHD respectively. Importantly, our study precludes that CD62L is lost in the apheresis and therefore it is not a reliable biomarker for the development of GVHD.Keywords: CCR7, CD62L, GVHD, SCT
Procedia PDF Downloads 2874568 Use of Nutritional Screening Tools in Cancer-Associated Malnutrition
Authors: Meryem Saban Guler, Saniye Bilici
Abstract:
Malnutrition is a problem that significantly affects patients with cancer throughout the course of their illness, and it may be present from the moment of diagnosis until the end of treatment. We searched electronic databases using key terms such as ‘malnutrition in cancer patients’ or ‘nutritional status in cancer’ or ‘nutritional screening tools’ etc. Decline in nutritional status and continuing weight loss are associated with an increase in number and severity of complications, impaired quality of life and decreased survival rate. Nutrition is an important factor in the treatment and progression of cancer. Cancer patients are particularly susceptible to nutritional depletion due to the combined effects of the malignant disease and its treatment. With increasing incidence of cancer, identification and management of nutritional deficiencies are needed. Early identification of malnutrition, is substantial to minimize or prevent undesirable outcomes throughout clinical course. In determining the nutritional status; food consumption status, anthropometric methods, laboratory tests, clinical symptoms, psychosocial data are used. First-line strategies must include routine screening and identification of inpatients or outpatients at nutritional risk with the use of a simple and standardized screening tool. There is agreement among international nutrition organizations and accredited health care organizations that routine nutritional screening should be a standard procedure for every patient admitted to a hospital. There are f management of all cancer patients therefore routine nutritional screening with validated tools can identify cancer patients at risk.Keywords: cancer, malnutrition, nutrition, nutritional screening
Procedia PDF Downloads 205