Search results for: enterotoxigenic E. coli
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 699

Search results for: enterotoxigenic E. coli

669 PPRA Controls DNA Replication and Cell Growth in Escherichia Coli

Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra

Abstract:

PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provide better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.

Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity

Procedia PDF Downloads 75
668 Assessment of Escherichia coli along Nakibiso Stream in Mbale Municipality, Uganda

Authors: Abdul Walusansa

Abstract:

The aim of this study was to assess the level of microbial pollution along Nakibiso stream. The study was carried out in polluted waters of Nakibiso stream, originating from Mbale municipality and running through ADRA Estates to Namatala Wetlands in Eastern Uganda. Four sites along the stream were selected basing on the activities of their vicinity. A total of 120 samples were collected in sterile bottles from the four sampling locations of the stream during the wet and dry seasons of the year 2011. The samples were taken to the National water and Sewerage Cooperation Laboratory for Analysis. Membrane filter technique was used to test for Erischerichia coli. Nitrogen, Phosphorus, pH, dissolved oxygen, electrical conductivity, total suspended solids, turbidity and temperature were also measured. Results for Nitrogen and Phosphorus for sites; 1, 2, 3 and 4 were 1.8, 8.8, 7.7 and 13.8 NH4-N mg/L; and 1.8, 2.1, 1.8 and 2.3 PO4-P mg/L respectively. Basing on these results, it was estimated that farmers use 115 and 24 Kg/acre of Nitrogen and Phosphorus respectively per month. Taking results for Nitrogen, the same amount of Nutrients in artificial fertilizers would cost $ 88. This shows that reuse of wastewater has a potential in terms of nutrients. The results for E. coli for sites 1, 2, 3 and 4 were 1.1 X 107, 9.1 X 105, 7.4 X 105, and 3.4 X 105 respectively. E. coli hence decreased downstream with statistically significant variations between sites 1 and 4. Site 1 had the highest mean E.coli counts. The bacterial contamination was significantly higher during the dry season when more water was needed for irrigation. Although the water had the potential for reuse in farming, bacterial contamination during both seasons was higher than 103 FC/100ml recommended by WHO for unrestricted Agriculture.

Keywords: E. coli, nitrogen, phosphorus, water reuse, waste water

Procedia PDF Downloads 250
667 Molecular Detection of Naegleria fowleri and Fecal Indicator Bacteria in Brackish Water of Lake Pontchartrain, Louisiana

Authors: Jia Xue, Frederica G. Lamar, Siyu Lin, Jennifer G. Lamori, Samendra Sherchan

Abstract:

Brackish water samples from Lake Pontchartrain in Louisiana were assessed for the presence of pathogenic amoeba Naegleria fowleri, which causes primary amoebic meningoencephalitis (PAM). In our study, quantitative polymerase chain reaction (qPCR) methods were used to determine N. fowleri, E. coli, and Enterococcus in water collected from Lake Pontchartrain. A total of 158 water samples were analyzed over the 10-month sampling period. Statistically significant positive correlation between water temperature and N. fowleri concentration was observed. N. fowleri target sequence was detected at 35.4% (56/158) of the water samples from ten sites around the Lake ranged from 11.6 GC/100 ml water to 457.8 GC/100 ml water. A single factor (ANOVA) analysis shows the average concentration of N. fowleri in summer (119.8 GC/100 ml) was significantly higher than in winter (58.6 GC/100 ml) (p < 0.01). Statistically significant positive correlations were found between N. fowleri and qPCR E. coli results and N. fowleri and colilert E. coli (culture method), respectively. A weak positive correlation between E. coli and Enterococcus was observed from both qPCR (r = 0.27, p < 0.05) and culture based method (r = 0.52, p < 0.05). Meanwhile, significant positive correlation between qPCR and culture based methods for E. coli (r = 0.30, p < 0.05) and Enterococcus concentration was observed (r = 0.26, p < 0.05), respectively. Future research is needed to determine whether sediment is a source of N. fowleri found in the water column.

Keywords: brackish water, Escherichia coli, Enterococcus, Naegleria fowleri, primary amoebic meningoencephalitis (PAM), qPCR

Procedia PDF Downloads 163
666 Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications

Authors: Ashima Sharma, Tapan K. Chaudhuri

Abstract:

Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications.

Keywords: enhanced functional production of rHSA in E. coli, recombinant human serum albumin, recombinant protein expression, recombinant protein processing

Procedia PDF Downloads 349
665 Assessment of the Role of Plasmid in Multidrug Resistance in Extended Spectrum βEtalactamase Producing Escherichia Coli Stool Isolates from Diarrhoeal Patients in Kano Metropolis Nigeria

Authors: Abdullahi Musa, Yakubu Kukure Enebe Ibrahim, Adeshina Gujumbola

Abstract:

The emergence of multidrug resistance in clinical Escherichia coli has been associated with plasmid-mediated genes. DNA transfer among bacteria is critical to the dissemination of resistance. Plasmids have proved to be the ideal vehicles for dissemination of resistance genes. Plasmids coding for antibiotic resistance were long being recognized by many researchers globally. The study aimed at determining the antibiotic susceptibility pattern of ESBL E. coli isolates claimed to be multidrug resistance using disc diffusion method. Antibacterial activity of the test isolates was carried out using disk diffusion methods. The results showed that, majority of the multidrug resistance among clinical isolates of ESBL E. coli was as a result of acquisition of plasmid carrying antibiotic-resistance genes. Production of these ESBL enzymes by these organisms which are normally carried by plasmid and transfer from one bacterium to another has greatly contributed to the rapid spread of antibiotic resistance amongst E. coli isolates, which lead to high economic burden, increase morbidity and mortality rate, complication in therapy and limit treatment options. To curtail these problems, it is of significance to checkmate the rate at which over the counter drugs are sold and antibiotic misused in animal feeds. This will play a very important role in minimizing the spread of resistance bacterial strains in our environment.

