Search results for: binary logistic regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3923

Search results for: binary logistic regression

3383 Use of Regression Analysis in Determining the Length of Plastic Hinge in Reinforced Concrete Columns

Authors: Mehmet Alpaslan Köroğlu, Musa Hakan Arslan, Muslu Kazım Körez

Abstract:

Basic objective of this study is to create a regression analysis method that can estimate the length of a plastic hinge which is an important design parameter, by making use of the outcomes of (lateral load-lateral displacement hysteretic curves) the experimental studies conducted for the reinforced square concrete columns. For this aim, 170 different square reinforced concrete column tests results have been collected from the existing literature. The parameters which are thought affecting the plastic hinge length such as cross-section properties, features of material used, axial loading level, confinement of the column, longitudinal reinforcement bars in the columns etc. have been obtained from these 170 different square reinforced concrete column tests. In the study, when determining the length of plastic hinge, using the experimental test results, a regression analysis have been separately tested and compared with each other. In addition, the outcome of mentioned methods on determination of plastic hinge length of the reinforced concrete columns has been compared to other methods available in the literature.

Keywords: columns, plastic hinge length, regression analysis, reinforced concrete

Procedia PDF Downloads 479
3382 Can Empowering Women Farmers Reduce Household Food Insecurity? Evidence from Malawi

Authors: Christopher Manyamba

Abstract:

Women in Malawi produce perform between 50-70 percent of all agricultural tasks and yet the majority remain food insecure. The aim of his paper is to build on existing mixed evidence that indicates that empowering women in agriculture is conducive to improving food security. The WEAI is used to provide evidence on the relationship between women’s empowerment in agriculture and household food security. A multinomial logistic regression is applied to the Women Empowerment in Agriculture Index (WEAI) components and the Household Hunger Scale. The overall results show that the WEAI can be used to determine household food insecurity; however it has to be contextually adapted. Assets ownership, credit, group membership and leisure time are positively associated with food security. Contrary to other literature, empowerment in having control and decisions on income indicate negative association with household food security. These results could potentially better inform public, private and civil society stakeholders’ dialogues in creating the most effective and sustainable interventions to help women attain long-term food security.

Keywords: food security, gender, empowerment, agriculture index, framework for African food security, household hunger scale

Procedia PDF Downloads 368
3381 Prevalence and Determinants of Hypertension among the Santal Indigenous Group in Bangladesh

Authors: Sharmin Sultana, Palash Chandra Banik, Shirin Jahan Mumu, Liaquat Ali

Abstract:

Santals are one of the oldest indigenous groups of South Asia who, according to anthropological evidence, are thought to be the origins of the Bengali race. The aim of the study was to explore, according to our best knowledge for the first time, the prevalence and determinants of hypertension in this relatively isolated and marginalized indigenous group who still live mostly in a traditional style. Under a cross-sectional analytical design, the study was conducted on the adult (age≥18 years) Santals (n=389, M/F 184/205, age in years, 38±15.3) of a village located in a remote rural area of northern Bangladesh. Subjects were selected by purposive sampling, and data were collected by interviewer-administered pretested questionnaire. Blood pressure was measured by following the WHO guideline of JNC-7 has been used to classify the blood pressure. The prevalence of hypertension was 4.9% among the respondents. Females had a much higher prevalence (5.4%) of hypertension compared to males (4.3%). Among the risk indicators of hypertension, more than half (50.9%) of the study population took extra salt in their meals, whereas 10.5% of respondents used extra salt occasionally, which is an important risk factor for high blood pressure. High waist circumference was found in 19% of the study subjects in terms of central obesity. Older age group (p=0.003, OR=1.1, 95%CI-1.02-1.10), respondents who completed more than primary school (p=0.038, OR=7.1, CI-1.11, 44.6), overweight and obesity (p=0.004, OR=17.1, CI-2.5, 118.1), were the major determinant for hypertension as found from the binary logistic model. None of the respondents received any medication, neither they visit any doctor ever for their hypertension control. The prevalence of hypertension was found to be low but not ignorable. Pre-hypertension in the case of systolic blood pressure needs attention among Santal indigenous population.

