Search results for: pure grapeseed oil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 980

Search results for: pure grapeseed oil

440 Spatial Spillovers in Forecasting Market Diffusion of Electric Mobility

Authors: Reinhold Kosfeld, Andreas Gohs

Abstract:

In the reduction of CO₂ emissions, the transition to environmentally friendly transport modes has a high significance. In Germany, the climate protection programme 2030 includes various measures for promoting electromobility. Although electric cars at present hold a market share of just over one percent, its stock more than doubled in the past two years. Special measures like tax incentives and a buyer’s premium have been put in place to promote the shift towards electric cars and boost their diffusion. Knowledge of the future expansion of electric cars is required for planning purposes and adaptation measures. With a view of these objectives, we particularly investigate the effect of spatial spillovers on forecasting performance. For this purpose, time series econometrics and panel econometric models are designed for pure electric cars and hybrid cars for Germany. Regional forecasting models with spatial interactions are consistently estimated by using spatial econometric techniques. Regional data on the stocks of electric cars and their determinants at the district level (NUTS 3 regions) are available from the Federal Motor Transport Authority (Kraftfahrt-Bundesamt) for the period 2017 - 2019. A comparative examination of aggregated regional and national predictions provides quantitative information on accuracy gains by allowing for spatial spillovers in forecasting electric mobility.

Keywords: electric mobility, forecasting market diffusion, regional panel data model, spatial interaction

Procedia PDF Downloads 161
439 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed, and Temperature of Incubator Shaker

Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar

Abstract:

Microbes have been used to solve environmental problems for many years. The use microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Processes by which microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida, pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P.putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of Pseudomonas putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to reduce ionic mercury from mercury nitrate solution. The overall levels of mercury removal in this study were between 80% and 90%. The information obtained in this study is of fundamental for understanding of the survival of P.putida ATTC 49128 in mercury solution. Thus, microbial mercury environmental pollutants removal is a potential biological treatment for waste water treatment especially in petrochemical industries in Malaysia.

Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical waste water

Procedia PDF Downloads 660
438 Potentials of Additive Manufacturing: An Approach to Increase the Flexibility of Production Systems

Authors: A. Luft, S. Bremen, N. Balc

Abstract:

The task of flexibility planning and design, just like factory planning, for example, is to create the long-term systemic framework that constitutes the restriction for short-term operational management. This is a strategic challenge since, due to the decision defect character of the underlying flexibility problem, multiple types of flexibility need to be considered over the course of various scenarios, production programs, and production system configurations. In this context, an evaluation model has been developed that integrates both conventional and additive resources on a basic task level and allows the quantification of flexibility enhancement in terms of mix and volume flexibility, complexity reduction, and machine capacity. The model helps companies to decide in early decision-making processes about the potential gains of implementing additive manufacturing technologies on a strategic level. For companies, it is essential to consider both additive and conventional manufacturing beyond pure unit costs. It is necessary to achieve an integrative view of manufacturing that incorporates both additive and conventional manufacturing resources and quantifies their potential with regard to flexibility and manufacturing complexity. This also requires a structured process for the strategic production systems design that spans the design of various scenarios and allows for multi-dimensional and comparative analysis. A respective guideline for the planning of additive resources on a strategic level is being laid out in this paper.

Keywords: additive manufacturing, production system design, flexibility enhancement, strategic guideline

Procedia PDF Downloads 118
437 Autonomous Taxiing Robot for Grid Resilience Enhancement in Green Airport

Authors: Adedayo Ajayi, Patrick Luk, Liyun Lao

Abstract:

This paper studies the supportive needs for the electrical infrastructure of the green airport. In particular, the core objective revolves around the choice of electric grid configuration required to meet the expected electrified loads, i.e., the taxiing and charging loads of hybrid /pure electric aircraft in the airport. Further, reliability and resilience are critical aspects of a newly proposed grid; the concept of mobile energy storage as energy as a service (EAAS) for grid support in the proposed green airport is investigated using an autonomous electric taxiing robot (A-ETR) at a case study (Cranfield Airport). The performance of the model is verified and validated through DigSILENT power factory simulation software to compare the networks in terms of power quality, short circuit fault levels, system voltage profile, and power losses. Contingency and reliability index analysis are further carried out to show the potential of EAAS on the grid. The results demonstrate that the low voltage a.c network ( LVAC) architecture gives better performance with adequate compensation than the low voltage d.c (LVDC) microgrid architecture for future green airport electrification integration. And A-ETR can deliver energy as a service (EaaS) to improve the airport's electrical power system resilience and energy supply.

