Search results for: comfort zones
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1666

Search results for: comfort zones

1126 Sliding Mode Control for Active Suspension System with Actuator Delay

Authors: Aziz Sezgin, Yuksel Hacioglu, Nurkan Yagiz

Abstract:

Sliding mode controller for a vehicle active suspension system is designed in this study. The widely used quarter car model is preferred and it is aimed to improve the ride comfort of the passengers. The effect of the actuator time delay, which may arise due to the information processing, sensors or actuator dynamics, is also taken into account during the design of the controller. A sliding mode controller was designed that has taken into account the actuator time delay by using Smith predictor. The successful performance of the designed controller is confirmed via numerical results.

Keywords: sliding mode control, active suspension system, actuator, time delay, vehicle

Procedia PDF Downloads 391
1125 Evaluation of Heating/Cooling Potential of a Passive Building

Authors: M. Jamil Ahmad

Abstract:

In this paper, the heating/cooling potential of a passive building (mosque) of Prof. K. A. Nizami center for Quranic studies at AMU Aligarh, has been evaluated on the basis of energy balance under quasi-steady state condition by incorporating the effect of ventilation. The study has been carried out for composite climate of Aligarh. The performance of the above mentioned building has been presented in this study. It is observed that the premises of the mosque are cooler than the outside ambient temperature by an average of 2°C and 4°C during the month of March and April respectively. Provision of excellent ventilation, high amount of thermal mass, high ceilings and circulation of cool natural air helps in maintaining an optimal thermal comfort temperature in the passive building.

Keywords: heating/cooling potential, passive building, ambient temperatures

Procedia PDF Downloads 371
1124 Aerodynamic Analysis of Vehicles in the Wind Tunnel and Water Tunnel

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The simulation in wind tunnel is used thoroughly to model real situations of drainages of air. Besides the automotive industry, a great number of applications can be numbered: dispersion of pollutant, studies of pedestrians comfort and dispersion of particles. This work had the objective of visualizing the characteristics aerodynamics of two automobiles in different ways. To accomplish that drainage of air a fan that generated a speed exists (measured with anemometer of hot thread) of 4,1m/s and 4,95m/s. To visualize the path of the air through the cars, in the wind tunnel, smoke was used, obtained with it burns of vegetable oil. For “to do smoke” vegetable oil was used, that was burned for a tension of 20 V generated by a thread of 2,5 mm. The cars were placed inside of the wind tunnel with the drainage of “air-smoke” and photographed, registering like this the path lines around them, in the 3 different speeds.

Keywords: aerodynamics, vehicle drag, vegetable oil, wind tunnel

Procedia PDF Downloads 578
1123 Hydrogeochemical Investigation of Lead-Zinc Deposits in Oshiri and Ishiagu Areas, South Eastern Nigeria

Authors: Christian Ogubuchi Ede, Moses Oghenenyoreme Eyankware

Abstract:

This study assessed the concentration of heavy metals (HMs) in soil, rock, mine dump pile, and water from Oshiri and Ishiagu areas of Ebonyi State. Investigations on mobile fraction equally evaluated the geochemical condition of different HM using UV spectrophotometer for Mineralized and unmineralized rocks, dumps, and soil, while AAS was used in determining the geochemical nature of the water system. Analysis revealed very high pollution of Cd mostly in Ishiagu (Ihetutu and Amaonye) active mine zones and with subordinates enrichments of Pb, Cu, As, and Zn in Amagu and Umungbala. Oshiri recorded sparingly moderate to high contamination of Cd and Mn but out rightly high anthropogenic input. Observation showed that most of the contamination conditions were unbearable while at the control but decrease with increasing distance from the mine vicinity. The potential heavy metal risk of the environments was evaluated using the risk factors such as enrichment factor, index of Geoacumulation, Contamination Factor, and Effect Range Median. Cadmium and Zn showed moderate to extreme contamination using Geoaccumulation Index (Igeo) while Pb, Cd, and As indicated moderate to strong pollution using the Effect Range Median. Results, when compared with the allowable limits and standards, showed the concentration of the metals in the following order Cd>Zn>Pb>As>Cu>Ni (rocks), Cd>As>Pb>Zn>Cu>Ni (soil) while Cd>Zn>As>Pb> Cu (for mine dump pile. High concentrations of Zn and As were recorded more in mine pond and salt line/drain channels along active mine zones, it heightened its threat during the rainy period as it settles into river course, living behind full-scale contaminations to inhabitants depending on it for domestic uses. Pb and Cu with moderate pollution were recorded in surface/stream water source as its mobility were relatively low. Results from Ishiagu Crush rock sites and Fedeco metallurgical and auto workshop where groundwater contamination was seen infiltrating some of the wells points gave rise to values that were 4 times high than the allowable limits. Some of these metal concentrations according to WHO (2015) if left unmitigated pose adverse effects to the soil and human community.