Keywords: hypertension, indigenous group, Santals, Bangladesh

Procedia PDF Downloads 108
3380 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401
3379 Local Texture and Global Color Descriptors for Content Based Image Retrieval

Authors: Tajinder Kaur, Anu Bala

Abstract:

An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.

Keywords: color, texture, feature extraction, local binary patterns, image retrieval

Procedia PDF Downloads 366
3378 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents

Authors: M. Ouassaf, S. Belaid

Abstract:

A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.

Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR

Procedia PDF Downloads 157
3377 Factors Predicting Food Insecurity in Older Thai Women

Authors: Noppawan Piaseu, Surat Komindr

Abstract:

This study aimed to determine factors predicting food insecurity in older Thai women living in crowded urban communities. Through purposive sampling, 315 participants were recruited from community dwelling older women in Bangkok, Thailand. Data collection included interview from questionnaires and anthropometric measurement. Results showed that approximately half of the sample were 60-69 years old (51.1%), married (50.6%), obtained primary education (52.3%), had low family income (51.7%), lived in poor physical environment (49.9%) with normal body mass index (51.0%). Logistic regression analysis revealed that older women who were widowed/divorced/separated (OR = 1.804, 95% CI = 1.052-3.092, p = .032), who reported low family income (OR =.654, 95% CI = .523-.817, p < .001), and who had poor physical environment surrounding home (OR = 2.338, 95% CI = 1.057-5.171, p = .036) were more likely to have food insecurity. Results support that social and environmental factors are major factors predicting food insecurity in older women living in the urban community. Health professionals need to identify and monitor psychosocial, economic and environmental dimensions of food insecurity among them.

Keywords: food insecurity, older women, urban communities, Thailand

Procedia PDF Downloads 406
3376 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 168
3375 Agile Software Effort Estimation Using Regression Techniques

Authors: Mikiyas Adugna

Abstract:

Effort estimation is among the activities carried out in software development processes. An accurate model of estimation leads to project success. The method of agile effort estimation is a complex task because of the dynamic nature of software development. Researchers are still conducting studies on agile effort estimation to enhance prediction accuracy. Due to these reasons, we investigated and proposed a model on LASSO and Elastic Net regression to enhance estimation accuracy. The proposed model has major components: preprocessing, train-test split, training with default parameters, and cross-validation. During the preprocessing phase, the entire dataset is normalized. After normalization, a train-test split is performed on the dataset, setting training at 80% and testing set to 20%. We chose two different phases for training the two algorithms (Elastic Net and LASSO) regression following the train-test-split. In the first phase, the two algorithms are trained using their default parameters and evaluated on the testing data. In the second phase, the grid search technique (the grid is used to search for tuning and select optimum parameters) and 5-fold cross-validation to get the final trained model. Finally, the final trained model is evaluated using the testing set. The experimental work is applied to the agile story point dataset of 21 software projects collected from six firms. The results show that both Elastic Net and LASSO regression outperformed the compared ones. Compared to the proposed algorithms, LASSO regression achieved better predictive performance and has acquired PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The result implies LASSO regression algorithm trained model is the most acceptable, and higher estimation performance exists in the literature.

Keywords: agile software development, effort estimation, elastic net regression, LASSO

Procedia PDF Downloads 71
3374 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers

Authors: Linda Boussaid, Farid Brahim Belaribi

Abstract:

The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixtures

Keywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers

Procedia PDF Downloads 91
3373 Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid

Authors: Min Wang, Sergey Utev

Abstract:

The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid.

