Search results for: adverse drug reaction reporting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5945

Search results for: adverse drug reaction reporting

305 The Effect of Lead(II) Lone Electron Pair and Non-Covalent Interactions on the Supramolecular Assembly and Fluorescence Properties of Pb(II)-Pyrrole-2-Carboxylato Polymer

Authors: M. Kowalik, J. Masternak, K. Kazimierczuk, O. V. Khavryuchenko, B. Kupcewicz, B. Barszcz

Abstract:

Recently, the growing interest of chemists in metal-organic coordination polymers (MOCPs) is primarily derived from their intriguing structures and potential applications in catalysis, gas storage, molecular sensing, ion exchanges, nonlinear optics, luminescence, etc. Currently, we are devoting considerable effort to finding the proper method of synthesizing new coordination polymers containing S- or N-heteroaromatic carboxylates as linkers and characterizing the obtained Pb(II) compounds according to their structural diversity, luminescence, and thermal properties. The choice of Pb(II) as the central ion of MOCPs was motivated by several reasons mentioned in the literature: i) a large ionic radius allowing for a wide range of coordination numbers, ii) the stereoactivity of the 6s2 lone electron pair leading to a hemidirected or holodirected geometry, iii) a flexible coordination environment, and iv) the possibility to form secondary bonds and unusual non-covalent interactions, such as classic hydrogen bonds and π···π stacking interactions, as well as nonconventional hydrogen bonds and rarely reported tetrel bonds, Pb(lone pair)···π interactions, C–H···Pb agostic-type interactions or hydrogen bonds, and chelate ring stacking interactions. Moreover, the construction of coordination polymers requires the selection of proper ligands acting as linkers, because we are looking for materials exhibiting different network topologies and fluorescence properties, which point to potential applications. The reaction of Pb(NO₃)₂ with 1H-pyrrole-2-carboxylic acid (2prCOOH) leads to the formation of a new four-nuclear Pb(II) polymer, [Pb4(2prCOO)₈(H₂O)]ₙ, which has been characterized by CHN, FT-IR, TG, PL and single-crystal X-ray diffraction methods. In view of the primary Pb–O bonds, Pb1 and Pb2 show hemidirected pentagonal pyramidal geometries, while Pb2 and Pb4 display hemidirected octahedral geometries. The topology of the strongest Pb–O bonds was determined as the (4·8²) fes topology. Taking the secondary Pb–O bonds into account, the coordination number of Pb centres increased, Pb1 exhibited a hemidirected monocapped pentagonal pyramidal geometry, Pb2 and Pb4 exhibited a holodirected tricapped trigonal prismatic geometry, and Pb3 exhibited a holodirected bicapped trigonal prismatic geometry. Moreover, the Pb(II) lone pair stereoactivity was confirmed by DFT calculations. The 2D structure was expanded into 3D by the existence of non-covalent O/C–H···π and Pb···π interactions, which was confirmed by the Hirshfeld surface analysis. The above mentioned interactions improve the rigidity of the structure and facilitate the charge and energy transfer between metal centres, making the polymer a promising luminescent compound.

Keywords: coordination polymers, fluorescence properties, lead(II), lone electron pair stereoactivity, non-covalent interactions

Procedia PDF Downloads 124
304 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network

Authors: T. Lydon, A. McNabola, P. Coughlan

Abstract:

Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.

Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network

Procedia PDF Downloads 238
303 Selective Conversion of Biodiesel Derived Glycerol to 1,2-Propanediol over Highly Efficient γ-Al2O3 Supported Bimetallic Cu-Ni Catalyst

Authors: Smita Mondal, Dinesh Kumar Pandey, Prakash Biswas

Abstract:

During past two decades, considerable attention has been given to the value addition of biodiesel derived glycerol (~10wt.%) to make the biodiesel industry economically viable. Among the various glycerol value-addition methods, hydrogenolysis of glycerol to 1,2-propanediol is one of the attractive and promising routes. In this study, highly active and selective γ-Al₂O₃ supported bimetallic Cu-Ni catalyst was developed for selective hydrogenolysis of glycerol to 1,2-propanediol in the liquid phase. The catalytic performance was evaluated in a high-pressure autoclave reactor. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. Experimental results demonstrated that bimetallic copper-nickel catalyst was more active and selective to 1,2-PDO as compared to monometallic catalysts due to bifunctional behavior. To verify the effect of calcination temperature on the formation of Cu-Ni mixed oxide phase, the calcination temperature of 20wt.% Cu:Ni(1:1)/Al₂O₃ catalyst was varied from 300°C-550°C. The physicochemical properties of the catalysts were characterized by various techniques such as specific surface area (BET), X-ray diffraction study (XRD), temperature programmed reduction (TPR), and temperature programmed desorption (TPD). The BET surface area and pore volume of the catalysts were in the range of 71-78 m²g⁻¹, and 0.12-0.15 cm³g⁻¹, respectively. The peaks at the 2θ range of 43.3°-45.5° and 50.4°-52°, was corresponded to the copper-nickel mixed oxidephase [JCPDS: 78-1602]. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. The crystallite size decreased with increasing the calcination temperature up to 450°C. Further, the crystallite size was increased due to agglomeration. Smaller crystallite size of 16.5 nm was obtained for the catalyst calcined at 400°C. Total acidic sites of the catalysts were determined by NH₃-TPD, and the maximum total acidic of 0.609 mmol NH₃ gcat⁻¹ was obtained over the catalyst calcined at 400°C. TPR data suggested the maximum of 75% degree of reduction of catalyst calcined at 400°C among all others. Further, 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst calcined at 400°C exhibited highest catalytic activity ( > 70%) and 1,2-PDO selectivity ( > 85%) at mild reaction condition due to highest acidity, highest degree of reduction, smallest crystallite size. Further, the modified Power law kinetic model was developed to understand the true kinetic behaviour of hydrogenolysis of glycerol over 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst. Rate equations obtained from the model was solved by ode23 using MATLAB coupled with Genetic Algorithm. Results demonstrated that the model predicted data were very well fitted with the experimental data. The activation energy of the formation of 1,2-PDO was found to be 45 kJ mol⁻¹.

Keywords: glycerol, 1, 2-PDO, calcination, kinetic

Procedia PDF Downloads 124
302 Gastro-Protective Actions of Melatonin and Murraya koenigii Leaf Extract Combination in Piroxicam Treated Male Wistar Rats

Authors: Syed Benazir Firdaus, Debosree Ghosh, Aindrila Chattyopadhyay, Kuladip Jana, Debasish Bandyopadhyay

Abstract:

Gastro-toxic effect of piroxicam, a classical non-steroidal anti-inflammatory drug (NSAID), has restricted its use in arthritis and similar diseases. The present study aims to find if a combination of melatonin and Murraya koenigii leaf extract therapy can protect against piroxicam induced ulcerative damage in rats. For this study, rats were divided into four groups namely control group where rats were orally administered distilled water, only combination treated group, piroxicam treated group and combination pre-administered piroxicam treated group. Each group of rats consisted of six animals. Melatonin at a dose of 20mg/kg body weight and antioxidant rich Murraya koenigii leaf extract at a dose of 50 mg /kg body weight were successively administered at 30 minutes interval one hour before oral administration of piroxicam at a dose of 30 mg/kg body weight to Wistar rats in the combination pre-administered piroxicam treated group. The rats of the animal group which was only combination treated were administered both the drugs respectively without piroxicam treatment whereas the piroxicam treated animal group was administered only piroxicam at 30mg/kg body weight without any pre-treatment with the combination. Macroscopic examination along with histo-pathological study of gastric tissue using haemotoxylin-eosin staining and alcian blue dye staining showed protection of the gastric mucosa in the combination pre-administered piroxicam treated group. Determination of adherent mucus content biochemically and collagen content through Image J analysis of picro-sirius stained sections of rat gastric tissue also revealed protective effects of the combination in piroxicam mediated toxicity. Gelatinolytic activity of piroxicam was significantly reduced by pre-administration of the drugs which was well exhibited by the gelatin zymography study of the rat gastric tissue. Mean ulcer index determined from macroscopic study of rat stomach reduced to a minimum (0±0.00; Mean ± Standard error of mean and number of animals in the group=6) indicating the absence of ulcer spots on pre-treatment of rats with the combination. Gastro-friendly prostaglandin (PGE2) which otherwise gets depleted on piroxicam treatment was also well protected when the combination was pre-administered in the rats prior to piroxicam treatment. The requirement of the individual drugs in low doses in this combinatorial therapeutic approach will possibly minimize the cost of therapy as well as it will eliminate the possibility of any pro-oxidant side effects on the use of high doses of antioxidants. Beneficial activity of this combination therapy in the rat model raises the possibility that similar protective actions might be also observed if it is adopted by patients consuming NSAIDs like piroxicam. However, the introduction of any such therapeutic approach is subject to future studies in human.