Keywords: Escherichia coli, plasmid, multidrug resistance, ESBL, pan drug resistance

Procedia PDF Downloads 72
664 Effect of Oxidative Stress on Glutathione Reductase Activity of Escherichia coli Clinical Isolates from Patients with Urinary Tract Infection

Authors: Fariha Akhter Chowdhury, Sabrina Mahboob, Anamika Saha, Afrin Jahan, Mohammad Nurul Islam

Abstract:

Urinary tract infection (UTI) is frequently experienced by the female population where the prevalence increases with aging. Escherichia coli, one of the most common UTI causing organisms, retains glutathione defense mechanism that aids the organism to withstand the harsh physiological environment of urinary tract, host oxidative immune response and even to affect antibiotic-mediated cell death and the emergence of resistance. In this study, we aimed to investigate the glutathione reductase activity of uropathogenic E. coli (UPEC) by observing the reduced glutathione (GSH) level alteration under stressful condition. Urine samples of 58 patients with UTI were collected. Upon isolation and identification, 88% of the samples presented E. coli as UTI causing organism among which randomly selected isolates (n=9), obtained from urine samples of female patients, were considered for this study. E. coli isolates were grown under normal and stressful conditions where H₂O₂ was used as the stress-inducing agent. GSH level estimation of the isolates in both conditions was carried out based on the colorimetric measurement of 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) and GSH reaction product using microplate reader assay. The GSH level of isolated E. coli sampled from adult patients decreased under stress compared to normal condition (p = 0.011). On the other hand, GSH production increased markedly in samples that were collected from elderly subjects (p = 0.024). A significant partial correlation between age and change of GSH level was found as well (p = 0.007). This study may help to reveal ways for better understanding of E. coli pathogenesis of UTI prevalence in elderly patients.

Keywords: Escherichia coli, glutathione reductase activity, oxidative stress, reduced glutathione (GSH), urinary tract infection (UTI)

Procedia PDF Downloads 332
663 Effects of β-Glucan on the Release of Nitric Oxide by RAW264.7 Cells Stimulated with Escherichia coli Lipopolysaccharide

Authors: Eun Young Choi, So Hui Choe, Jin Yi Hyeon, Ji Young Jin, Bo Ram Keum, Jong Min Lim, Hyung Rae Cho, Kwang Keun Cho, In Soon Choi

Abstract:

This research analyzed the effect of β-glucan that is expected to alleviate the production of inflammatory mediator in macrophagocyte, which was processed by the lipopolysaccharide (LPS) of Escherichia, a pathogen related to allergy. The incubated layer was used for nitric oxide (NO) analysis. The DNA-binding activation of the small unit of NF-κB was measured using ELISA-based kit. In RAW264.7 cells that were vitalized by E.coli LPS, β-glucan inhibited both the combatant and rendering phases of inducible NO synthase (iNOS)-derived NO. β-glucan increased the expression of heme oxygenase-1 (HO-1) in the cell that was stimulated by E.coli LPS, and HO-1 activation was inhibited by SnPP. This shows that NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of JNK and p38 induced by LPS were not influenced by β-glucan, and IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of STAT1 that was induced by E.coli LPS. Overall, β-glucan inhibited the production of NO in macrophagocyte that was vitalized by E.coli LPS through HO-1 induction and STAT1 pathways inhibition in this research. As the host inflammation reaction control by β-glucan weakens the progress of allergy, β-glucan can be used as an effective treatment method.

Keywords: β-glucan, lipopolysaccharide (LPS), nitric oxide (NO), RAW264.7 cells, STAT1

Procedia PDF Downloads 412
662 Inhibitory Mechanism of Ag and Fe Colloidal Nanoparticles on P. aeruginosa and E.coli Growth

Authors: Fatemeh Moradian, Razieh Ghorbani, Poria Biparva

Abstract:

Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their Nano composites as an alternative. The use of metal nanoparticles to combat bacterial infections is one of the most wide spread applications of nanotechnology in the field of antibacterial. Nanomaterials have unique properties compared to their bulk counterparts. In this report, we demonstrate the antimicrobial activity of zerovalent Iron(ZVI) and Ag(silver) nanoparticles against Gram-negative bacteria E.coli(DH5α) and Pseudomonas aeruginosa. At first ZVI and Ag nanoparticles were synthesized by chemical reduction method and using scanning electron microscopy (SEM) the nanoparticle size determined. Different concentrations of Ag and ZVI nanoparticles were added to bacteria on nutrient agar medium. Minimum inhibitory concentration (MIC) of Ag and Fe nanoparticles for P. aeruginosa were 5µM and 1µg as well as for E.coli were 6µM. and 10 µg, respectively. Among the two nanoparticles, ZVI showed that the greatest antimicrobial activity against E.coli and Ag nanoparticle on P.aeruginosa. Results suggested that the bactericidal effect of metal nanoparticles has been attributed to their small size as well as high surface to volume ratio and NPs could be used as an effective antibacterial material.

Keywords: bactericidal properties, MIC, nanoparticle, SEM

Procedia PDF Downloads 604
661 Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water

Authors: Zohreh Rashmei

Abstract:

Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2.

Keywords: plasma, hydrogen peroxide, disinfection, E. coli

Procedia PDF Downloads 146
660 An Investigation of E. coli Contamination in Fars Province, Iran and Methods of Reducing the Contamination

Authors: Ali Mohagheghzadeh, Samad Vaez Badiegard, Bita Shomali

Abstract:

Nowadays, with the increase in population, the need for protein sources is increasing. Different bacteria can cause food poisoning while most of the symptoms of food poisoning are similar to those of gastrointestinal infections. As a result, the diagnosis of bacteria and viruses causing food poisoning would not be possible without a stool culture. Cases of food poisoning are often accompanied by gastrointestinal disorders such as diarrhea, vomit, and gastrointestinal stomach cramps. Thus, providing enough food, taking into account health issues has always been a concern of authorities. Since E. coli bacterium is one of the important indicators of food hygiene and quality, producing food without being contaminated by this bacterium is desired in the food industry. This study aimed at assessing the E. coli contamination of poultry meat produced in slaughterhouses. Samples were taken from critical areas of slaughterhouses, namely the feather picking area, viscera and carcass evacuation area the area after cooling chillers. The results showed that 60% of contamination occurs in feather picking area. Among antiseptic and detergent materials, the highest reduction belongs to Epimax.