Keywords: combinatorial construction, graphical representation, matroid, path calculation, share price, Tutte polynomial

Procedia PDF Downloads 138
3372 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 82
3371 Urban-Rural Inequality in Mexico after Nafta: A Quantile Regression Analysis

Authors: Rene Valdiviezo-Issa

Abstract:

In this paper, we use Mexico’s Households Income and Expenditures (ENIGH) survey to explain the behaviour that the urban-rural expenditure gap has had since Mexico’s incorporation to the North American Free Trade Agreement (NAFTA) in 1994 and we compare it with the latest available survey, which took place in 2014. We use real trimestral expenditure per capita (RTEPC) as the measure of welfare. We use quantile regressions and a quantile regression decomposition to describe the gap between urban and rural distributions of log RTEPC. We discover that the decrease in the difference between the urban and rural distributions of log RTEPC, or inequality, is motivated because of a deprivation of the urban areas, in very specific characteristics, rather than an improvement of the urban areas. When using the decomposition we observe that the gap is primarily brought about because differences in returns to covariates between the urban and rural areas.

Keywords: quantile regression, urban-rural inequality, inequality in Mexico, income decompositon

Procedia PDF Downloads 282
3370 Factors Influencing Family Resilience and Quality of Life in Pediatric Cancer Patients and Their Caregivers: A Cluster Analysis

Authors: Li Wang, Dan Shu, Shiguang Pang, Lixiu Wang, Bing Xiang Yang, Qian Liu

Abstract:

Background: Cancer is one of the most severe diseases in childhood; long-term treatment and its side effects significantly impact the patient's physical, psychological, social functioning and quality of life while also placing substantial physical and psychological burdens on caregivers and families. Family resilience is crucial for children with cancer, helping them cope better with the disease and supporting the family in facing challenges together. As a family-level variable, family resilience requires information from multiple family members. However, to our best knowledge, there is currently no research investigating family resilience from both the perspectives of pediatric cancer patients and their caregivers. Therefore, this study aims to investigate the family resilience and quality of life of pediatric cancer patients from a patient–caregiver dyadic perspective. Methods: A total of 149 dyads of patients diagnosed with pediatric cancer patients and their principal caregivers were recruited from oncology departments of 4 tertiary hospitals in Wuhan and Taiyuan, China. All participants completed questionnaires that identified their demographic and clinical characteristics as well as assessed their family resilience and quality of life for both the patients and their caregivers. K-means cluster analysis was used to identify different clusters of family resilience based on the reports from patients and caregivers. Multivariate logistic regression and linear regression are used to analyze the factors influencing family resilience and quality of life, as well as the relationship between the two. Results: Three clusters of family resilience were identified: a cluster of high family resilience (HR), a cluster of low family resilience (LR), and a cluster of discrepant family resilience (DR). Most (67.1%) families fell into the cluster with low resilience. Characteristics such as the types of caregivers perceived social support of the patient were different among the three clusters. Compared to the LR group, families where the mother is the caregiver and where the patient has high social support are more likely to be assigned to the HR. The quality of life for caregivers was consistently highest in the HR cluster and lowest in the LR cluster. The patient's quality of life is not related to family resilience. In the linear regression analysis of the patient's quality of life, patients who are the first-born have higher quality of life, while those living with their parents have lower quality of life. The participants' characteristics were not associated with the quality of life for caregivers. Conclusions: In most families, family resilience was low. Families with maternal caregivers and patients receiving high levels of social support are more inclined to be higher levels of family resilience. Family resilience was linked to the quality of life of caregivers of pediatric cancer patients. The clinical implications of this findings suggest that healthcare and social support organizations should prioritize and support the participation of mothers in caregiving responsibilities. Furthermore, they should assist families in accessing social support to enhance family resilience. This study also emphasizes the importance of promoting family resilience for enhancing family health and happiness, as well as improving the quality of life for caregivers.