Keywords: water, geo-accumulation, heavy metals, mine and Nigeria.

Procedia PDF Downloads 154
1122 Seismotectonic Deformations along Strike-Slip Fault Systems of the Maghreb Region, Western Mediterranean

Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Mojtaba Rajabi, Mustapha Meghraoui, Damien Delvaux, Ali Kadri, Moritz Ziegler, Said Maouche, Ahmed Braham, Aymen Arfaoui

Abstract:

The northern Maghreb region (Western Mediterranean) is a key area to study the seismotectonic deformations across the Africa-Eurasia convergent plate boundary. On the basis of young geologic fault slip data and stress inversion of focal mechanisms, we defined a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable SHmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with a reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with a normal component in the Alboran/Rif domain. This spatial variation of the active stress field and the tectonic regime is relatively in agreement with the inferred stress information from neotectonic features. According to newly suggested structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major preexisting strike-slip faults and related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Smoothed present-day and Neotectonic stress maps (mean SHmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The seismotectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones.

Keywords: Maghreb, strike-slip fault, seismotectonic, focal mechanism, inversion

Procedia PDF Downloads 113
1121 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.

Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations

Procedia PDF Downloads 39
1120 A Research Study of the Inclusiveness of VR Headsets for Higher Education

Authors: Fredrick Forster, Gareth Ward, Matthew Tubby, Pamela Lithgow, Anne Nortcliffe

Abstract:

This paper presents the results from a research study of random adult participants accessing one of four different commercially available Virtual Reality (VR) Head Mounted Displays (HMDs) and completing a post user experience reflection questionnaire. The research sort to understand how inclusive commercially available VR HMDs are and identify any associated barriers that could impact the widespread adoption of the devices, specifically in Higher Education (HE). In the UK, education providers are legally required under the Equality Act 2010 to ensure all education facilities are inclusive and reasonable adjustments can be applied appropriately. The research specifically aimed to identify the considerations that academics and learning technologists need to make when adopting the use of commercial VR HMDs in HE classrooms, namely cybersickness, user comfort, Interpupillary Distance, inclusiveness, and user perceptions of VR. The research approach was designed to build upon previously published research on user reflections on presence, usability, and overall HMD comfort, using quantitative and qualitative research methods by way of a questionnaire. The quantitative data included the recording of physical characteristics such as the distance between eye pupils, known as Interpupillary Distance (IPD). VR HMDs require each user’s IPD measurement to enable the focusing of the VR HMDs virtual camera output to the right position in front of the eyes of the user. In addition, the questionnaire captured users’ qualitative reflections and evaluations of the broader accessibility characteristics of the VR HMDs. The initial research activity was accomplished by enabling a random sample of visitors, staff, and students at Canterbury Christ Church University, Kent to use a VR HMD for a set period of time and asking them to complete the post user experience questionnaire. The study identified that there is little correlation between users who experience cyber sickness and car sickness. Also, users with a smaller IPD than average (typically associated with females) were able to use the VR HMDs successfully; however, users with a larger than average IPD reported an impeded experience. This indicates that there is reduced inclusiveness for the tested VR HMDs for users with a higher-than-average IPD which is typically associated with males of certain ethnicities. As action education research, these initial findings will be used to refine the research method and conduct further investigations with the aim to provide verification and validation of the accessibility of current commercial VR HMDs. The conference presentation will report on the research results of the initial study and subsequent follow up studies with a larger variety of adult volunteers.

Keywords: virtual reality, education technology, inclusive technology, higher education

Procedia PDF Downloads 52
1119 Vineyard Soils of Karnataka - Characterization, Classification and Soil Site Suitability Evaluation

Authors: Harsha B. R., K. S. Anil Kumar

Abstract:

Land characterization, classification, and soil suitability evaluation of grapes-growing pedons were assessed at fifteen taluks covering four agro climatic zones of Karnataka. Study on problems and potentials of grapes cultivation in selected agro-climatic zones was carried out along with the plant sample analysis. Twenty soil profiles were excavated as study site based on the dominance of area falling under grapes production and existing spatial variability of soils. The detailed information of profiles and horizon wise soil samples were collected to study the morphological, physical, chemical, and fertility characteristics. Climatic analysis and water retention characteristics of soils of major grapes-growing areas were also done. Based on the characterisation and classification study, it was revealed that soils of Doddaballapur (Bangalore Blue and Wine grapes), Bangalore North (GKVK Farm, Rajankunte, and IIHR Farm), Devanahalli, Magadi, Hoskote, Chikkaballapur (Dilkush and Red globe), Yelaburga, Hagari Bommanahalli, Bagalkot (UHS farm) and Indi fall under the soil order Alfisol. Vijaypur pedon of northern dry zone was keyed out as Vertisols whereas, Jamkhandi and Athani as Inceptisols. Properties of Aridisols were observed in B. Bagewadi (Manikchaman and Thompson Seedless) and Afzalpur. Soil fertility status and its mapping using GIS technique revealed that all the nutrients were found to be in adequate range except nitrogen, potassium, zinc, iron, and boron, which indicated the need for application along with organic matter to improve the SOC status. Varieties differed among themselves in yield and plant nutrient composition depending on their age, climatic, soil, and management requirements. Bangalore North (GKVK farm) and Jamkhandi are having medium soil organic carbon stocks of 6.21 and 6.55 kg m⁻³, respectively. Soils of Bangalore North (Rajankunte) were highly suitable (S1) for grapes cultivation. Under northern Karnataka, Vijayapura, B. Bagewadi, Indi, and Afzalpur vineyards were good performers despite the limitations of fertility and free lime content.