Keywords: slaughterhouse, E. coli, Epimax, contamination

Procedia PDF Downloads 712
659 Intracellular Strategies for Gene Delivery into Mammalian Cells Using Bacteria as a Vector

Authors: Kumaran Narayanan, Andrew N. Osahor

Abstract:

E. coli has been engineered by our group and by others as a vector to deliver DNA into cultured human and animal cells. However, so far conditions to improve gene delivery using this vector have not been investigated, resulting in a major gap in our understanding of the requirements for this vector to function optimally. Our group recently published novel data showing that simple addition of the DNA transfection reagent Lipofectamine increased the efficiency of the E. coli vector by almost 3-fold, providing the first strong evidence that further optimization of bactofection is possible. This presentation will discuss advances that demonstrate the effects of several intracellular strategies that improve the efficiency of this vector. Conditions that promote endosomal escape of internalized bacteria to evade lysosomal destruction after entry in the cell, a known obstacle limiting this vector, are elucidated. Further, treatments that increase bacterial lysis so that the vector can release its transgene into the mammalian environment for expression will be discussed. These experiments will provide valuable new insight to advance this E. coli system as an important class of vector technology for genetic correction of human disease models in cells and whole animals.

Keywords: DNA, E. coli, gene expression, vector

Procedia PDF Downloads 360
658 Functional Cell Surface Display Using Ice Nucleation Protein from Erwina ananas on Escherischia coli

Authors: Mei Yuin Joanne Wee, Rosli Md. Illias

Abstract:

Cell surface display is the expression of a protein with an anchoring motif on the surface of the cell. This approach offers advantages when used in bioconversion in terms of easier purification steps and more efficient enzymatic reaction. A surface display system using ice nucleation protein (InaA) from Erwina ananas as an anchoring motif has been constructed to display xylanase (xyl) on the surface of Escherischia coli. The InaA was truncated so that it is made up of the N- and C-terminal domain (INPANC-xyl) and it has successfully directed xylanase to the surface of the cell. A study was also done on xylanase fused to two other ice nucleation proteins, InaK (INPKNC-xyl) and InaZ (INPZNC-xyl) from Pseudomonas syringae KCTC 1832 and Pseudomonas syringae S203 respectively. Surface localization of the fusion protein was verified using SDS-PAGE and Western blot on the cell fractions and all anchoring motifs were successfully displayed on the outer membrane of E. coli. Upon comparison, whole-cell activity of INPANC-xyl was more than six and five times higher than INPKNC-xyl and INPZNC-xyl respectively. Furthermore, the expression of INPANC-xyl on the surface of E. coli did not inhibit the growth of the cell. This is the first report of surface display system using ice nucleation protein, InaA from E. ananas. From this study, this anchoring motif offers an attractive alternative to the current surface display systems.

Keywords: cell surface display, Escherischia coli, ice nucleation protein, xylanase

Procedia PDF Downloads 393
657 Identification of Associated-Virulence Genes in Quinolone-Resistant Escherichia coli Strains Recovered from an Urban Wastewater Treatment Plant

Authors: Alouache Souhila, Messai Yamina, Torres Carmen, Bakour Rabah

Abstract:

Objective: It has often been reported an association between antibiotic resistance and virulence. However, resistance to quinolones seems to be an exception, it tends instead to be associated with an attenuation of virulence, particularly in clinical strains. The purpose of this study was to evaluate the potential virulence of 28 quinolone-resistant E. coli strains recovered from water at the inflow (n=16) and outflow (n=12) of an urban wastewater treatment plant (WWTP). Methods: E. coli isolates were selected on Tergitol-7 agar supplemented with 2µg/ml of ciprofloxacin, they were screened by PCR for 11 virulence genes related to Extraintestinal pathogenic E. coli (ExPEC): papC, papG, afa/draBC, sfa/foc, kpsMTII, iutA, iroN, hlyF, ompT, iss and traT. The phylogenetic groups were determined by PCR and clonal relationship was evaluated by ERIC-PCR. Results: Genotyping by ERIC-PCR showed 7 and 12 DNA profiles among strains of wastewater (inflow) and treated water (outflow), respectively. Strains were assigned to the following phylogenetic groups: B2 (n = 1, 3.5%), D (n = 3, 10.7%), B1 (n = 10, 35.7%.) and A (n = 14, 50%). A total of 8 virulence-associated genes were detected, traT (n=19, 67.8%), iroN (n= 16, 57 .1%), hlyF (n=15, 53 .5%), ompT (n=15, 53 .5%), iss (n=14, 50%), iutA (n=9, 32.1%) , sfa/foc (n=7, 25%) and kpsMTII (n=2, 7.1%). Combination of virulence factors allowed to define 16 virulence profiles. The pathotype APEC was observed in 17.8% (D=1, B1=4) and human ExPEC in 7% (B2=1, D=1) of strains. Conclusion: The study showed that quinolone-resistant E. coli strains isolated from wastewater and treated water in WWTP harbored virulence genes with the presence of APEC and human ExPEC strains.

Keywords: E. coli, quinolone-resistance, virulence, WWTP

Procedia PDF Downloads 468
656 Screening for Enterotoxigenic Staphylococcus spp. Strains Isolated From Raw Milk and Dairy Products in R. N. Macedonia

Authors: Marija Ratkova Manovska, Mirko Prodanov, Dean Jankuloski, Katerina Blagoevska

Abstract:

Staphylococci, which are widely found in the environment, animals, humans, and food products, include Staphylococcus aureus (S. aureus), the most significant pathogenic species in this genus. The virulence and toxicity of S. aureus are primarily attributed to the presence of specific genes responsible for producing toxins, biofilms, invasive components, and antibiotic resistance. Staphylococcal food poisoning, caused by the production of staphylococcal enterotoxins (SEs) by these strains in food, is a common occurrence. Globally, S. aureus food intoxications are typically ranked as the third or fourth most prevalent foodborne intoxications. For this study, a total of 333 milk samples and 1160 dairy product samples were analyzed between 2016 and 2020. The strains were isolated and confirmed using the ISO 6888-1:1999 "Horizontal method for enumeration of coagulase-positive staphylococci." Molecular analysis of the isolates, conducted using conventional PCR, involved detecting the 23s gene of S. aureus, the nuc gene, the mecA gene, and 11 genes responsible for producing enterotoxins (sea, seb, sec, sed, see, seg, seh, sei, ser, sej, and sep). The 23s gene was found in 93 (75.6%) out of 123 isolates of Staphylococcus spp. obtained from milk. Among the 76 isolates from dairy products, either S. aureus or the 23s gene was detected in 49 (64.5%) of them. The mecA gene was identified in three isolates from raw milk and five isolates from cheese samples. The nuc gene was present in 98.9% of S. aureus strains from milk and 97.9% from dairy products. Other Staphylococcus strains carried the nuc gene in 26.7% of milk strains and 14.8% of dairy product strains. Genes associated with SEs production were detected in 85 (69.1%) strains from milk and 38 (50%) strains from dairy products. In this study, 10 out of the 11 SEs genes were found, with no isolates carrying the see gene. The most prevalent genes detected were seg and sei, with some isolates containing up to five different SEs genes. These findings indicate the presence of enterotoxigenic staphylococci strains in the tested samples, emphasizing the importance of implementing proper sanitation and hygienic practices, utilizing safe raw materials, and ensuring adequate handling of finished products. Continued monitoring for the presence of SEs is necessary to ensure food safety and prevent intoxication.

Keywords: dairy products, milk, Staphylococci, enterotoxins, SE genes

Procedia PDF Downloads 75
655 Wide Dissemination of CTX-M-Type Extended-Spectrum β-Lactamases in Korean Swine Farms

Authors: Young Ah Kim, Hyunsoo Kim, Eun-Jeong Yoon, Young Hee Seo, Kyungwon Lee

Abstract:

Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli from food animals are considered as a reservoir for transmission of ESBL genes to human. The aim of this study is to assess the prevalence and molecular epidemiology of ESBL-producing E. coli colonization in pigs, farm workers, and farm environments to elucidate the transmission of multidrug-resistant clones from animal to human. Nineteen pig farms were enrolled across the country in Korea from August to December 2017. ESBL-producing E. coli isolates were detected in 190 pigs, 38 farm workers, and 112 sites of farm environments using ChromID ESBL (bioMerieux, Marcy l'Etoile, France), directly (stool or perirectal swab) or after enrichment (sewage). Antimicrobial susceptibility tests were done with disk diffusion methods and blaTEM, blaSHV, and blaCTX-M were detected with PCR and sequencing. The genomes of the four CTX-M-55-producing E. coli isolates from various sources in one farm were entirely sequenced to assess the relatedness of the strains. Whole genome sequencing (WGS) was performed with PacBio RS II system (Pacific Biosciences, Menlo Park, CA, USA). ESBL genotypes were 85 CTX-M-1 group (one CTX-M-3, 23 CTX-M-15, one CTX-M-28, 59 CTX-M-55, one CTX-M-69) and 60 CTX-M-9 group (41 CTX-M-14, one CTX-M-17, one CTX-M-27, 13 CTX-M-65, 4 CTX-M-102) in total 145 isolates. The rectal colonization rates were 53.2% (101/190) in pigs and 39.5% (15/38) in farm workers. In WGS, sequence types (STs) were determined as ST69 (E. coli PJFH115 isolate from a human carrier), ST457 (two E. coli isolates PJFE101 recovered from a fence and PJFA1104 from a pig) and ST5899 (E. coli PJFA173 isolate from the other pig). The four plasmids encoding CTX-M-55 (88,456 to 149, 674 base pair), whether it belonged to IncFIB or IncFIC-IncFIB type, shared IncF backbone furnishing the conjugal elements, suggesting of genes originated from same ancestor. In conclusion, the prevalence of ESBL-producing E. coli in swine farms was surprisingly high, and many of them shared common ESBL genotypes of clinical isolates such as CTX-M-14, 15, and 55 in Korea. It could spread by horizontal transfer between isolates from different reservoirs (human-animal-environment).

Keywords: Escherichia coli, extended-spectrum β-lactamase, prevalence, whole genome sequencing

Procedia PDF Downloads 206
654 Prevalence of ESBL E. coli Susceptibility to Oral Antibiotics in Outpatient Urine Culture: Multicentric, Analysis of Three Years Data (2019-2021)

Authors: Mazoun Nasser Rashid Al Kharusi, Nada Al Siyabi

Abstract:

Objectives: The main aim of this study is to Find the rate of susceptibility of ESBL E. coli causing UTI to oral antibiotics. Secondary objectives: Prevalence of ESBL E. coli from community urine samples, identify the best empirical oral antibiotics with the least resistance rate for UTI and identify alternative oral antibiotics for testing and utilization. Methods: This study is a retrospective descriptive study of the last three years in five major hospitals in Oman (Khowla Hospital, AN’Nahdha Hospital, Rustaq Hospital, Nizwa Hospital, and Ibri Hospital) equipped with a microbiologist. Inclusion criteria include all eligible outpatient urine culture isolates, excluding isolates from admitted patients with hospital-acquired urinary tract infections. Data was collected through the MOH database. The MOH hospitals are using different types of testing, automated methods like Vitek2 and manual methods. Vitek2 machine uses the principle of the fluorogenic method for organism identification and a turbidimetric method for susceptibility testing. The manual method is done by double disc diffusion for identifying ESBL and the disc diffusion method is for antibiotic susceptibility. All laboratories follow the clinical laboratory science institute (CLSI) guidelines. Analysis was done by SPSS statistical package. Results: Total urine cultures were (23048). E. coli grew in (11637) 49.6% of the urine, whereas (2199) 18.8% of those were confirmed as ESBL. As expected, the resistance rate to amoxicillin and cefuroxime is 100%. Moreover, the susceptibility of those ESBL-producing E. coli to nitrofurantoin, trimethoprim+sulfamethoxazole, ciprofloxacin and amoxicillin-clavulanate is progressing over the years; however, still low. ESBL E. coli was predominating in the female gender and those aged 66-74 years old throughout all the years. Other oral antibiotic options need to be explored and tested so that we add to the pool of oral antibiotics for ESBL E. coli causing UTI in the community. Conclusion: High rate of ESBL E. coli in urine from the community. The high resistance rates to oral antibiotics highlight the need for alternative treatment options for UTIs caused by these bacteria. Further research is needed to identify new and effective treatments for UTIs caused by ESBL-E. Coli.