Keywords: pediatric cancer, cluster analysis, family resilience, quality of life

Procedia PDF Downloads 37
3369 Role of Social Support in Drug Cessation among Male Addicts in the West of Iran

Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh, Fazel Zinat Motlagh

Abstract:

Social support is an important benchmark of health for people in avoidance conditions. The main goal of this study was to determine the three kinds of social support (family, friend and other significant) to drug cessation among male addicts, in Kermanshah, the west of Iran. This cross-sectional study was conducted among 132 addicts, randomly selected to participate voluntarily in the study. Data were collected from conduct interviews based on standard questionnaire and analyzed by using SPSS-18 at 95% significance level. The majority of addicts were young (Mean: 30.4 years), and with little education. Opium (36.4%), Crack (21.2%), and Methamphetamine (12.9%) were the predominant drugs. Inabilities to reject the offer and having addict friends are the most often reasons for drug usage. Almost, 18.9% reported history of drug injection. 43.2% of the participants already did drug cessation at least once. Logistic regression showed the family support (OR = 1.110), age (OR = 1.106) and drug use initiation age (OR = 0.918) was predicting drug cessation. Our result showed; family support is a more important effect among types of social support in drug cessation. It seems that providing educational program to addict’s families for more support of patients at drug cessation can be beneficial.

Keywords: drug cessation, family support, drug use, initiation age

Procedia PDF Downloads 551
3368 Simulation of Binary Nitride Inclusions Effect on Tensile Properties of Steel

Authors: Ali Dalirbod, Peyman Ahmadian

Abstract:

Inclusions are unavoidable part of all steels. Non-metallic inclusions have significant effects on mechanical properties of steel. The effects of inclusion on stress concentration around the matrix/inclusion have been extensively studied. The results relating to single inclusion behavior, describe properly the behavior of stress but not the elongation drop. The raised stress in inclusion/matrix results in crack initiation. The influence of binary inclusions on stress concentration around matrix is a major aim of this work which is representative of the simple pattern distribution of non-metallic inclusions. Stress concentration around inclusions in this case depends on parameters like distance between two inclusions (d), angle between centrally linking line of two inclusions, load axis (φ), and rotational angle of inclusion (θ). FEM analysis was applied to investigate the highest and lowest ductility versus varying parameters above. The simulation results show that there is a critical distance between two cubic inclusions in which bigger than the threshold, the stress, and strain field in matrix/inclusions interface converts into individual fields around each inclusion.

Keywords: nitride inclusion, simulation, tensile properties, inclusion-matrix interface

Procedia PDF Downloads 317
3367 Factors Related to Protective Behavior on Indoor Pollution among Pregnant Women in Nakhon Pathom Province, Thailand

Authors: Yuri Teraoka, Cheerawit Rattanapan, Aroonsri Mongkolchati

Abstract:

This cross sectional analytic study was carried out to determine factors related to protective behavior on indoor pollution among pregnant women in Nakhon Pathom province, Thailand. A total of 319 pregnant women were enrolled at three antenatal care clinics in community hospital. Data were collected using simple random sampling from April 2015 to May 2015 using a structured self-administration questionnaire by well-trained research assistants. The result showed that around 73% pregnant women showed low level of low protective behavior on indoor pollution. Chi-square and multiple logistic regression were used to examine the factors and protective behavior on indoor pollution. After adjusting for confounding factors, this study found that tobacco smoking before pregnancy (AOR=2.15, 95% CI: 0.78-5.95) and low environmental health hazard (AOR=1.94, 95% CI: 1.09-3.49) were significant factors related to protective behavior on indoor pollution among pregnant women (p-value < 0.05). In conclusion, this study suggested that environmental health education campaign and environmental implementation program among pregnant woman are needed.