Keywords: reliability, voltage profile, flightpath 2050, green airport

Procedia PDF Downloads 75
436 Solubility Enhancement of Poorly Soluble Anticancer Drug, Docetaxel Using a Novel Polymer, Soluplus via Solid Dispersion Technique

Authors: Adinarayana Gorajana, Venkata Srikanth Meka, Sanjay Garg, Lim Sue May

Abstract:

This study was designed to evaluate and enhance the solubility of poorly soluble drug, docetaxel through solid dispersion (SD) technique prepared using freeze drying method. Docetaxel solid dispersions were formulated with Soluplus in different weight ratios. Freeze drying method was used to prepare the solid dispersions. Solubility of the solid dispersions were evaluated respectively and the optimized of drug-solubilizers ratio systems were characterized with different analytical methods like Differential scanning calorimeter (DSC), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of complexes between drug and solubilizers. The solubility data revealed an overall improvement in solubility for all SD formulations. The ternary combination 1:5:2 gave the highest increase in solubility that is approximately 3 folds from the pure drug, suggesting the optimum drug-solubilizers ratio system. This data corresponds with the DSC and SEM analyses, which demonstrates presence of drug in amorphous state and the dispersion in the solubilizers in molecular level. The solubility of the poorly soluble drug, docetaxel was enhanced through preparation of solid dispersion formulations employing freeze drying method. Solid dispersion with multiple carrier system shows better solubility compared to single carrier system.

Keywords: docetaxel, freeze drying, soluplus, solid dispersion technique

Procedia PDF Downloads 497
435 Physiochemical and Antibacterial Assessment of Iranian Propolis Gathering in Qazvin Province

Authors: Nematollah Gheibi, Nader Divan Khosroshahi, Mahdi Mohammadi Ghanbarlou

Abstract:

Introduction: Nowadays, the phenomenon of bacterial resistance is one of the most important challenge of the health community in the world. Propolis is most important production of bee colonies that collected from of various plants. So far, a lot of investigations carried out about its antibacterial effects. Material and methods: Thirty gram of propolis prepared as ethanolic extract and after different process of purification, 7.5 gr of its pure form were obtained. Propolis compounds identification was performed by TLC and VLC methods. The HPLC spectrum obtaining from propolis ethanolic extract was compared with some purified standard phenolic and flavonoid substances. Antibacterial effects of ethanol extract of purified propolis were evaluated on two strains of Staphylococcus aureus and Pseudomonas aeruginosa and their MIC was determined by the microdillution assay. Results: Ethanolic propolis extraction analyzed by TLC were resulted to confirm several phenolic and flavonoid compounds in this extract and some of the confirmed by HPLC technique. Minimum inhibitory concentration (MIC) for standard Staphylococcus aureus (ATCC25923) and Pseudomonas aeruginosa (ATCC27853) strains were obtained 2.5 mg/ml and 50 mg/ml respectively. Conclusion: Bee Propolis is a mix organic compound that has a lot of beneficial effects such as anti-bacterial that emphasized in this investigation. It is proposed as a rich source of natural phenolic and flavonoids compounds in designing of new biological resources for hygienic and medical applications.