Keywords: land characterization, suitability, soil orders, soil organic carbon stock

Procedia PDF Downloads 93
1118 Social Innovation, Change and the Future of Resilient Communities in Tokyo

Authors: Heide Imai

Abstract:

The paper will introduce and discuss specific examples of urban practices which take place within the dynamic urban landscape of contemporary Tokyo. The rising interest and importance of derelict places as resilient and creative clusters will be analysed, before relating this to the rediscovery of small urban niches and the emergence of different forms of social entrepreneurs. Secondly, two different case study areas will be introduced before discussing different forms of hybrid lifestyles, social micro scale enterprises and social innovations, understanding the concept of ‘small places of resilience’ as zones of human interaction, desire and care in which spontaneous practices take place.

Keywords: entrepreneurship, social innovation, Tokyo, urban regeneration

Procedia PDF Downloads 459
1117 Structural Geology along the Jhakri-Wangtu Road (Jutogh Section) Himachal Pradesh, NW Higher Himalaya, India

Authors: Rajkumar Ghosh

Abstract:

The paper presents a comprehensive study of the structural analysis of the Chaura Thrust in Himachal Pradesh, India. The research focuses on several key aspects, including the activation timing of the Main Central Thrust (MCT) and the South Tibetan Detachment System (STDS), the identification and characterization of mylonitised zones through microscopic examination, and the understanding of box fold characteristics and their implications in the regional geology of the Himachal Himalaya. The primary objective of the study is to provide field documentation of the Chaura Thrust, which was previously considered a blind thrust with limited field evidence. Additionally, the research aims to characterize box folds and their signatures within the broader geological context of the Himachal Himalaya, document the temperature range associated with grain boundary migration (GBM), and explore the overprinting structures related to multiple sets of Higher Himalayan Out-of-Sequence Thrusts (OOSTs). The research methodology employed geological field observations and microscopic studies. Samples were collected along the Jhakri-Chaura transect at regular intervals of approximately 1 km to conduct strain analysis. Microstructural studies at the grain scale along the Jhakri-Wangtu transect were used to document the GBM-associated temperature range. The study reveals that the MCT activated in two parts, as did the STDS, and provides insights into the activation ages of the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). Under microscopic examination, the study identifies two mylonitised zones characterized by S-C fabric, and it documents dynamic and bulging recrystallization, as well as sub-grain formation. Various types of crenulated schistosity are observed in photomicrographs, including a rare occurrence where crenulation cleavage and sigmoid Muscovite are found juxtaposed. The study also notes the presence of S/SE-verging meso- and micro-scale box folds around Chaura, which may indicate structural upliftment. Kink folds near Chaura are visible, while asymmetric shear sense indicators in augen mylonite are predominantly observed under microscopic examination. Moreover, the research highlights the documentation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh, which activated the MCT and occurred within a zone south of the Main Central Thrust Upper (MCTU). The presence of multiple sets of OOSTs suggests a zigzag pattern of strain accumulation in the area. The study emphasizes the significance of understanding the overprinting structures associated with OOSTs. Overall, this study contributes to the understanding of the structural analysis of the Chaura Thrust and its implications in the regional geology of the Himachal Himalaya. The research underscores the importance of microscopic studies in identifying mylonitised zones and various types of crenulated schistosity. Additionally, the study documents the GBM-associated temperature range and provides insights into the activation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh. The findings of the study were obtained through geological field observations, microscopic studies, and strain analysis, offering valuable insights into the activation timing, mylonitization characteristics, and overprinting structures related to the Chaura Thrust and the broader tectonic framework of the region.

Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust

Procedia PDF Downloads 87
1116 Characteristics and Durability Evaluation of Air Spring

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Air spring system is widely accepted for railway vehicle secondary suspension to reduce and absorb the vibration and noise. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristic and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestically developed products are excellent. Moreover, to guarantee the adaption of air spring, the ride comfort and air pressure variation were measured in train test on subway line. Air spring developed by this study for railway vehicles can guarantee the reliability of average usage of 1 million times at 90% confidence level.

Keywords: air spring, reliability, railway, service lifetime

Procedia PDF Downloads 457
1115 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors

Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu

Abstract:

The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.