Keywords: Thailand, environmental health, protective behavior, pregnant women

Procedia PDF Downloads 364
3366 Logistic and Its Importance in Turkish Food Sector and an Analysis of the Logistics Sector in Turkey

Authors: Şule Turhan, Özlem Turan

Abstract:

Permanence in the international markets for many global companies is about being known as having effective logistics which targets customer satisfaction management and lower costs. Under competitive conditions, the necessity of providing the products to customers quickly and on time for the companies which constantly aim to improve their profitability increased the strategic importance of the logistics concept. Food logistic is one of the most difficult areas in logistics. In the process from manufacturer to final consumer, quality and hygiene standards must be provided constantly. In food logistics, reliable and extensive service network has great importance and on time delivery is the target. Developing logistics industry provide the supply of foods in the country and the development of export markets more quickly and has an important role in providing added value to the country's economy. Turkey that creates a bridge between the east and the west is an attractive market for logistics companies. In this study, by examining both the place and the importance of logistics in Turkish food sector, recommendations will be made for the food industry.

Keywords: logistics, Turkish food industry, competition, food industry

Procedia PDF Downloads 371
3365 Early Predictive Signs for Kasai Procedure Success

Authors: Medan Isaeva, Anna Degtyareva

Abstract:

Context: Biliary atresia is a common reason for liver transplants in children, and the Kasai procedure can potentially be successful in avoiding the need for transplantation. However, it is important to identify factors that influence surgical outcomes in order to optimize treatment and improve patient outcomes. Research aim: The aim of this study was to develop prognostic models to assess the outcomes of the Kasai procedure in children with biliary atresia. Methodology: This retrospective study analyzed data from 166 children with biliary atresia who underwent the Kasai procedure between 2002 and 2021. The effectiveness of the operation was assessed based on specific criteria, including post-operative stool color, jaundice reduction, and bilirubin levels. The study involved a comparative analysis of various parameters, such as gestational age, birth weight, age at operation, physical development, liver and spleen sizes, and laboratory values including bilirubin, ALT, AST, and others, measured pre- and post-operation. Ultrasonographic evaluations were also conducted pre-operation, assessing the hepatobiliary system and related quantitative parameters. The study was carried out by two experienced specialists in pediatric hepatology. Comparative analysis and multifactorial logistic regression were used as the primary statistical methods. Findings: The study identified several statistically significant predictors of a successful Kasai procedure, including the presence of the gallbladder and levels of cholesterol and direct bilirubin post-operation. A detectable gallbladder was associated with a higher probability of surgical success, while elevated post-operative cholesterol and direct bilirubin levels were indicative of a reduced chance of positive outcomes. Theoretical importance: The findings of this study contribute to the optimization of treatment strategies for children with biliary atresia undergoing the Kasai procedure. By identifying early predictive signs of success, clinicians can modify treatment plans and manage patient care more effectively and proactively. Data collection and analysis procedures: Data for this analysis were obtained from the health records of patients who received the Kasai procedure. Comparative analysis and multifactorial logistic regression were employed to analyze the data and identify significant predictors. Question addressed: The study addressed the question of identifying predictive factors for the success of the Kasai procedure in children with biliary atresia. Conclusion: The developed prognostic models serve as valuable tools for early detection of patients who are less likely to benefit from the Kasai procedure. This enables clinicians to modify treatment plans and manage patient care more effectively and proactively. Potential limitations of the study: The study has several limitations. Its retrospective nature may introduce biases and inconsistencies in data collection. Being single centered, the results might not be generalizable to wider populations due to variations in surgical and postoperative practices. Also, other potential influencing factors beyond the clinical, laboratory, and ultrasonographic parameters considered in this study were not explored, which could affect the outcomes of the Kasai operation. Future studies could benefit from including a broader range of factors.

Keywords: biliary atresia, kasai operation, prognostic model, native liver survival

Procedia PDF Downloads 55
3364 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran

Authors: Reza Zakerinejad

Abstract:

Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.

Keywords: TreeNet model, terrain analysis, Golestan Province, Iran

Procedia PDF Downloads 536
3363 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia

Authors: Yenni Anggrayni

Abstract:

The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.