Keywords: UTI, ESBL, oral antibiotics, E. coli, susceptibility

Procedia PDF Downloads 96
653 Understanding the Diversity of Antimicrobial Resistance among Wild Animals, Livestock and Associated Environment in a Rural Ecosystem in Sri Lanka

Authors: B. M. Y. I. Basnayake, G. G. T. Nisansala, P. I. J. B. Wijewickrama, U. S. Weerathunga, K. W. M. Y. D. Gunasekara, N. K. Jayasekera, A. W. Kalupahana, R. S. Kalupahana, A. Silva- Fletcher, K. S. A. Kottawatta

Abstract:

Antimicrobial resistance (AMR) has attracted significant attention worldwide as an emerging threat to public health. Understanding the role of livestock and wildlife with the shared environment in the maintenance and transmission of AMR is of utmost importance due to its interactions with humans for combating the issue in one health approach. This study aims to investigate the extent of AMR distribution among wild animals, livestock, and environment cohabiting in a rural ecosystem in Sri Lanka: Hambegamuwa. One square km area at Hambegamuwa was mapped using GPS as the sampling area. The study was conducted for a period of five months from November 2020. Voided fecal samples were collected from 130 wild animals, 123 livestock: buffalo, cattle, chicken, and turkey, with 36 soil and 30 water samples associated with livestock and wildlife. From the samples, Escherichia coli (E. coli) was isolated, and their AMR profiles were investigated for 12 antimicrobials using the disk diffusion method following the CLSI standard. Seventy percent (91/130) of wild animals, 93% (115/123) of livestock, 89% (32/36) of soil, and 63% (19/30) of water samples were positive for E. coli. Maximum of two E. coli from each sample to a total of 467 were tested for the sensitivity of which 157, 208, 62, and 40 were from wild animals, livestock, soil, and water, respectively. The highest resistance in E. coli from livestock (13.9%) and wild animals (13.3%) was for ampicillin, followed by streptomycin. Apart from that, E. coli from livestock and wild animals revealed resistance mainly against tetracycline, cefotaxime, trimethoprim/ sulfamethoxazole, and nalidixic acid at levels less than 10%. Ten cefotaxime resistant E. coli were reported from wild animals, including four elephants, two land monitors, a pigeon, a spotted dove, and a monkey which was a significant finding. E. coli from soil samples reflected resistance primarily against ampicillin, streptomycin, and tetracycline at levels less than in livestock/wildlife. Two water samples had cefotaxime resistant E. coli as the only resistant isolates out of 30 water samples tested. Of the total E. coli isolates, 6.4% (30/467) was multi-drug resistant (MDR) which included 18, 9, and 3 isolates from livestock, wild animals, and soil, respectively. Among 18 livestock MDRs, the highest (13/ 18) was from poultry. Nine wild animal MDRs were from spotted dove, pigeon, land monitor, and elephant. Based on CLSI standard criteria, 60 E. coli isolates, of which 40, 16, and 4 from livestock, wild animal, and environment, respectively, were screened for Extended Spectrum β-Lactamase (ESBL) producers. Despite being a rural ecosystem, AMR and MDR are prevalent even at low levels. E. coli from livestock, wild animals, and the environment reflected a similar spectrum of AMR where ampicillin, streptomycin, tetracycline, and cefotaxime being the predominant antimicrobials of resistance. Wild animals may have acquired AMR via direct contact with livestock or via the environment, as antimicrobials are rarely used in wild animals. A source attribution study including the effects of the natural environment to study AMR can be proposed as this less contaminated rural ecosystem alarms the presence of AMR.

Keywords: AMR, Escherichia coli, livestock, wildlife

Procedia PDF Downloads 222
652 Antimicrobial Activity of Biosynthesized Silver Nanoparticles Using Different Bacteria

Authors: Malalage Mudara Peiris

Abstract:

Objectives of the study are: the biosynthesis of silver nanoparticles (AgNPs) using Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus, characterization of silver nanoparticles and determination of antimicrobial activity against E. coli, P. aeruginosa, S. aureus, MRSA, and C. Albicans. Methods: E. coli (ATCC 25922), A. baumanii (clinical strain), S. aureus (clinical strain) cultured in nutrient broth medium were used for biosynthesis of AgNPs. Culture conditions (AgNO3 concentration, pH, incubation time and temperature) were optimized. Characterization of synthesized NPs was done by UV-Visible spectroscopy. The antimicrobial activity of the synthesized NPs was studied using the good diffusion assay against E. coli, S. aureus, MRSA (Methicillin-resistant Staphylococcus aureus), P. aeruginosa and C. Albicans. Results: All the selected bacteria produced silver nanoparticles at alkaline pH above 0.3 g/L AgNO3 concentration. The optimum reaction temperature was 60oC. According to the UV-Visible spectroscopy, the maximum absorbance was found to be around 420 - 430 nm indicating the presence of AgNPs. According to the good diffusion results, AgNPs produced by S. aureus resulted in the larger zone of inhibition (ZOI) against the selected pathogens, while AgNPs produced by E. coli showed comparatively smaller ZOI. In general, biosynthesized AgNPs were highly effective against gram-negative bacteria compared to gram-positive bacterial and fungal species. Conclusions: Green AgNPs produced by each bacterium show antimicrobial activity against the selected pathogens. AgNPs produced by S. aureus are the most effective NPs among tested AgNPs, while AgNPs produced by E. coli are the least effective. Further characterization of NPs is required to study the physical properties of silver NPs.