Keywords: construction contractors, health and well-being, environmental quality, risk management

Procedia PDF Downloads 119
1114 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System

Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k

Abstract:

Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.

Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving

Procedia PDF Downloads 237
1113 Mitigating the Negative Health Effects from Stress - A Social Network Analysis

Authors: Jennifer A. Kowalkowski

Abstract:

Production agriculture (farming) is a physically, emotionally, and cognitively stressful occupation, where workers have little control over the stressors that impact both their work and their lives. In an occupation already rife with hazards, these occupational-related stressors have been shown to increase farm workers’ risks for illness, injury, disability, and death associated with their work. Despite efforts to mitigate the negative health effects from occupational-related stress (ORS) and to promote health and well-being (HWB) among farmers in the US, marked improvements have not been attained. Social support accessed through social networks has been shown to buffer against the negative health effects from stress, yet no studies have directly examined these relationships among farmers. The purpose of this study was to use social network analysis to explore the social networks of farm owner-operators and the social supports available to them for mitigating the negative health effects of ORS. A convenience sample of 71 farm owner-operators from a Midwestern County in the US completed and returned a mailed survey (55.5% response rate) that solicited information about their social networks related to ORS. Farmers reported an average of 2.4 individuals in their personal networks and higher levels of comfort discussing ORS with female network members. Farmers also identified few connections (3.4% density) and indicated low comfort with members of affiliation networks specific to ORS. Findings from this study highlighted that farmers accessed different social networks and resources for their personal HWB than for issues related to occupational(farm-related) health and safety. In addition, farmers’ social networks for personal HWB were smaller, with different relational characteristics than reported in studies of farmers’ social networks related to occupational health and safety. Collectively, these findings suggest that farmers conceptualize personal HWB differently than farm health and safety. Therefore, the same research approaches and targets that guide occupational health and safety research may not be appropriate for personal HWB for farmers. Interventions and programming targeting ORS and HWB have largely been offered through the same platforms or mechanisms as occupational health and safety programs. This may be attributed to the significant overlap between the farm as a family business and place of residence, or that ORS stems from farm-related issues. However, these assumptions translated to health research of farmers and farm families from the occupational health and safety literature have not been directly studied or challenged. Thismay explain why past interventions have not been effective at improving health outcomes for farmers and farm families. A close examination of findings from this study raises important questions for researchers who study agricultural health. Findings from this study have significant implications for future research agendas focused on addressing ORS, HWB, and health disparities for farmersand farm families.

Keywords: agricultural health, occupational-related stress, social networks, well-being

Procedia PDF Downloads 93
1112 Integrated Coastal Management for the Sustainable Development of Coastal Cities: The Case of El-Mina, Tripoli, Lebanon

Authors: G. Ghamrawi, Y. Abunnasr, M. Fawaz, S. Yazigi

Abstract:

Coastal cities are constantly exposed to environmental degradation and economic regression fueled by rapid and uncontrolled urban growth as well as continuous resource depletion. This is the case of the City of Mina in Tripoli (Lebanon), where lack of awareness to preserve social, ecological, and historical assets, coupled with the increasing development pressures, are threatening the socioeconomic status of the city residents, the quality of life and accessibility to the coast. To address these challenges, a holistic coastal urban design and planning approach was developed to analyze the environmental, political, legal, and socioeconomic context of the city. This approach aims to investigate the potential of balancing urban development with the protection and enhancement of cultural, ecological, and environmental assets under an integrated coastal zone management approach (ICZM). The analysis of Mina's different sectors adopted several tools that include direct field observation, interviews with stakeholders, analysis of available data, historical maps, and previously proposed projects. The findings from the analysis were mapped and graphically represented, allowing the recognition of character zones that become the design intervention units. Consequently, the thesis proposes an urban, city-scale intervention that identifies 6 different character zones (the historical fishing port, Abdul Wahab island, the abandoned Port Said, Hammam el Makloub, the sand beach, and the new developable area) and proposes context-specific design interventions that capitalize on the main characteristics of each zone. Moreover, the intervention builds on the institutional framework of ICZM as well as other studies previously conducted for the coast and adopts nature-based solutions with hybrid systems for providing better environmental design solutions for developing the coast. This enables the realization of an all-inclusive, well-connected shoreline with easy and free access towards the sea; a developed shoreline with an active local economy, and an improved urban environment.