Keywords: propolis, Staphylococcus aureus, Pseudomonas aeruginosa, antibacterial

Procedia PDF Downloads 299
434 Magnetodielectric Studies of Substituted La₂NiMnO₆ Double Perovskites

Authors: Pravin M. Tirmali, Sagar M. Mane, Snehal L. Kadam, Shriniwas B. Kulkarni

Abstract:

The La₂NiMnO₆ has been extensively studied for its ferromagnetic and magneto-dielectric properties. The La₂NiMnO₆ double perovskite is modified by partial substitution at B site by Fe transition metal. The La₂Ni₁₋ₓFeₓMnO₆ powder samples were synthesized by hydroxide co-precipitation method. The precipitate was dried and fine griended to form powder and pellet samples (2cm dia.) using hydraulic press. The powder and pellet samples of La₂Ni₁₋ₓFeₓMnO₆ were calcined at high temperature 1200°C to form a pure and stable composition. The nano polar regions (NPR) around Ni²⁺ or Mn⁴⁺ ions due to the cationic antisite disorder gives dielectric relaxation through their mutual interaction. The magneto-dielectric behavior is observed in substituted La₂NiMnO₆ shows Maxwell-Wagner and Debye relaxation due to grain boundary, interface and antisite defects. The magneto-dielectric properties of substituted La₂NiMnO₆ pellet sample were probed by Impedance spectroscopy measurements. The structural and magnetic investigations were also carried out by XRD, FESEM and VSM measurements of substituted La₂NiMnO₆ of powder samples. The synthesized La₂Ni₁₋ₓFeₓMnO₆ powder samples are polycrystalline and ferromagnetic in nature. The La₂Ni₁₋ₓFeₓMnO₆ samples exhibit ferromagnetic disorder with transition temperature near room temperature.

Keywords: La₂NiMnO₆, nano polar regions (NPR), antisite defects, magnetodielctric

Procedia PDF Downloads 203
433 Fermentable Bio-Ethanol Using Bakers and Palmwine Yeasts: Indices of Bioavailability of Carbohydrate and Sugar from Fungal Treated Rice Husk

Authors: Ezeonu, Chukwuma Stephen, Onwurah, Ikechukwu Noel Emmanuel

Abstract:

Pure strains of Aspergillus fumigatus (AF), aspergillus niger (AN), aspergillus oryzae (AO), trichophyton mentagrophyte (TM), trichophyton rubrum (TR) and Trichophyton soudanense (TS) were isolated from decomposing rice husk. Freshly processed rice husk in Mandle’s medium were heat pre-treated using an autoclave at 121oC for 20 minutes. The isolated fungi as monoculture and di-culture combinations were inoculated into each of the pre-treated rice husk with the exception of two controls. Seven days hydrolysis was followed by estimation of carbohydrate, reducing sugar and non-reducing sugar. Fungal treated rice husks were left to ferment for 7 days with introduction of both baker’s and palm wine yeast. The result obtained in the work gave the highest carbohydrate (20.53 ± 2.73 %) from rice husks treated with TS + TR di-culture. The highest soluble reducing sugar (2.66 ± 0.14 %) was obtained from rice husk treated with TM. The highest soluble nonreducing sugar (18.08 ± 2.61 %) was from AF. The introduction of yeasts from palm wine gave the highest bio-ethanol (12.82 ± 0.39 %) from AO. The highest bio-ethanol (6.60 ± 0.10 %) from baker's yeast fermentation was in AO + TS treated rice husk. There was increased availability of sugar and moderate yield of bio-ethanol, especially from palm wine yeast.

Keywords: fungi, rice husk, carbohydrate, reducing sugar, non-reducing sugar, ethanol, fermentation

Procedia PDF Downloads 434
432 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production

Authors: N. Laosiripojana, P. Tepamatr

Abstract:

The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.