Keywords: green nanotechnology, silver nanoparticles, bacteria, antimicrobial activity

Procedia PDF Downloads 210
651 Investigating the Association between Escherichia Coli Infection and Breast Cancer Incidence: A Retrospective Analysis and Literature Review

Authors: Nadia Obaed, Lexi Frankel, Amalia Ardeljan, Denis Nigel, Anniki Witter, Omar Rashid

Abstract:

Breast cancer is the most common cancer among women, with a lifetime risk of one in eight of all women in the United States. Although breast cancer is prevalent throughout the world, the uneven distribution in incidence and mortality rates is shaped by the variation in population structure, environment, genetics and known lifestyle risk factors. Furthermore, the bacterial profile in healthy and cancerous breast tissue differs with a higher relative abundance of bacteria capable of causing DNA damage in breast cancer patients. Previous bacterial infections may change the composition of the microbiome and partially account for the environmental factors promoting breast cancer. One study found that higher amounts of Staphylococcus, Bacillus, and Enterobacteriaceae, of which Escherichia coli (E. coli) is a part, were present in breast tumor tissue. Based on E. coli’s ability to damage DNA, it is hypothesized that there is an increased risk of breast cancer associated with previous E. coli infection. Therefore, the purpose of this study was to evaluate the correlation between E. coli infection and the incidence of breast cancer. Holy Cross Health, Fort Lauderdale, provided access to the Health Insurance Portability and Accountability (HIPAA) compliant national database for the purpose of academic research. International Classification of Disease 9th and 10th Codes (ICD-9, ICD-10) was then used to conduct a retrospective analysis using data from January 2010 to December 2019. All breast cancer diagnoses and all patients infected versus not infected with E. coli that underwent typical E. coli treatment were investigated. The obtained data were matched for age, Charlson Comorbidity Score (CCI score), and antibiotic treatment. Standard statistical methods were applied to determine statistical significance and an odds ratio was used to estimate the relative risk. A total of 81286 patients were identified and analyzed from the initial query and then reduced to 31894 antibiotic-specific treated patients in both the infected and control group, respectively. The incidence of breast cancer was 2.51% and present in 2043 patients in the E. coli group compared to 5.996% and present in 4874 patients in the control group. The incidence of breast cancer was 3.84% and present in 1223 patients in the treated E. coli group compared to 6.38% and present in 2034 patients in the treated control group. The decreased incidence of breast cancer in the E. coli and treated E. coli groups was statistically significant with a p-value of 2.2x10-16 and 2.264x10-16, respectively. The odds ratio in the E. coli and treated E. coli groups was 0.784 and 0.787 with a 95% confidence interval, respectively (0.756-0.813; 0.743-0.833). The current study shows a statistically significant decrease in breast cancer incidence in association with previous Escherichia coli infection. Researching the relationship between single bacterial species is important as only up to 10% of breast cancer risk is attributable to genetics, while the contribution of environmental factors including previous infections potentially accounts for a majority of the preventable risk. Further evaluation is recommended to assess the potential and mechanism of E. coli in decreasing the risk of breast cancer.

Keywords: breast cancer, escherichia coli, incidence, infection, microbiome, risk

Procedia PDF Downloads 257
650 The Determination of Contamination Rate of Traditional White Cheese in Behbahan Markets to Coliforms and Pathogenic Escherichia Coli

Authors: Sana Mohammad Jafar, Hossaini Seyahi Zohreh

Abstract:

Infections and food intoxication caused by microbial contamination of food is of major issues in different countries, and diseases caused by the consumption of contaminated food included a large percentage of the country's health problems. Since traditional cheese for cultural reasons, good taste and smell in many parts of the area still has the important place in people's food basket, transmission of pathogenic bacteria could be at risk human health through the consumption of this food. In this study selected randomly 100 samples of 250 grams of traditional cheeses supplied in the city Behbahan market and adjacent to the ice was transferred to the laboratory and microbiological tests were performed immediately. According to the results, from 100 samples tested traditional cheese, 94 samples (94% of samples) were contaminated with coliforms, which of this number 75 samples (75% of samples) the contamination rate was higher than the limit (more than 100 cfu/g). Of the total samples, 36 samples (36% of samples) were contaminated with fecal coliform which of this number 30 samples (30% of samples) were contaminated with Escherichia.coli bacteria. Based on the results of agglutination test,no samples was found positive as pathogenic Escherichia.coli.

Keywords: determination, traditional cheese, Behbahan, Escherichia coli

Procedia PDF Downloads 507
649 Characterization of Bacteria by a Nondestructive Sample Preparation Method in a TEM System

Authors: J. Shiue, I. H. Chen, S. W. Y. Chiu, Y. L. Wang

Abstract:

In this work, we present a nondestructive method to characterize bacteria in a TEM system. Unlike the conventional TEM specimen preparation method, which needs to thin the specimen in a destructive way, or spread the samples on a tiny millimeter sized carbon grid, our method is easy to operate without the need of sample pretreatment. With a specially designed transparent chip that allows the electron beam to pass through, and a custom made chip holder to fit into a standard TEM sample holder, the bacteria specimen can be easily prepared on the chip without any pretreatment, and then be observed under TEM. The centimeter-sized chip is covered with Au nanoparticles in the surface as the markers which allow the bacteria to be observed easily on the chip. We demonstrate the success of our method by using E. coli as an example, and show that high-resolution TEM images of E. coli can be obtained with the method presented. Some E. coli morphology characteristics imaged using this method are also presented.

Keywords: bacteria, chip, nanoparticles, TEM

Procedia PDF Downloads 318
648 Effect of Low Temperature on Structure and RNA Binding of E.coli CspA: A Molecular Dynamics Based Study

Authors: Amit Chaudhary, B. S. Yadav, P. K. Maurya, A. M., S. Srivastava, S. Singh, A. Mani

Abstract:

Cold shock protein A (CspA) is major cold inducible protein present in Escherichia coli. The protein is involved in stabilizing secondary structure of RNA by working as chaperone during cold temperature. Two RNA binding motifs play key role in the stabilizing activity. This study aimed to investigate implications of low temperature on structure and RNA binding activity of E. coli CspA. Molecular dynamics simulations were performed to compare the stability of the protein at 37°C and 10 °C. The protein was mutated at RNA binding motifs and docked with RNA to assess the stability of both complexes. Results suggest that CspA as well as CspA-RNA complex is more stable at low temperature. It was also confirmed that RNP1 and RNP2 play key role in RNA binding.