Keywords: gastro-protective action, melatonin, Murraya koenigii leaf extract, piroxicam

Procedia PDF Downloads 284
301 Pond Site Diagnosis: Monoclonal Antibody-Based Farmer Level Tests to Detect the Acute Hepatopancreatic Necrosis Disease in Shrimp

Authors: B. T. Naveen Kumar, Anuj Tyagi, Niraj Kumar Singh, Visanu Boonyawiwat, A. H. Shanthanagouda, Orawan Boodde, K. M. Shankar, Prakash Patil, Shubhkaramjeet Kaur

Abstract:

Early mortality syndrome (EMS)/Acute Hepatopancreatic Necrosis Disease (AHPND) has emerged as a major obstacle for the shrimp farming around the world. It is caused by a strain of Vibrio parahaemolyticus. The possible preventive and control measure is, early and rapid detection of the pathogen in the broodstock, post-larvae and monitoring the shrimp during the culture period. Polymerase chain reaction (PCR) based early detection methods are good, but they are costly, time taking and requires a sophisticated laboratory. The present study was conducted to develop a simple, sensitive and rapid diagnostic farmer level kit for the reliable detection of AHPND in shrimp. A panel of monoclonal antibodies (MAbs) were raised against the recombinant Pir B protein (rPirB). First, an immunodot was developed by using MAbs G3B8 and Mab G3H2 which showed specific reactivity to purified r-PirB protein with no cross-reactivity to other shrimp bacterial pathogens (AHPND free Vibrio parahaemolyticus (Indian strains), V. anguillarum, WSSV, Aeromonas hydrophila, and Aphanomyces invadans). Immunodot developed using Mab G3B8 is more sensitive than that with the Mab G3H2. However, immunodot takes almost 2.5 hours to complete with several hands-on steps. Therefore, the flow-through assay (FTA) was developed by using a plastic cassette containing the nitrocellulose membrane with absorbing pads below. The sample was dotted in the test zone on the nitrocellulose membrane followed by continuos addition of five solutions in the order of i) blocking buffer (BSA) ii) primary antibody (MAb) iii) washing Solution iv) secondary antibody and v) chromogen substrate (TMB) clear purple dots against a white background were considered as positive reactions. The FTA developed using MAbG3B8 is more sensitive than that with MAb G3H2. In FTA the two MAbs showed specific reactivity to purified r-PirB protein and not to other shrimp bacterial pathogens. The FTA is simple to farmer/field level, sensitive and rapid requiring only 8-10 min for completion. Tests can be developed to kits, which will be ideal for use in biosecurity, for the first line of screening (at the port or pond site) and during monitoring and surveillance programmes overall for the good management practices to reduce the risk of the disease.

Keywords: acute hepatopancreatic necrosis disease, AHPND, flow-through assay, FTA, farmer level, immunodot, pond site, shrimp

Procedia PDF Downloads 154
300 Effect of Exercise and Mindfulness on Cognitive and Psycho-Emotional Functioning in Children with ADHD

Authors: Hannah Bigelow, Marcus D. Gottlieb, Michelle Ogrodnik, Jeffrey, D. Graham, Barbara Fenesi

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders affecting approximately 6% of children worldwide. ADHD is characterized by a combination of persistent deficits including impaired inhibitory control, working memory and task-switching. Many children with ADHD also have comorbid mental health issues such as anxiety and depression. There are several treatment options to manage ADHD impairments, including drug and behavioural management therapy, but they all have drawbacks, such as worsening mood disturbances or being inaccessible to certain demographics. Both physical exercise and mindfulness meditation serve as alternative options to potentially help mitigate ADHD symptoms. Although there is extensive support for the benefits of long-term physical exercise or mindfulness meditation programs, there is insufficient research investigating how acute bouts (i.e., single, short bouts) can help children with ADHD. Thus, the current study aimed to understand how single, short bouts of exercise and mindfulness meditation impacts executive functioning and psycho-emotional well-being in children with ADHD, as well as to directly compare the efficacy of these two interventions. The study used a a pre- post-test, within-subjects design to assess the effects of a 10-minute bout of moderate intensity exercise versus a 10-minute bout of mindfulness meditation (versus 10 minutes of a reading control) on the executive functioning and psycho-emotional well-being of 16 children and youth with ADHD aged 10-14 (male=11; White=80%). Participants completed all three interventions: 10 minutes of exercise, 10 minutes of mindfulness meditation, and 10 minutes of reading (control). Executive functioning (inhibitory control, working memory, task-switching) and psycho-emotional well-being (mood, self-efficacy) were assessed before and after each intervention. Mindfulness meditation promoted executive functioning, while exercise enhanced positive mood and self-efficacy. Critically, this work demonstrates that a single, short bout of mindfulness meditation session can promote inhibitory control among children with ADHD. This is especially important for children with ADHD as inhibitory control deficits are among the most pervasive challenges that they face. Furthermore, the current study provides preliminary evidence for the benefit of acute exercise for promoting positive mood and general self-efficacy for children and youth with ADHD. These results may increase the accessibility of acute exercise for children with ADHD, providing guardians and teachers a feasible option to incorporate just 10 minutes of exercise to assist children emotionally. In summary, this research supports the use of acute exercise and mindfulness meditation on varying aspects of executive functioning and psycho-emotional well-being in children and youth with ADHD. This work offers important insight into how behavioural interventions could be personalized according to a child’s needs.