Keywords: bismuth, platinum, water gas shift, ceria

Procedia PDF Downloads 341
431 Dielectric Study of Lead-Free Double Perovskite Structured Polycrystalline BaFe0.5Nb0.5O3 Material

Authors: Vijay Khopkar, Balaram Sahoo

Abstract:

Material with high value of dielectric constant has application in the electronics devices. Existing lead based materials have issues such as toxicity and problem with synthesis procedure. Double perovskite structured barium iron niobate (BaFe0.5Nb0.5O3, BFN) is the lead-free material, showing a high value of dielectric constant. Origin of high value of the dielectric constant in BFN is not clear. We studied the dielectric behavior of polycrystalline BFN sample over wide temperature and frequency range. A BFN sample synthesis by conventional solid states reaction method and phase pure dens pellet was used for dielectric study. The SEM and TEM study shows the presence of grain and grain boundary region. The dielectric measurement was done between frequency range of 40 Hz to 5 MHz and temperature between 20 K to 500 K. At 500 K temperature and lower frequency, there observed high value of dielectric constant which decreases with increase in frequency. The dipolar relaxation follows non-Debye type polarization with relaxation straight of 3560 at room temperature (300 K). Activation energy calculated from the dielectric and modulus formalism found to be 17.26 meV and 2.74 meV corresponds to the energy required for the motion of Fe3+ and Nb5+ ions within the oxygen octahedra. Our study shows that BFN is the order disorder type ferroelectric material.

Keywords: barium iron niobate, dielectric, ferroelectric, non-Debye

Procedia PDF Downloads 133
430 Numerical Investigation of Cold Formed C-Section-Purlins with Different Opening Shapes

Authors: Mohamed M. El-heweity, Ahmed Shamel Fahmy, Mostafa Shawky, Ahmed Sherif

Abstract:

Cold-formed steel (CFS) lipped channel sections are popular as load-bearing members in building structures. These sections are used in the construction industry because of their high strength-to-weight ratio, lightweight, quick production, and ease of construction, fabrication, transportation, and handling. When those cold formed sections with high slenderness ratios are subjected to compression bending, they do not reach failure when reaching their ultimate bending stress, however, they sustain much higher loads due stress re-distribution. Hence, there is a need to study the sectional nominal capacity of CFS lipped channel beams with different web openings subjected to pure bending and uniformly distributed loads. By using finite element (FE) simulations using ANSYS APDL for numerical analysis. The results were verified and compared to previous experimental results. Then a parametric study was conducted and validated FE model to investigate the effect of different openings shapes on their nominal capacities. The results have revealed that CFS sections with hexagonal openings and intermediate notch can resist higher nominal capacities when compared to other sectional openings.

Keywords: cold-formed steel, nominal capacity, finite element, lipped channel beam, numerical study, web opening

Procedia PDF Downloads 89
429 Impact of Nano-Anatase TiO₂ on the Germination Indices and Seedling Growth of Some Plant Species

Authors: Rayhaneh Amooaghaie, Maryam Norouzi

Abstract:

In this study, the effects of nTiO₂ on seed germination and growth of six plant species (wheat, soybean, tomato, canola, cucumber, and lettuce) were evaluated in petri dish (direct exposure) and in soil in a greenhouse experiment (soil exposure). Data demonstrate that under both culture conditions, low or mild concentrations of nTiO₂ either stimulated or had no effect on seed germination, root growth and vegetative biomass while high concentrations had an inhibitory effect. However, results showed that the impacts of nTiO₂ on plant growth in soil were partially consistent with those observed in pure culture. Based on both experiment sets, among above six species, lettuce and canola were the most susceptible and the most tolerant species to nTiO₂ toxicity. However, results revealed the impacts of nTiO₂ on plant growth in soil were less than petri dish exposure probability due to dilution in soil and complexation/aggregation of nTiO₂ that would lead to lower exposure of plants. The high concentrations of nTiO₂ caused significant reductions in fresh and dry weight of aerial parts and root and chlorophyll and carotenoids contents of all species which also coincided with further accumulation of malondialdehyde (MDA). These findings suggest that decreasing growth might be the result of an nTiO₂-induced oxidative stress and disturbance of photosynthesis systems.