Keywords: bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement

Procedia PDF Downloads 70
3362 Developing Variable Repetitive Group Sampling Control Chart Using Regression Estimator

Authors: Liaquat Ahmad, Muhammad Aslam, Muhammad Azam

Abstract:

In this article, we propose a control chart based on repetitive group sampling scheme for the location parameter. This charting scheme is based on the regression estimator; an estimator that capitalize the relationship between the variables of interest to provide more sensitive control than the commonly used individual variables. The control limit coefficients have been estimated for different sample sizes for less and highly correlated variables. The monitoring of the production process is constructed by adopting the procedure of the Shewhart’s x-bar control chart. Its performance is verified by the average run length calculations when the shift occurs in the average value of the estimator. It has been observed that the less correlated variables have rapid false alarm rate.

Keywords: average run length, control charts, process shift, regression estimators, repetitive group sampling

Procedia PDF Downloads 566
3361 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data

Authors: Haifa Ben Saber, Mourad Elloumi

Abstract:

In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of ​​EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.

Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.

Procedia PDF Downloads 372
3360 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 124
3359 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm

Procedia PDF Downloads 522
3358 Considering Climate Change in Food Security: A Sociological Study Investigating the Modern Agricultural Practices and Food Security in Bangladesh

Authors: Hosen Tilat Mahal, Monir Hossain

Abstract:

Despite being a food-sufficient country after revolutionary changes in agricultural inputs, Bangladesh still has food insecurity and undernutrition. This study examines the association between agricultural practices (as social practices) and food security concentrating on the potential impact of sociodemographic factors and climate change. Using data from the 2012 Bangladesh Integrated Household Survey (BIHS), this study shows how modifiedagricultural practices are strongly associated with climate change and different sociodemographic factors (land ownership, religion, gender, education, and occupation) subsequently affect the status of food security in Bangladesh. We used linear and logistic regression models to analyze the association between modified agricultural practices and food security. The findings indicate that socioeconomic statuses are significant predictors of determining agricultural practices in a society like Bangladesh and control food security at the household level. Moreover, climate change is adversely impactingeven the modified agricultural and food security association version. We conclude that agricultural practices must consider climate change while boosting food security. Therefore, future research should integrate climate change into the agriculture and food-related mitigation and resiliency models.

Keywords: food security, agricultural productivity, climate change, bangladesh

Procedia PDF Downloads 123
3357 The Diffusion of Telehealth: System-Level Conditions for Successful Adoption

Authors: Danika Tynes

Abstract:

Telehealth is a promising advancement in health care, though there are certain conditions under which telehealth has a greater chance of success. This research sought to further the understanding of what conditions compel the success of telehealth adoption at the systems level applying Diffusion of Innovations (DoI) theory (Rogers, 1962). System-level indicators were selected to represent four components of DoI theory (relative advantage, compatibility, complexity, and observability) and regressed on 5 types of telehealth (teleradiology, teledermatology, telepathology, telepsychology, and remote monitoring) using multiple logistic regression. The analyses supported relative advantage and compatibility as the strongest influencers of telehealth adoption, remote monitoring in particular. These findings help to quantitatively clarify the factors influencing the adoption of innovation and advance the ability to make recommendations on the viability of state telehealth adoption. In addition, results indicate when DoI theory is most applicable to the understanding of telehealth diffusion. Ultimately, this research may contribute to more focused allocation of scarce health care resources through consideration of existing state conditions available foster innovation.

Keywords: adoption, diffusion of innovation theory, remote monitoring, system-level indicators

Procedia PDF Downloads 136
3356 Using Data-Driven Model on Online Customer Journey

Authors: Ing-Jen Hung, Tzu-Chien Wang

Abstract:

Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.

Keywords: LSTM, customer journey, marketing, channel ads

Procedia PDF Downloads 121
3355 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching

Authors: Gianna Zou

Abstract:

Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.

Keywords: BART, Bayesian, matching, regression

Procedia PDF Downloads 147
3354 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study

Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy

Abstract:

Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.

Keywords: physical activity, sedentary behaviors, hypertension, workplace

Procedia PDF Downloads 178