Keywords: attention-deficit hyperactivity disorder (ADHD), acute exercise, mindfulness meditation, executive functioning, psycho-emotional well-being

Procedia PDF Downloads 109
299 Nephroprotective Effect of Aqueous Extract of Plectranthus amboinicus (Roxb.) Leaves in Adriamycin Induced Acute Renal Failure in Wistar Rats: A Biochemical and Histopathological Assessment

Authors: Ampe Mohottige Sachinthi Sandaruwani Amarasiri, Anoja Priyadarshani Attanayake, Kamani Ayoma Perera Wijewardana Jayatilaka, Lakmini Kumari Boralugoda Mudduwa

Abstract:

The search for alternative pharmacological therapies based on natural extracts for renal failure has become an urgent need, due to paucity of effective pharmacotherapy. The current study was undertaken to evaluate the acute nephroprotective effect of aqueous leaf extract of Plectranthus amboinicus (Roxb.) (Family: Lamiaceae), a medicinal plant used in traditional Ayurvedic medicine for the management of renal diseases in Sri Lanka. The study was performed in adriamycin (ADR) induced nephrotoxic in Wistar rats. Wistar rats were randomly divided into four groups each with six rats. A single dose of ADR (20 mg/kg body wt., ip) was used for the induction of nephrotoxicity in all groups of rats except group one. The treatments were started 24 hours after induction of nephrotoxicity and continued for three days. Group one and two served as healthy and nephrotoxic control rats and were administered equivalent volumes of normal saline (0.9% NaCl) orally. Group three and four nephrotoxic rats were administered the lyophilized powder of the aqueous extract of P. amboinicus (400 mg/ kg body wt.; equivalent human therapeutic dose) and the standard drug, fosinopril sodium (0.09 mg/ kg body wt.) respectively. Urine and blood samples were collected from rats in each group at the end of the period of intervention for the estimation of selected renal parameters. H and E stained sections of the kidney tissues were examined for histopathological changes. Rats treated with the plant extract showed significant improvement in biochemical parameters and histopathological changes compared to ADR induced nephrotoxic group. The elevation of serum concentrations of creatinine and β2-microglobulin were decreased by 38%, and 66% in plant extract treated nephrotoxic rats respectively (p < 0.05). In addition, serum concentrations of total protein and albumin were significantly increased by 25% and 14% in rats treated with P. amboinicus respectively (p < 0.05). The results of β2 –microglobulin and serum total protein demonstrated a significant reduction in the elevated values in rats administered with the plant extract (400 mg/kg) compared to that of fosinopril (0.09 mg/kg). Urinary protein loss in 24hr urine samples was significantly decreased in rats treated with both fosinopril (86%) and P. ambonicus (56%) at the end of the intervention (p < 0.01). Accordingly, an attenuation of morphological destruction was observed in the H and E stained sections of the kidney with the treatments of plant extract and fosinopril. The results of the present study revealed that the aqueous leaf extract of P. amboinicus possesses significant nephroprotective activity at the equivalent therapeutic dose of 400 mg/ kg against adriamycin induced acute nephrotoxicity.

Keywords: biochemical assessment, histopathological assessment, nephroprotective activity, Plectranthus amboinicus

Procedia PDF Downloads 116
298 Traditional Wisdom of Indigenous Vernacular Architecture as Tool for Climate Resilience Among PVTG Indigenous Communities in Jharkhand, India

Authors: Ankush, Harshit Sosan Lakra, Rachita Kuthial

Abstract:

Climate change poses significant challenges to vulnerable communities, particularly indigenous populations in ecologically sensitive regions. Jharkhand, located in the heart of India, is home to several indigenous communities, including the Particularly Vulnerable Tribal Groups (PVTGs). The Indigenous architecture of the region functions as a significant reservoir of climate adaptation wisdom. It explores the architectural analysis encompassing the construction materials, construction techniques, design principles, climate responsiveness, cultural relevance, adaptation, integration with the environment and traditional wisdom that has evolved through generations, rooted in cultural and socioeconomic traditions, and has allowed these communities to thrive in a variety of climatic zones, including hot and dry, humid, and hilly terrains to withstand the test of time. Despite their historical resilience to adverse climatic conditions, PVTG tribal communities face new and amplified challenges due to the accelerating pace of climate change. There is a significant research void that exists in assimilating their traditional practices and local wisdom into contemporary climate resilience initiatives. Most of the studies place emphasis on technologically advanced solutions, often ignoring the invaluable Indigenous Local knowledge that can complement and enhance these efforts. This research gap highlights the need to bridge the disconnect between indigenous knowledge and contemporary climate adaptation strategies. The study aims to explore and leverage indigenous knowledge of vernacular architecture as a strategic tool for enhancing climatic resilience among PVTGs of the region. The first objective is to understand the traditional wisdom of vernacular architecture by analyzing and documenting distinct architectural practices and cultural significance of PVTG communities, emphasizing construction techniques, materials and spatial planning. The second objective is to develop culturally sensitive climatic resilience strategies based on findings of vernacular architecture by employing a multidisciplinary research approach that encompasses ethnographic fieldwork climate data assessment considering multiple variables such as temperature variations, precipitation patterns, extreme weather events and climate change reports. This will be a tailor-made solution integrating indigenous knowledge with modern technology and sustainable practices. With the involvement of indigenous communities in the process, the research aims to ensure that the developed strategies are practical, culturally appropriate, and accepted. To foster long-term resilience against the global issue of climate change, we can bridge the gap between present needs and future aspirations with Traditional wisdom, offering sustainable solutions that will empower PVTG communities. Moreover, the study emphasizes the significance of preserving and reviving traditional Architectural wisdom for enhancing climatic resilience. It also highlights the need for cooperative endeavors of communities, stakeholders, policymakers, and researchers to encourage integrating traditional Knowledge into Modern sustainable design methods. Through these efforts, this research will contribute not only to the well-being of PVTG communities but also to the broader global effort to build a more resilient and sustainable future. Also, the Indigenous communities like PVTG in the state of Jharkhand can achieve climatic resilience while respecting and safeguarding the cultural heritage and peculiar characteristics of its native population.

Keywords: vernacular architecture, climate change, resilience, PVTGs, Jharkhand, indigenous people, India

Procedia PDF Downloads 50
297 Exploring Valproic Acid (VPA) Analogues Interactions with HDAC8 Involved in VPA Mediated Teratogenicity: A Toxicoinformatics Analysis

Authors: Sakshi Piplani, Ajit Kumar

Abstract:

Valproic acid (VPA) is the first synthetic therapeutic agent used to treat epileptic disorders, which account for affecting nearly 1% world population. Teratogenicity caused by VPA has prompted the search for next generation drug with better efficacy and lower side effects. Recent studies have posed HDAC8 as direct target of VPA that causes the teratogenic effect in foetus. We have employed molecular dynamics (MD) and docking simulations to understand the binding mode of VPA and their analogues onto HDAC8. A total of twenty 3D-structures of human HDAC8 isoforms were selected using BLAST-P search against PDB. Multiple sequence alignment was carried out using ClustalW and PDB-3F07 having least missing and mutated regions was selected for study. The missing residues of loop region were constructed using MODELLER and energy was minimized. A set of 216 structural analogues (>90% identity) of VPA were obtained from Pubchem and ZINC database and their energy was optimized with Chemsketch software using 3-D CHARMM-type force field. Four major neurotransmitters (GABAt, SSADH, α-KGDH, GAD) involved in anticonvulsant activity were docked with VPA and its analogues. Out of 216 analogues, 75 were selected on the basis of lower binding energy and inhibition constant as compared to VPA, thus predicted to have anti-convulsant activity. Selected hHDAC8 structure was then subjected to MD Simulation using licenced version YASARA with AMBER99SB force field. The structure was solvated in rectangular box of TIP3P. The simulation was carried out with periodic boundary conditions and electrostatic interactions and treated with Particle mesh Ewald algorithm. pH of system was set to 7.4, temperature 323K and pressure 1atm respectively. Simulation snapshots were stored every 25ps. The MD simulation was carried out for 20ns and pdb file of HDAC8 structure was saved every 2ns. The structures were analysed using castP and UCSF Chimera and most stabilized structure (20ns) was used for docking study. Molecular docking of 75 selected VPA-analogues with PDB-3F07 was performed using AUTODOCK4.2.6. Lamarckian Genetic Algorithm was used to generate conformations of docked ligand and structure. The docking study revealed that VPA and its analogues have more affinity towards ‘hydrophobic active site channel’, due to its hydrophobic properties and allows VPA and their analogues to take part in van der Waal interactions with TYR24, HIS42, VAL41, TYR20, SER138, TRP137 while TRP137 and SER138 showed hydrogen bonding interaction with VPA-analogues. 14 analogues showed better binding affinity than VPA. ADMET SAR server was used to predict the ADMET properties of selected VPA analogues for predicting their druggability. On the basis of ADMET screening, 09 molecules were selected and are being used for in-vivo evaluation using Danio rerio model.