Keywords: chlorophyll, lipid peroxidation, nano TiO₂, seed germination

Procedia PDF Downloads 159
428 Inactivation of Rhodotorula spp. 74 with Cold Atmospheric Plasma

Authors: Zoran Herceg, Višnja Stulić, Tomislava Vukušić, Anet Režek Jambrak

Abstract:

High voltage electrical discharge is a new technology used for inactivation of pathogen microorganisms. Pathogen yeasts can cause diseases in humans if they are ingested. Nowadays new technologies have become the focus of researching all over the world. Rhodotorula is known as yeast that can cause diseases in humans. The aim of this study was to examine whether the high voltage electrical discharge treatment generated in gas phase has an influence on yeast reduction and recovery of Rhodotorula spp 74 in pure culture. Rhodotorula spp. 74 was treated in 200 mL of model solution. Treatment time (5 and 10 min), frequency (60 and 90 Hz) and injected gas (air or argon 99,99%) were changed. Titanium high voltage needle was used as high voltage electrode (positive polarity) through which air or argon was injected at the gas flow of 0.6 L/min. Experimental design and statistical analyses were obtained by Statgraphics Centurion software (StatPoint Technologies, Inc., VA, USA). The best inactivation rate 1.7 log10 reduction was observed after the 10 min of treatment, frequency of 90 Hz and injected air. Also with a longer treatment time inactivation rate was higher. After the 24 h recovery of treated samples was observed. Therefore the further optimization of method is needed to understand the mechanism of yeasts inactivation and cells recovery after the treatment. Acknowledgements: The authors would like to acknowledge the support by Croatian Science Foundation and research project ‘Application of electrical discharge plasma for preservation of liquid foods’.

Keywords: rhodotorula spp. 74, electrical discharge plasma, inactivation, stress response

Procedia PDF Downloads 232
427 Utilization of Waste Glass Powder in Mortar

Authors: Suhaib Salahuddin Alzubair Suliman

Abstract:

This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars.

Keywords: glass powder, pozzolana, compressive strength, flexural strength, mortar

Procedia PDF Downloads 61
426 Investigation on Ultrahigh Heat Flux of Nanoporous Membrane Evaporation Using Dimensionless Lattice Boltzmann Method

Authors: W. H. Zheng, J. Li, F. J. Hong

Abstract:

Thin liquid film evaporation in ultrathin nanoporous membranes, which reduce the viscous resistance while still maintaining high capillary pressure and efficient liquid delivery, is a promising thermal management approach for high-power electronic devices cooling. Given the challenges and technical limitations of experimental studies for accurate interface temperature sensing, complex manufacturing process, and short duration of membranes, a dimensionless lattice Boltzmann method capable of restoring thermophysical properties of working fluid is particularly derived. The evaporation of R134a to its pure vapour ambient in nanoporous membranes with the pore diameter of 80nm, thickness of 472nm, and three porosities of 0.25, 0.33 and 0.5 are numerically simulated. The numerical results indicate that the highest heat transfer coefficient is about 1740kW/m²·K; the highest heat flux is about 1.49kW/cm² with only about the wall superheat of 8.59K in the case of porosity equals to 0.5. The dissipated heat flux scaled with porosity because of the increasing effective evaporative area. Additionally, the self-regulation of the shape and curvature of the meniscus under different operating conditions is also observed. This work shows a promising approach to forecast the membrane performance for different geometry and working fluids.

Keywords: high heat flux, ultrathin nanoporous membrane, thin film evaporation, lattice Boltzmann method

Procedia PDF Downloads 156
425 The Effect of Soil Reinforcement on Pullout Behaviour of Flat Under-Reamer Anchor Pile Placed in Sand

Authors: V. K. Arora, Amit Rastogi

Abstract:

To understand the anchor pile behaviour and to predict the capacity of piles under uplift loading are important concerns in foundation analysis. Experimental model tests have been conducted on single anchor pile embedded in cohesionless soil and subjected to pure uplift loading. A gravel-filled geogrid layer was located around the enlarged pile base. The experimental tests were conducted on straight-shafted vertical steel piles with an outer diameter of 20 mm in a steel soil tank. The tested piles have embedment depth-to-diameter ratios (L/D) of 2, 3, and 4. The sand bed is prepared at three different values of density of 1.67, 1.59, and 1.50gm/cc. Single piles embedded in sandy soil were tested and the results are presented and analysed in this paper. The influences of pile embedment ratio, reinforcement, relative density of soil on the uplift capacity of piles were investigated. The study revealed that the behaviour of single piles under uplift loading depends mainly on both the pile embedment depth-to-diameter ratio and the soil density. It is believed that the experimental results presented in this study would be beneficial to the professional understanding of the soil–pile-uplift interaction problem.