Keywords: blue green infrastructure, coastal cities, hybrid solutions, integrated coastal zone management, sustainable development, urban planning

Procedia PDF Downloads 133
1111 Analyzing the Contamination of Some Food Crops Due to Mineral Deposits in Ondo State, Nigeria

Authors: Alexander Chinyere Nwankpa, Nneka Ngozi Nwankpa

Abstract:

In Nigeria, the Federal government is trying to make sure that everyone has access to enough food that is nutritiously adequate and safe. But in the southwest of Nigeria, notably in Ondo State, the most valuable minerals such as oil and gas, bitumen, kaolin, limestone talc, columbite, tin, gold, coal, and phosphate are abundant. Therefore, some regions of Ondo State are now linked to large quantities of natural radioactivity as a result of the mineral presence. In this work, the baseline radioactivity levels in some of the most important food crops in Ondo State were analyzed, allowing for the prediction of probable radiological health impacts. To this effect, maize (Zea mays), yam (Dioscorea alata) and cassava (Manihot esculenta) tubers were collected from the farmlands in the State because they make up the majority of food's nutritional needs. Ondo State was divided into eight zones in order to provide comprehensive coverage of the research region. At room temperature, the maize (Zea mays), yam (Dioscorea alata), and cassava (Manihot esculenta) samples were dried until they reached a consistent weight. They were pulverized, homogenized, and 250 g packed in a 1-liter Marinelli beaker and kept for 28 days to achieve secular equilibrium. The activity concentrations of Radium-226 (Ra-226), Thorium-232 (Th-232), and Potassium-40 (K-40) were determined in the food samples using Gamma-ray spectrometry. Firstly, the Hyper Pure Germanium detector was calibrated using standard radioactive sources. The gamma counting, which lasted for 36000s for each sample, was carried out in the Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria. The mean activity concentration of Ra-226, Th-232 and K-40 for yam were 1.91 ± 0.10 Bq/kg, 2.34 ± 0.21 Bq/kg and 48.84 ± 3.14 Bq/kg, respectively. The content of the radionuclides in maize gave a mean value of 2.83 ± 0.21 Bq/kg for Ra-226, 2.19 ± 0.07 Bq/kg for Th-232 and 41.11 ± 2.16 Bq/kg for K-40. The mean activity concentrations in cassava were 2.52 ± 0.31 Bq/kg for Ra-226, 1.94 ± 0.21 Bq/kg for Th-232 and 45.12 ± 3.31 Bq/kg for K-40. The average committed effective doses in zones 6-8 were 0.55 µSv/y for the consumption of yam, 0.39 µSv/y for maize, and 0.49 µSv/y for cassava. These values are higher than the annual dose guideline of 0.35 µSv/y for the general public. Therefore, the values obtained in this work show that there is radiological contamination of some foodstuffs consumed in some parts of Ondo State. However, we recommend that systematic and appropriate methods also need to be established for the measurement of gamma-emitting radionuclides since these constitute important contributors to the internal exposure of man through ingestion, inhalation, or wound on the body.

Keywords: contamination, environment, radioactivity, radionuclides

Procedia PDF Downloads 83
1110 Behavior of Beam-Column Nodes Reinforced Concrete in Earthquake Zones

Authors: Zaidour Mohamed, Ghalem Ali Jr., Achit Henni Mohamed

Abstract:

This project is destined to study pole junctions of reinforced concrete beams subjected to seismic loads. A literature review was made to clarify the work done by researchers in the last three decades and especially the results of the last two years that were studied for the determination of the method of calculating the transverse reinforcement in the different nodes of a structure. For implementation efforts in the columns and beams of a building R + 4 in zone 3 were calculated using the finite element method through software. These results are the basis of our work which led to the calculation of the transverse reinforcement of the nodes of the structure in question.

Keywords: beam–column joints, cyclic loading, shearing force, damaged joint

Procedia PDF Downloads 531
1109 Optimization Based Obstacle Avoidance

Authors: R. Dariani, S. Schmidt, R. Kasper

Abstract:

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

Keywords: autonomous driving, obstacle avoidance, optimal control, path planning

Procedia PDF Downloads 354
1108 Feasibility Study of Distributed Lightless Intersection Control with Level 1 Autonomous Vehicles

Authors: Bo Yang, Christopher Monterola

Abstract:

Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme.

Keywords: intersection control, autonomous vehicles, traffic modelling, intelligent transport system

Procedia PDF Downloads 439
1107 Flash Flood in Gabes City (Tunisia): Hazard Mapping and Vulnerability Assessment

Authors: Habib Abida, Noura Dahri

Abstract:

Flash floods are among the most serious natural hazards that have disastrous environmental and human impacts. They are associated with exceptional rain events, characterized by short durations, very high intensities, rapid flows and small spatial extent. Flash floods happen very suddenly and are difficult to forecast. They generally cause damage to agricultural crops and property, infrastructures, and may even result in the loss of human lives. The city of Gabes (South-eastern Tunisia) has been exposed to numerous damaging floods because of its mild topography, clay soil, high urbanization rate and erratic rainfall distribution. The risks associated with this situation are expected to increase further in the future because of climate change, deemed responsible for the increase of the frequency and the severity of this natural hazard. Recently, exceptional events hit Gabes City causing death and major property losses. A major flooding event hit the region on June 2nd, 2014, causing human deaths and major material losses. It resulted in the stagnation of storm water in the numerous low zones of the study area, endangering thereby human health and causing disastrous environmental impacts. The characterization of flood risk in Gabes Watershed (South-eastern Tunisia) is considered an important step for flood management. Analytical Hierarchy Process (AHP) method coupled with Monte Carlo simulation and geographic information system were applied to delineate and characterize flood areas. A spatial database was developed based on geological map, digital elevation model, land use, and rainfall data in order to evaluate the different factors susceptible to affect flood analysis. Results obtained were validated by remote sensing data for the zones that showed very high flood hazard during the extreme rainfall event of June 2014 that hit the study basin. Moreover, a survey was conducted from different areas of the city in order to understand and explore the different causes of this disaster, its extent and its consequences.