Keywords: HDAC8, docking, molecular dynamics simulation, valproic acid

Procedia PDF Downloads 221
296 Isosorbide Bis-Methyl Carbonate: Opportunities for an Industrial Model Based on Biomass

Authors: Olga Gomez De Miranda, Jose R. Ochoa-Gomez, Stefaan De Wildeman, Luciano Monsegue, Soraya Prieto, Leire Lorenzo, Cristina Dineiro

Abstract:

The chemical industry is facing a new revolution. As long as processes based on the exploitation of fossil resources emerged with force in the XIX century, Society currently demands a new radical change that will lead to the complete and irreversible implementation of a circular sustainable economic model. The implementation of biorefineries will be essential for this. There, renewable raw materials as sugars and other biomass resources are exploited for the development of new materials that will partially replace their petroleum-derived homologs in a safer, and environmentally more benign approach. Isosorbide, (1,4:3,6-dianhydro-d-glucidol) is a primary bio-based derivative obtained from the plant (poly) saccharides and a very interesting example of a useful chemical produced in biorefineries. It can, in turn, be converted to other secondary monomers as isosorbide bis-methyl carbonate (IBMC), whose main field of application can be as a key biodegradable intermediary substitute of bisphenol-A in the manufacture of polycarbonates, or as an alternative to the toxic isocyanates in the synthesis of new polyurethanes (non-isocyanate polyurethanes) both with a huge application market. New products will present advantageous mechanical or optical properties, as well as improved behavior in non-toxicity and biodegradability aspects in comparison to their petro-derived alternatives. A robust production process of IBMC, a biomass-derived chemical, is here presented. It can be used with different raw material qualities using dimethyl carbonate (DMC) as both co-reactant and solvent. It consists of the transesterification of isosorbide with DMC under soft operational conditions, using different basic catalysts, always active with the isosorbide characteristics and purity. Appropriate isolation processes have been also developed to obtain crude IBMC yields higher than 90%, with oligomers production lower than 10%, independently of the quality of the isosorbide considered. All of them are suitable to be used in polycondensation reactions for polymers obtaining. If higher qualities of IBMC are needed, a purification treatment based on nanofiltration membranes has been also developed. The IBMC reaction-isolation conditions established in the laboratory have been successfully modeled using appropriate software programs and moved to a pilot-scale (production of 100 kg of IBMC). It has been demonstrated that a highly efficient IBMC production process able to be up-scaled under suitable market conditions has been obtained. Operational conditions involved the production of IBMC involve soft temperature and energy needs, no additional solvents, and high operational efficiency. All of them are according to green manufacturing rules.

Keywords: biomass, catalyst, isosorbide bis-methyl carbonate, polycarbonate, polyurethane, transesterification

Procedia PDF Downloads 104
295 Rapid Situation Assessment of Family Planning in Pakistan: Exploring Barriers and Realizing Opportunities

Authors: Waqas Abrar

Abstract:

Background: Pakistan is confronted with a formidable challenge to increase uptake of modern contraceptive methods. USAID, through its flagship Maternal and Child Survival Program (MCSP), in Pakistan is determined to support provincial Departments of Health and Population Welfare to increase the country's contraceptive prevalence rates (CPR) in Sindh, Punjab and Balochistan to achieve FP2020 goals. To inform program design and planning, a Rapid Situation Assessment (RSA) of family planning was carried out in Rawalpindi and Lahore districts in Punjab and Karachi district in Sindh. Methodology: The methodology consisted of comprehensive desk review of available literature and used a qualitative approach comprising of in-depth interviews (IDIs) and focus group discussions (FGDs). FGDs were conducted with community women, men, and mothers-in-law whereas IDIs were conducted with health facility in-charges/chiefs, healthcare providers, and community health workers. Results: Some of the oft-quoted reasons captured during desk review included poor quality of care at public sector facilities, affordability and accessibility in rural communities and providers' technical incompetence. Moreover, providers had inadequate knowledge of contraceptive methods and lacked counseling techniques; thereby, leading to dissatisfied clients and hence, discontinuation of contraceptive methods. These dissatisfied clients spread the myths and misconceptions about contraceptives in their respective communities which seriously damages community-level family planning efforts. Private providers were found reluctant to insert Intrauterine Contraceptive Devices (IUCDs) due to inadequate knowledge vis-à-vis post insertion issues/side effects. FGDs and IDIs unveiled multi-faceted reasons for poor contraceptives uptake. It was found that low education and socio-economic levels lead to low contraceptives uptake and mostly uneducated women rely on condoms provided by Lady Health Workers (LHWs). Providers had little or no knowledge about postpartum family planning or lactational amenorrhea. At community level family planning counseling sessions organized by LHWs and Male Mobilizers do not sensitize community men on permissibility of contraception in Islam. Many women attributed their physical ailments to the use of contraceptives. Lack of in-service training, job-aids and Information, Education and Communications (IEC) materials at facilities seriously comprise the quality of care in effective family planning service delivery. This is further compounded by frequent stock-outs of contraceptives at public healthcare facilities, poor data quality, false reporting, lack of data verification systems and follow-up. Conclusions: Some key conclusions from this assessment included capacity building of healthcare providers on long acting reversible contraceptives (LARCs) which give women contraception for a longer period. Secondly, capacity building of healthcare providers on postpartum family planning is an enormous challenge that can be best addressed through institutionalization. Thirdly, Providers should be equipped with counseling skills and techniques including inculcation of pros and cons of all contraceptive methods. Fourthly, printed materials such as job-aids and Information, Education and Communications (IEC) materials should be disseminated among healthcare providers and clients. These concluding statements helped MCSP to make informed decisions with regard to setting broad objectives of project and were duly approved by USAID.