Keywords: flat under-reamer anchor pile, geogrid, pullout reinforcement, soil reinforcement

Procedia PDF Downloads 462
424 The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes

Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi

Abstract:

An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition.

Keywords: nano fluids, heat transfer, flattend tube, transport phenomena

Procedia PDF Downloads 431
423 Characterization of Fatty Acid Glucose Esters as Os9BGlu31 Transglucosidase Substrates in Rice

Authors: Juthamath Komvongsa, Bancha Mahong, Kannika Phasai, Sukanya Luang, Jong-Seong Jeon, James Ketudat-Cairns

Abstract:

Os9BGlu31 is a rice transglucosidase that transfers glucosyl moieties to various acceptors such as carboxylic acids and alcohols, including phenolic acids and flavonoids, in vitro. The role of Os9BGlu31 transglucosidase in rice plant metabolism has not been reported to date. Methanolic extracts of rice bran and flag leaves were found to contain substrates to which Os9BGlu31 could transfer glucose from 4-nitrophenyl β -D-glucopyranoside donor. The semi-purified substrate from rice bran was found to contain oleic acid and linoleic acid and the pure fatty acids were found to act as acceptor substrates for Os9BGlu31 transglucosidase to form 1-O-acyl glucose esters. Os9BGlu31 showed higher activity with oleic acid (18:1) and linoleic acid (18:2) than stearic acid (18:0), and had both higher kcat and higher Km for linoleic than oleic acid in the presence of 8 mM 4NPGlc donor. This transglucosidase reaction is reversible, Os9bglu31 knockout rice lines of flag leaves were found to have higher amounts of fatty acid glucose esters than wild type control lines, these data conclude that fatty acid glucose esters act as glucosyl donor substrates for Os9BGlu31 transglucosidase in rice.

Keywords: fatty acid, fatty acid glucose ester, transglucosidase, rice flag leaf, homologous knockout lines, tandam mass spectrometry

Procedia PDF Downloads 356
422 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: ORR, fuel cells, batteries, electrocatalyst

Procedia PDF Downloads 100
421 Experiments with Saggar Application in Traditional Indian Pottery

Authors: Arman Ovla, Satyaki Roy, Shatrupa T. Roy

Abstract:

India is known for the richness of its tradition and cultural heritage. The practice of crafts like pottery and terracotta has a long-standing history. Some of the oldest specimens of fine pottery were excavated from the ancient sites of Indus-valley settlements dating back to 4000 years. There are so many techniques and styles which have developed through time. Pottery with red clay and low firing is one of the oldest branches of ceramic which is still being made in India in large quantities. This study is based on field research carried out in two large pottery clusters. The traditional potters of Pahari in Rajasthan and Nizamabad in Uttar Pradesh are baking pots with the help of saggar containers and creating products quite different from others. The potters of Prajapati community residing in both places have been engaged in the art of making pottery for ages. The knowledge of pottery and associated skills are passed on from one generation to the next. They use only the local material available in their vicinity and adapt the design and decorations to create an identity that is deeply rooted in their origins. For the purpose of this research, pure qualitative research methodology was followed with field visits and data collection from Pahari and Nizamabad. Observations and notes made from non-intrusive techniques and direct interview methods of existing potters residing in the region. This paper on Saggar pottery describes the tools and techniques, methods and materials, the firing process, and indigenous stylistic attributes.