Keywords: CspA, homology modelling, mutation, molecular dynamics simulation

Procedia PDF Downloads 379
647 Design of an Artificial Oil Body-Cyanogen Bromide Technology Platform for the Expression of Small Bioactive Peptide, Mastoparan B

Authors: Tzyy-Rong Jinn, Sheng-Kuo Hsieh, Yi-Ching Chung, Feng-Chia Hsieh

Abstract:

In this study, we attempted to develop a recombinant oleosin-based fusion expression strategy in Escherichia coli (E. coli) and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce bioactive mastoparan B (MP-B). As reported, the oleosin in AOB system plays a carrier (fusion with target protein), since oleosin possess two amphipathic regions (at the N-terminus and C-terminus), which result in the N-terminus and C-terminus of oleosin could be arranged on the surface of AOB. Thus, the target protein fused to the N-terminus or C-terminus of oleosin which also is exposed on the surface of AOB, and this process will greatly facilitate the subsequent separation and purification of target protein from AOB. In addition, oleosin, a unique structural protein of seed oil bodies, has the added advantage of helping the fused MP-B expressed in inclusion bodies, which can protect from proteolytic degradation. In this work, MP-B was fused to the C-terminus of oleosin and then was expressed in E. coli as an insoluble recombinant protein. As a consequence, we successfully developed a reliable recombinant oleosin-based fusion expression strategy in Escherichia coli and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce the small peptide, MP-B. Take together, this platform provides an insight into the production of active MP-B, which will facilitate studies and applications of this peptide in the future.

Keywords: artificial oil bodies, Escherichia coli, Oleosin-fusion protein, Mastoparan-B

Procedia PDF Downloads 456
646 Characterization of Triterpenoids Antimicrobial Potential in Ethyl Acetate Extracts from Aerial Parts of Deinbollia Pinnata

Authors: Rufai Yakubu And Suleiman Kabiru

Abstract:

Triterpenoids are a diverse class of secondary metabolites with potential antimicrobial properties. In this study, the crude extracts from ethyl acetate was obtained with ultrasonic extraction method. Using a combined chromatographic separation method to isolate squalene (1) stigmasterol (2), stigmasta-5,22-diene-3-ol acetate (3), γ-sitosterol (4), lupeol (5), taraxasterol (6), and betulinic acid (7) from ethyl acetate extracts. Ethyl acetate crude extracts and isolated compounds were both screened for antimicrobial activity and minimum inhibitory concentration (MIC). For ethyl acetate crude extracts with concentrations of (1.5, 0.75, 0.35, & 0.168 mg/mL) indicated marginal antibacterial activity with a range of 17, 20 and 14 mm zone of inhibition for Staphylococcus aureus, Escherichia coli and Candida albicans and lower minimum inhibitory concentrations ranges from 18.75 µg/ml to 150 µg/mL. Butulinic acid showed the highest activity against E. coli and C. albicans at 15 mm and 15 mm followed by Lupeol against S. aureus, E. coli and C. albicans at 13, 12, 12 mm. Moreso, no antimicrobial activity for both S. aureus and C. albicans with squalene except for E. coli which showed activity at 11 mm with 300 µg/mL (MIC). Thus, abundant triterpenoids in Deinbollia pinnata will be another centered area for antimicrobial drug discovery.

Keywords: triterpenoid, antimicrobial potentials, deinbollia pinnata, aerial parts

Procedia PDF Downloads 73
645 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli

Authors: Ashima Sharma

Abstract:

Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.

Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding

Procedia PDF Downloads 213
644 Crude Extracts of Medicinal Plants Can Inhibit Some Bacteria of Clinical Importance in Minced Meat

Authors: Chika C. Ogueke, Ijeoma M. Agunwah

Abstract:

The antimicrobial activities and preservative potentials of crude extracts of Alstonia boonei stem bark and Euphorbia hirta leaves were studied. Soxhlet extraction and cold ethanol extraction methods were used for the extraction of the dried and ground plant samples. Well in agar diffusion method was used for the antimicrobial screening at different concentrations of 25mg/ml, 50mg/ml, 100mg/ml and 200mg/ml on E.coli and B.subtilis. The preservative effects of the extracts at 0.1%, 0.2% and 0.3% singly and in combination were determined in minced meat using E. coli and B. subtilis as test isolates. Phytochemical analysis was also conducted on the extracts using standard analytical methods. E.hirta cold and A.boonei cold extracts gave the highest zone of growth inhibition on E. coli and B.substilis with 20mm zone diameter at 200mg/ml concentration. Phytochemical analysis revealed the presence of alkaloids, flavonoids, tannins, saponins and cardiac glycosides. A.boonei at 0.1, 0.2 and 0.3% produced a log cycle reduction on the growth of E.coli. Mixture of A. boonei and E. hirta extracts (1:1) at 0.1% and 0.2% also produced a log cycle reduction on the growth of E.coli and B. subtilis, however the A. boonei extracts had more significant effect on the isolates. The observed antimicrobial activities are attributed to the phytochemicals identified in the extracts. The results reveal the potentials of plant extracts as natural antimicrobial preservatives in minced meat. Thus the crude extracts can act as inhibitors of bacteria in a food system. Upon further purification better results may be obtained.