Keywords: capacity building, contraceptive prevalence rate, family planning, Institutionalization, Pakistan, postpartum care, postpartum family planning services

Procedia PDF Downloads 120
294 Xen45 Gel Implant in Open Angle Glaucoma: Efficacy, Safety and Predictors of Outcome

Authors: Fossarello Maurizio, Mattana Giorgio, Tatti Filippo.

Abstract:

The most widely performed surgical procedure in Open-Angle Glaucoma (OAG) is trabeculectomy. Although this filtering procedure is extremely effective, surgical failure and postoperative complications are reported. Due to the its invasive nature and possible complications, trabeculectomy is usually reserved, in practice, for patients who are refractory to medical and laser therapy. Recently, a number of micro-invasive surgical techniques (MIGS: Micro-Invasive Glaucoma Surgery), have been introduced in clinical practice. They meet the criteria of micro-incisional approach, minimal tissue damage, short surgical time, reliable IOP reduction, extremely high safety profile and rapid post-operative recovery. Xen45 Gel Implant (Allergan, Dublin, Ireland) is one of the MIGS alternatives, and consists in a porcine gelatin tube designed to create an aqueous flow from the anterior chamber to the subconjunctival space, bypassing the resistance of the trabecular meshwork. In this study we report the results of this technique as a favorable option in the treatment of OAG for its benefits in term of efficacy and safety, either alone or in combination with cataract surgery. This is a retrospective, single-center study conducted in consecutive OAG patients, who underwent Xen45 Gel Stent implantation alone or in combination with phacoemulsification, from October 2018 to June 2019. The primary endpoint of the study was to evaluate the reduction of both IOP and number of antiglaucoma medications at 12 months. The secondary endpoint was to correlate filtering bleb morphology evaluated by means of anterior segment OCT with efficacy in IOP lowering and eventual further procedures requirement. Data were recorded on Microsoft Excel and study analysis was performed using Microsoft Excel and SPSS (IBM). Mean values with standard deviations were calculated for IOPs and number of antiglaucoma medications at all points. Kolmogorov-Smirnov test showed that IOP followed a normal distribution at all time, therefore the paired Student’s T test was used to compare baseline and postoperative mean IOP. Correlation between postoperative Day 1 IOP and Month 12 IOP was evaluated using Pearson coefficient. Thirty-six eyes of 36 patients were evaluated. As compared to baseline, mean IOP and the mean number of antiglaucoma medications significantly decreased from 27,33 ± 7,67 mmHg to 16,3 ± 2,89 mmHg (38,8% reduction) and from 2,64 ± 1,39 to 0,42 ± 0,8 (84% reduction), respectively, at 12 months after surgery (both p < 0,001). According to bleb morphology, eyes were divided in uniform group (n=8, 22,2%), subconjunctival separation group (n=5, 13,9%), microcystic multiform group (n=9, 25%) and multiple internal layer group (n=14, 38,9%). Comparing to baseline, there was no significative difference in IOP between the 4 groups at month 12 follow-up visit. Adverse events included bleb function decrease (n=14, 38,9%), hypotony (n=8, 22,2%) and choroidal detachment (n=2, 5,6%). All eyes presenting bleb flattening underwent needling and MMC injection. The higher percentage of patients that required secondary needling was in the uniform group (75%), with a significant difference between the groups (p=0,03). Xen45 gel stent, either alone or in combination with phacoemulsification, provided a significant lowering in both IOP and medical antiglaucoma treatment and an elevated safety profile.