Keywords: Saggar, smoke firing, black pottery, Nizamabad, Pahari

Procedia PDF Downloads 70
420 Investigation of Mode II Fracture Toughness in Orthotropic Materials

Authors: Mahdi Fakoor, Nabi Mehri Khansari, Ahmadreza Farokhi

Abstract:

Evaluation of mode II fracture toughness (KIIC) in composite materials is very hard problem to be solved, since it can be affected by many mechanisms of dissipation. Furthermore, non-linearity in its behavior can offer an extra difficulty to obtain accuracy in the results. Different reported values for KIIC in various references can prove the mentioned assertion. In this research, some solutions proposed based on the form of necessary corrections that should be executed on the common test fixtures. Due to the fact that the common test fixtures are not able to active toughening mechanisms in pure Mode II correctly, we have employed some structural modifications on common fixtures. Particularly, the Iosipescu test is used as start point. The tests are applied on graphite/epoxy; PMMA and Western White Pine Wood. Also, mixed mode I/II fracture limit curves are used to indicate the scattering in test results are really relevant to the creation of Fracture Process Zone (FPZ). In the present paper, shear load consideration applied at the predicted shear zone by considering some significant structural amendments that can active mode II toughening mechanisms. Indeed, the employed empirical method causes significant developing in repeatability and reproducibility as well. Moreover, a 3D Finite Element (FE) is performed for verification of the obtained results. Eventually, it is figured out that, a remarkable precision can be obtained in common test fixture in comparison with the previous one.

Keywords: FPZ, shear test fixture, mode II fracture toughness, composite material, FEM

Procedia PDF Downloads 356
419 Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance

Authors: Ayman M. Ibrahim, Jinpeng Cai, Peilun Shen, Dianwen Liu

Abstract:

The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface.

Keywords: sulfurization flotation, adsorption characteristics, malachite, hydrophobicity

Procedia PDF Downloads 61
418 Modeling of Gas Extraction from a Partially Gas-Saturated Porous Gas Hydrate Reservoir with Respect to Thermal Interactions with Surrounding Rocks

Authors: Angelina Chiglintseva, Vladislav Shagapov

Abstract:

We know from the geological data that quite sufficient gas reserves are concentrated in hydrates that occur on the Earth and on the ocean floor. Therefore, the development of these sources of energy and the storage of large reserves of gas hydrates is an acute global problem. An advanced technology for utilizing gas is to store it in a gas-hydrate state. Under natural conditions, storage facilities can be established, e.g., in underground reservoirs, where quite large volumes of gas can be conserved compared with reservoirs of pure gas. An analysis of the available experimental data of the kinetics and the mechanism of the gas-hydrate formation process shows the self-conservation effect that allows gas to be stored at negative temperatures and low values of pressures of up to several atmospheres. A theoretical model has been constructed for the gas-hydrate reservoir that represents a unique natural chemical reactor, and the principal possibility of the full extraction of gas from a hydrate due to the thermal reserves of the reservoirs themselves and the surrounding rocks has been analyzed. The influence exerted on the evolution of a gas hydrate reservoir by the reservoir thicknesses and the parameters that determine its initial state (a temperature, pressure, hydrate saturation) has been studied. It has been established that the shortest time of exploitation required by the reservoirs with a thickness of a few meters for the total hydrate decomposition is recorded in the cyclic regime when gas extraction alternated with the subsequent conservation of the gas hydrate deposit. The study was performed by a grant from the Russian Science Foundation (project No.15-11-20022).

Keywords: conservation, equilibrium state, gas hydrate reservoir, rocks

Procedia PDF Downloads 294
417 Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials

Authors: Barry Hojjatie

Abstract:

Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm.

Keywords: ceramis, biaxial, flexure test, uniaxial

Procedia PDF Downloads 145
416 Mobile Assembly of Electric Vehicles: Decentralized, Low-Invest and Flexible

Authors: Achim Kampker, Kai Kreiskoether, Johannes Wagner, Sarah Fluchs

Abstract:

The growing speed of innovation in related industries requires the automotive industry to adapt and increase release frequencies of new vehicle derivatives which implies a significant reduction of investments per vehicle and ramp-up times. Emerging markets in various parts of the world augment the currently dominating established main automotive markets. Local content requirements such as import tariffs on final products impede the accessibility of these micro markets, which is why in the future market exploitation will not be driven by pure sales activities anymore but rather by setting up local assembly units. The aim of this paper is to provide an overview of the concept of decentralized assembly and to discuss and critically assess some currently researched and crucial approaches in production technology. In order to determine the scope in which complementary mobile assembly can be profitable for manufacturers, a general cost model is set up and each cost driver is assessed with respect to varying levels of decentralization. One main result of the paper is that the presented approaches offer huge cost-saving potentials and are thus critical for future production strategies. Nevertheless, they still need to be further exploited in order for decentralized assembly to be profitable for companies. The optimal level of decentralization must, however, be specifically determined in each case and cannot be defined in general.