Keywords: analytical hierarchy process, flash floods, Gabes, remote sensing, Tunisia

Procedia PDF Downloads 92
1106 Worth of Sick Building Syndrome and Enhance the Quality of Life in Green Building

Authors: Kamyar Kabirifar, Majid Azarniush, Behbood Maashkar

Abstract:

A proper house is a suitable residential area which provides comfort, proper accessibility, security, stability and permanence of structure, enough lighting, Proper initial infrastructures and ventilation for its inhabitants and the most important of all, it should be proportional to the family’s financial power. Saving energy and making optimal usage of it and also taking advantage of stable energies are the bases of green buildings. Making green building will help the health of a person living in it and in its surrounding. It will support the people and provoke their satisfaction. Not only it will bring about the raise of level of the quality of life for building inhabitants, but also it will cause the promotion of quality level of life of the people living in the surrounding area and the society.

Keywords: quality of life, green building, environment pollution, sick building

Procedia PDF Downloads 498
1105 Utilization of Standard Paediatric Observation Chart to Evaluate Infants under Six Months Presenting with Non-Specific Complaints

Authors: Michael Zhang, Nicholas Marriage, Valerie Astle, Marie-Louise Ratican, Jonathan Ash, Haddijatou Hughes

Abstract:

Objective: Young infants are often brought to the Emergency Department (ED) with a variety of complaints, some of them are non-specific and present as a diagnostic challenge to the attending clinician. Whilst invasive investigations such as blood tests and lumbar puncture are necessary in some cases to exclude serious infections, some basic clinical tools in additional to thorough clinical history can be useful to assess the risks of serious conditions in these young infants. This study aimed to examine the utilization of one of clinical tools in this regard. Methods: This retrospective observational study examined the medical records of infants under 6 months presenting to a mixed urban ED between January 2013 and December 2014. The infants deemed to have non-specific complaints or diagnoses by the emergency clinicians were selected for analysis. The ones with clear systemic diagnoses were excluded. Among all relevant clinical information and investigation results, utilization of Standard Paediatric Observation Chart (SPOC) was particularly scrutinized in these medical records. This specific chart was developed by the expert clinicians in local health department. It categorizes important clinical signs into some color-coded zones as a visual cue for serious implication of some abnormalities. An infant is regarded as SPOC positive when fulfills 1 red zone or 2 yellow zones criteria, and the attending clinician would be prompted to investigate and treat for potential serious conditions accordingly. Results: Eight hundred and thirty-five infants met the inclusion criteria for this project. The ones admitted to the hospital for further management were more likely to have SPOC positive criteria than the discharged infants (Odds ratio: 12.26, 95% CI: 8.04 – 18.69). Similarly, Sepsis alert criteria on SPOC were positive in a higher percentage of patients with serious infections (56.52%) in comparison to those with mild conditions (15.89%) (p < 0.001). The SPOC sepsis criteria had a sensitivity of 56.5% (95% CI: 47.0% - 65.7%) and a moderate specificity of 84.1% (95% CI: 80.8% - 87.0%) to identify serious infections. Applying to this infant population, with a 17.4% prevalence of serious infection, the positive predictive value was only 42.8% (95% CI: 36.9% - 49.0%). However, the negative predictive value was high at 90.2% (95% CI: 88.1% - 91.9%). Conclusions: Standard Paediatric Observation Chart has been applied as a useful clinical tool in the clinical practice to help identify and manage young sick infants in ED effectively.