Keywords: antimicrobial preservative, crude extracts, minced meat, test isolates

Procedia PDF Downloads 298
643 Survey of Selected Pathogenic Bacteria in Chickens from Rural Households in Limpopo Province

Authors: M. Lizzy Madiwani, Ignatious Ncube, Evelyn Madoroba

Abstract:

This study was designed to determine the distribution of pathogenic bacteria in household raised chickens and study their virulence and antibiotic profiles. For this purpose, 40 chickens were purchased from families in the Capricorn district and sacrificed for sampling. Tissues were cultured on different bacteriological media followed by biotyping using Matrix-assisted Laser Desorption Ionization-time of Flight (MALDI-TOF). Disk diffusion test was performed to determine the antibiotic susceptibility profiles of these bacteria. Out of a total of 160 tissue samples evaluated, E. coli and Salmonella were detected in these tissues. Furthermore, determination of the pathogenic E. coli and Salmonella strains at species level using primer sets that target selected genes of interest in the polymerase chain reaction (PCR) assay was employed. The invA gene, a confirmatory gene of Salmonella was detected in all the Salmonella isolates. The study revealed that there is a high distribution of Salmonella and pathogenic E. coli in these chickens. Therefore, further studies on identification at the species level are highly recommended to provide management and sanitation practices to lower this prevalence. The antimicrobial susceptibly data generated from this study can be a valuable reference to veterinarians for treating bacterial diseases in poultry.

Keywords: antimicrobial, Escherichia coli, pathogens, Salmonella

Procedia PDF Downloads 132
642 Clinical Signs of Neonatal Calves in Experimental Colisepticemia

Authors: Samad Lotfollahzadeh

Abstract:

Escherichia coli (E.coli) is the most isolated bacteria from blood circulation of septicemic calves. Given the prevalence of septicemia in animals and its economic importance in veterinary practice, better understanding of changes in clinical signs following disease, may contribute to early detection of the disorder. The present study has been carried out to detect changes of clinical signs in induced sepsis in calves with E.coli. Colisepticemia has been induced in 10 twenty-day old healthy Holstein- Frisian calves with intravenous injection of 1.5 X 109 colony forming units (cfu) of O111: H8 strain of E.coli. Clinical signs including rectal temperature, heart rate, respiratory rate, shock, appetite, sucking reflex, feces consistency, general behavior, dehydration and standing ability were recorded in experimental calves during 24 hours after induction of colisepticemia. Blood culture was also carried out from calves four times during the experiment. ANOVA with repeated measure is used to see changes of calves’ clinical signs to experimental colisepticemia, and values of P≤ 0.05 was considered statistically significant. Mean values of rectal temperature and heart rate as well as median values of respiratory rate, appetite, suckling reflex, standing ability and feces consistency of experimental calves increased significantly during the study (P<0.05). In the present study, median value of shock score was not significantly increased in experimental calves (P> 0.05). The results of present study showed that total score of clinical signs in calves with experimental colisepticemia increased significantly, although the score of some clinical signs such as shock did not change significantly.

Keywords: calves, clinical signs scoring, E. coli O111:H8, experimental colisepticemia

Procedia PDF Downloads 380
641 An Alternative Antimicrobial Approach to Fight Bacterial Pathogens from Phellinus linteus

Authors: S. Techaoei, K. Jarmkom, P. Eakwaropas, W. Khobjai

Abstract:

The objective of this research was focused on investigating in vitro antimicrobial activity of Phellinus linteus fruiting body extracts on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Phellinus linteus fruiting body was extracted with ethanol and ethyl acetate and was vaporized. The disc diffusion assay was used to assess antimicrobial activity against tested bacterial strains. Primary screening of chemical profile of crude extract was determined by using thin layer chromatography. The positive control and the negative control were used as erythromycin and dimethyl sulfoxide, respectively. Initial screening of Phellinus linteus crude extract with the disc diffusion assay demonstrated that only ethanol had greater antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. The MIC assay showed that the lower MIC was observed with 0.5 mg/ml of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus and 0.25 mg/ml. of Escherichia coli and Staphylococcus aureus, respectively. TLC chemical profile of extract was represented at Rf ≈ 0.71-0.76.

Keywords: Staphylococcus aureus, Escherichia coli, Phellinus linteus, Methicillin-resistant Staphylococcus aureus, antimicrobial activity

Procedia PDF Downloads 288
640 A Prospective Study on the Pattern of Antibiotics Use and Prevalence of Multidrug Resistant Escherichia Coli in Poultry Chickens and Its Correlation with Urinary Tract Infection

Authors: Stelvin Sebastian, Andriya Annie Tom, Joyalanna Babu, Merin Joshy

Abstract:

Introduction: The worldwide increase in the use of antibiotics in poultry and livestock industry to treat and prevent bacterial diseases and as growth promoters in feeds has led to the problem of development of antibiotic resistance both in animals and human population. Aim: To study the pattern of antibiotic use and prevalence of multidrug-resistant Escherichia coli in poultry chickens in selected farms in Muvattupuzha and to compare the spread of multidrug-resistant bacteria from poultry environment to UTI patients. Methodology: Two farms from each of 6 localities in Muvattupuzha were selected. A questionnaire on the pattern of antibiotic use and various farming practices were surveyed from farms. From each farm, 60samples of fresh fecal matter, litter from inside, litter from the outside shed, agricultural soil and control soil were collected, and antimicrobial susceptibility testing of E. coli was done. Antibiogram of UTI patients was collected from the secondary care hospital included in the study, and those were compared with resistance patterns of poultry samples. Results: From survey response antibiotics such as ofloxacin, enrofloxacin, levofloxacin, ciprofloxacin, colistin, ceftriaxone, neomycin, cephalexin, and oxytetracycline were used for treatment and prevention of infections in poultry. 31of 48 samples (51.66%) showed E. coli growth. 7 of 15 antibiotics (46.6%) showed resistance. Ampicillin, amoxicillin, meropenem, tetracycline showed 100% resistance to all samples. Statistical analysis confirmed similar resistance pattern in the poultry environment and UTI patients for antibiotics such as ampicillin, amoxicillin, amikacin, and ofloxacin. Conclusion: E. coli were resistant not only to extended-spectrum beta-lactams but also to carbapenems, which may be disseminated to the environment where litter was used as manure. This may due to irrational use of antibiotics in chicken or from their use in poultry feed as growth promoters. The study concludes the presence of multidrug-resistant E.coli in poultry and its spread to environment and humans, which may cause potentially serious implications for human health.

Keywords: multidrug resistance, escherichia coli, urinary tract infection, poultry

Procedia PDF Downloads 160