Keywords: automotive assembly, e-mobility, production technology, release capability, small series assembly

Procedia PDF Downloads 191
415 An Improved Discrete Version of Teaching–Learning-Based ‎Optimization for Supply Chain Network Design

Authors: Ehsan Yadegari

Abstract:

While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.

Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation

Procedia PDF Downloads 45
414 Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis

Authors: Kreso Ivandic, Filip Dodigovic, Damir Stuhec

Abstract:

The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors.

Keywords: action-resistance factor design, classic approach, embedded retaining wall, Eurocode 7, limit states, material factor design

Procedia PDF Downloads 227
413 Optimisation of B2C Supply Chain Resource Allocation

Authors: Firdaous Zair, Zoubir Elfelsoufi, Mohammed Fourka

Abstract:

The allocation of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players, manufacturers and Click & Mortars that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. Our contribution is a decision support system and tool for improving the allocation of resources in logistics chains e-commerce B2C context. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. In addition, every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource allocation in customized online shopping service mode, which is different from the supply chain resource allocation under traditional manufacturing or service circumstances. Then we realized an optimization model and algorithm for the development based on the analysis of the allocation of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.

Keywords: e-commerce, supply chain, B2C, optimisation, resource allocation

Procedia PDF Downloads 268
412 Extraction of Amorphous SiO₂ From Equisetnm Arvense Plant for Synthesis of SiO₂/Zeolitic Imidazolate Framework-8 Nanocomposite and Its Photocatalytic Activity

Authors: Babak Azari, Afshin Pourahmad, Babak Sadeghi, Masuod Mokhtari

Abstract:

In this work, Equisetnm arvense plant extract was used for preparing amorphous SiO₂. For preparing of SiO₂/zeolitic imidazolate framework-8 (ZIF-8) nanocomposite by solvothermal method, the synthesized SiO₂ was added to the synthesis mixture ZIF-8. The nanocomposite was characterized using a range of techniques. The photocatalytic activity of SiO₂/ZIF-8 was investigated systematically by degrading crystal violet as a cationic dye under Ultraviolet light irradiation. Among synthesized samples (SiO₂, ZIF-8 and SiO₂/ZIF-8), the SiO₂/ZIF-8 exhibited the highest photocatalytic activity and improved stability compared to pure SiO₂ and ZIF-8. As evidenced by Scanning Electron Microscopy and Transmission electron microscopy images, ZIF-8 particles without aggregation are located over SiO₂. The SiO₂ not only provides structured support for ZIF-8 but also prevents the aggregation of ZIF-8 Metal-organic framework in comparison to the isolated ZIF-8. The superior activity of this photocatalyst was attributed to the synergistic effects from SiO₂ owing to (I) an electron acceptor (from ZIF-8) and an electron donor (to O₂ molecules), (II) preventing recombination of electron-hole in ZIF-8, and (III) maximum interfacial contact ZIF-8 with the SiO₂ surface without aggregation or prevent the accumulation of ZIF-8. The results demonstrate that holes (h+) and •O₂- are primary reactive species involved in the photocatalytic oxidation process. Moreover, the SiO₂/ZIF-8 photocatalyst did not show any obvious loss of photocatalytic activity during five-cycle tests, which indicates that the heterostructured photocatalyst was highly stable and could be used repeatedly.

Keywords: nano, zeolit, potocatalist, nanocomposite

Procedia PDF Downloads 71
411 Nano-Structured Hydrophobic Silica Membrane for Gas Separation

Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe

Abstract:

Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.

Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method

Procedia PDF Downloads 119