Keywords: clinical tool, infants, non-specific complaints, Standard Paediatric Observation Chart

Procedia PDF Downloads 233
1104 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 140
1103 Large Scale Method to Assess the Seismic Vulnerability of Heritage Buidings: Modal Updating of Numerical Models and Vulnerability Curves

Authors: Claire Limoge Schraen, Philippe Gueguen, Cedric Giry, Cedric Desprez, Frédéric Ragueneau

Abstract:

Mediterranean area is characterized by numerous monumental or vernacular masonry structures illustrating old ways of build and live. Those precious buildings are often poorly documented, present complex shapes and loadings, and are protected by the States, leading to legal constraints. This area also presents a moderate to high seismic activity. Even moderate earthquakes can be magnified by local site effects and cause collapse or significant damage. Moreover the structural resistance of masonry buildings, especially when less famous or located in rural zones has been generally lowered by many factors: poor maintenance, unsuitable restoration, ambient pollution, previous earthquakes. Recent earthquakes prove that any damage to these architectural witnesses to our past is irreversible, leading to the necessity of acting preventively. This means providing preventive assessments for hundreds of structures with no or few documents. In this context we want to propose a general method, based on hierarchized numerical models, to provide preliminary structural diagnoses at a regional scale, indicating whether more precise investigations and models are necessary for each building. To this aim, we adapt different tools, being developed such as photogrammetry or to be created such as a preprocessor starting from pictures to build meshes for a FEM software, in order to allow dynamic studies of the buildings of the panel. We made an inventory of 198 baroque chapels and churches situated in the French Alps. Then their structural characteristics have been determined thanks field surveys and the MicMac photogrammetric software. Using structural criteria, we determined eight types of churches and seven types for chapels. We studied their dynamical behavior thanks to CAST3M, using EC8 spectrum and accelerogramms of the studied zone. This allowed us quantifying the effect of the needed simplifications in the most sensitive zones and choosing the most effective ones. We also proposed threshold criteria based on the observed damages visible in the in situ surveys, old pictures and Italian code. They are relevant in linear models. To validate the structural types, we made a vibratory measures campaign using vibratory ambient noise and velocimeters. It also allowed us validating this method on old masonry and identifying the modal characteristics of 20 churches. Then we proceeded to a dynamic identification between numerical and experimental modes. So we updated the linear models thanks to material and geometrical parameters, often unknown because of the complexity of the structures and materials. The numerically optimized values have been verified thanks to the measures we made on the masonry components in situ and in laboratory. We are now working on non-linear models redistributing the strains. So we validate the damage threshold criteria which we use to compute the vulnerability curves of each defined structural type. Our actual results show a good correlation between experimental and numerical data, validating the final modeling simplifications and the global method. We now plan to use non-linear analysis in the critical zones in order to test reinforcement solutions.

Keywords: heritage structures, masonry numerical modeling, seismic vulnerability assessment, vibratory measure

Procedia PDF Downloads 477
1102 Identification of Suitable Sites for Rainwater Harvesting in Salt Water Intruded Area by Using Geospatial Techniques in Jafrabad, Amreli District, India

Authors: Pandurang Balwant, Ashutosh Mishra, Jyothi V., Abhay Soni, Padmakar C., Rafat Quamar, Ramesh J.

Abstract:

The sea water intrusion in the coastal aquifers has become one of the major environmental concerns. Although, it is a natural phenomenon but, it can be induced with anthropogenic activities like excessive exploitation of groundwater, seacoast mining, etc. The geological and hydrogeological conditions including groundwater heads and groundwater pumping pattern in the coastal areas also influence the magnitude of seawater intrusion. However, this problem can be remediated by taking some preventive measures like rainwater harvesting and artificial recharge. The present study is an attempt to identify suitable sites for rainwater harvesting in salt intrusion affected area near coastal aquifer of Jafrabad town, Amreli district, Gujrat, India. The physico-chemical water quality results show that out of 25 groundwater samples collected from the study area most of samples were found to contain high concentration of Total Dissolved Solids (TDS) with major fractions of Na and Cl ions. The Cl/HCO3 ratio was also found greater than 1 which indicates the salt water contamination in the study area. The geophysical survey was conducted at nine sites within the study area to explore the extent of contamination of sea water. From the inverted resistivity sections, low resistivity zone (<3 Ohm m) associated with seawater contamination were demarcated in North block pit and south block pit of NCJW mines, Mitiyala village Lotpur and Lunsapur village at the depth of 33 m, 12 m, 40 m, 37 m, 24 m respectively. Geospatial techniques in combination of Analytical Hierarchy Process (AHP) considering hydrogeological factors, geographical features, drainage pattern, water quality and geophysical results for the study area were exploited to identify potential zones for the Rainwater Harvesting. Rainwater harvesting suitability model was developed in ArcGIS 10.1 software and Rainwater harvesting suitability map for the study area was generated. AHP in combination of the weighted overlay analysis is an appropriate method to identify rainwater harvesting potential zones. The suitability map can be further utilized as a guidance map for the development of rainwater harvesting infrastructures in the study area for either artificial groundwater recharge facilities or for direct use of harvested rainwater.

Keywords: analytical hierarchy process, groundwater quality, rainwater harvesting, seawater intrusion

Procedia PDF Downloads 155
1101 Human Factors as the Main Reason of the Accident in Scaffold Use Assessment

Authors: Krzysztof J. Czarnocki, E. Czarnocka, K. Szaniawska

Abstract:

Main goal of the research project is Scaffold Use Risk Assessment Model (SURAM) formulation, developed for the assessment of risk levels as a various construction process stages with various work trades. Finally, in 2016, the project received financing by the National Center for Research and development according to PBS3/A2/19/2015–Research Grant. The presented data, calculations and analyzes discussed in this paper were created as a result of the completion on the first and second phase of the PBS3/A2/19/2015 project. Method: One of the arms of the research project is the assessment of worker visual concentration on the sight zones as well as risky visual point inadequate observation. In this part of research, the mobile eye-tracker was used to monitor the worker observation zones. SMI Eye Tracking Glasses is a tool, which allows us to analyze in real time and place where our eyesight is concentrated on and consequently build the map of worker's eyesight concentration during a shift. While the project is still running, currently 64 construction sites have been examined, and more than 600 workers took part in the experiment including monitoring of typical parameters of the work regimen, workload, microclimate, sound vibration, etc. Full equipment can also be useful in more advanced analyses. Because of that technology we have verified not only main focus of workers eyes during work on or next to scaffolding, but we have also examined which changes in the surrounding environment during their shift influenced their concentration. In the result of this study it has been proven that only up to 45.75% of the shift time, workers’ eye concentration was on one of three work-related areas. Workers seem to be distracted by noisy vehicles or people nearby. In opposite to our initial assumptions and other authors’ findings, we observed that the reflective parts of the scaffoldings were not more recognized by workers in their direct workplaces. We have noticed that the red curbs were the only well recognized part on a very few scaffoldings. Surprisingly on numbers of samples, we have not recognized any significant number of concentrations on those curbs. Conclusion: We have found the eye-tracking method useful for the construction of the SURAM model in the risk perception and worker’s behavior sub-modules. We also have found that the initial worker's stress and work visual conditions seem to be more predictive for assessment of the risky developing situation or an accident than other parameters relating to a work environment.

Keywords: accident assessment model, eye tracking, occupational safety, scaffolding

Procedia PDF Downloads 181
1100 Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain

Authors: Gonzalez Carlos, Martinez Fransisco

Abstract:

There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction.

Keywords: GMPM, 5% damped pseudo-response spectra, models of seismic prediction, PSHA

Procedia PDF Downloads 59
1099 Malaysian Retirement Savings Behavior

Authors: Haneffa M. G.

Abstract:

Retirement preparedness among Malaysian working individuals found to be poor. Prior research proven women consistently have lower retirement confidence as compared to men. Retirement planning still become the vague issues due to saving for the golden years are being stepsided by many people. Most of them think that their contributions in companies and government retirement plan is enough to comfort them in their golden years. The Employee Provident Fund (EPF) claims that most of nearly retired person have inadequate fund to retire. Therefore, this paper aims to discuss the saving behavior of younger cohort of working individuals towards retirement planning in Malaysia. A theoretical framework is developed to understand the relationship between demographic characteristics, financial education, goal clarity, perceived religiosity and retirement savings behavior.

Keywords: retirement planning, savings behavior, perceived religiosity, goal clarity, Malaysia

Procedia PDF Downloads 263
1098 Restoration of Steppes in Algeria: Case of the Stipa tenacissima L. Steppe

Authors: H. Kadi-Hanifi, F. Amghar

Abstract:

Steppes of arid Mediterranean zones are deeply threatened by desertification. To stop or alleviate ecological and economic problems associated with this desertification, management actions have been implemented since the last three decades. The struggle against desertification has become a national priority in many countries. In Algeria, several management techniques have been used to cope with desertification. This study aims at investigating the effect of exclosure on floristic diversity and chemical soil proprieties after four years of implementation. 167 phyto-ecological samples have been studied, 122 inside the exclosure and 45 outside. Results showed that plant diversity, composition, vegetation cover, pastoral value and soil fertility were significantly higher in protected areas.

Keywords: Algeria, arid, desertification, pastoral management, soil fertility

Procedia PDF Downloads 175
1097 Estimation of Eucalyptus Wood Calorific Potential for Energy Recovering

Authors: N. Ouslimani, N. Hakimi, H. Aksas

Abstract:

The reduction of oil reserves in the world makes that many countries are directed towards the study and the use of local and renewable energies. For this purpose, wood energy represents the material of choice. The energy production is primarily thermal and corresponds to a heating of comfort, auxiliary or principal. Wood is generally conditioned in the form of logs, of pellets, even of plates. In Algeria, this way of energy saving could contribute to the safeguarding of the environment, as to the recovery of under wood products (branches, barks and various wastes on the various transformation steps). This work is placed within the framework general of the search for new sources of energy starting from the recovery of the lignocellulosic matter. In this direction, we proposed various sources of products (biomass, under product and by-products) relating to the ‘Eucalyptus species’ being able to be developed, of which we carried out a preliminary physicochemical study, necessary to the development of the densified products with high calorific value.

Keywords: biomass, calorific value, combustion, energy recovery

Procedia PDF Downloads 264