Keywords: anterior segment OCT, bleb morphology, micro-invasive glaucoma surgery, open angle glaucoma, Xen45 gel implant

Procedia PDF Downloads 109
293 Harvesting Value-added Products Through Anodic Electrocatalytic Upgrading Intermediate Compounds Utilizing Biomass to Accelerating Hydrogen Evolution

Authors: Mehran Nozari-Asbemarz, Italo Pisano, Simin Arshi, Edmond Magner, James J. Leahy

Abstract:

Integrating electrolytic synthesis with renewable energy makes it feasible to address urgent environmental and energy challenges. Conventional water electrolyzers concurrently produce H₂ and O₂, demanding additional procedures in gas separation to prevent contamination of H₂ with O₂. Moreover, the oxygen evolution reaction (OER), which is sluggish and has a low overall energy conversion efficiency, does not deliver a significant value product on the electrode surface. Compared to conventional water electrolysis, integrating electrolytic hydrogen generation from water with thermodynamically more advantageous aqueous organic oxidation processes can increase energy conversion efficiency and create value-added compounds instead of oxygen at the anode. One strategy is to use renewable and sustainable carbon sources from biomass, which has a large annual production capacity and presents a significant opportunity to supplement carbon sourced from fossil fuels. Numerous catalytic techniques have been researched in order to utilize biomass economically. Because of its safe operating conditions, excellent energy efficiency, and reasonable control over production rate and selectivity using electrochemical parameters, electrocatalytic upgrading stands out as an appealing choice among the numerous biomass refinery technologies. Therefore, we propose a broad framework for coupling H2 generation from water splitting with oxidative biomass upgrading processes. Four representative biomass targets were considered for oxidative upgrading that used a hierarchically porous CoFe-MOF/LDH @ Graphite Paper bifunctional electrocatalyst, including glucose, ethanol, benzyl, furfural, and 5-hydroxymethylfurfural (HMF). The potential required to support 50 mA cm-2 is considerably lower than (~ 380 mV) the potential for OER. All four compounds can be oxidized to yield liquid byproducts with economic benefit. The electrocatalytic oxidation of glucose to the value-added products, gluconic acid, glucuronic acid, and glucaric acid, was examined in detail. The cell potential for combined H₂ production and glucose oxidation was substantially lower than for water splitting (1.44 V(RHE) vs. 1.82 V(RHE) for 50 mA cm-2). In contrast, the oxidation byproduct at the anode was significantly more valuable than O₂, taking advantage of the more favorable glucose oxidation in comparison to the OER. Overall, such a combination of HER and oxidative biomass valorization using electrocatalysts prevents the production of potentially explosive H₂/O₂mixtures and produces high-value products at both electrodes with lower voltage input, thereby increasing the efficiency and activity of electrocatalytic conversion.

Keywords: biomass, electrocatalytic, glucose oxidation, hydrogen evolution

Procedia PDF Downloads 71
292 Sustainability Framework for Water Management in New Zealand's Canterbury Region

Authors: Bryan Jenkins

Abstract:

Introduction: The expansion of irrigation in the Canterbury region has led to the sustainability limits being reached for water availability and the cumulative effects of land use intensification. The institutional framework under New Zealand’s Resource Management Act was found to be an inadequate basis for managing water at sustainability limits. An alternative paradigm for water management was developed based on collaborative governance and nested adaptive systems. This led to the formulation and implementation of the Canterbury Water Management Strategy. Methods: The nested adaptive system approach was adopted. Sustainability issues were identified at multiple spatial and time scales and defined potential failure pathways for the water resource system. These included biophysical and socio-economic issues such as water availability, cumulative effects on water quality due to land use intensification, projected changes in climate, public health, institutional arrangements, economic outcomes and externalities, and, social effects of changing technology. This led to the derivation of sustainability strategies to address these failure pathways. The collaborative governance approach involved stakeholder participation and community engagement to decide on a regional strategy; regional and zone committees of community and rūnanga (Māori groups) members to develop implementation programmes for the strategy; and, farmer collectives for operational management. Findings: The strategy identified improvements in the efficiency of use of water already allocated was more effective in improving water availability than a reliance on increased storage alone. New forms of storage with less adverse impacts were introduced, such as managed aquifer recharge and off-river storage. Reductions of nutrients from land use intensification by improving management practices has been a priority. Solutions packages for addressing the degradation of vulnerable lakes and rivers have been prepared. Biodiversity enhancement projects have been initiated. Greater involvement of Māori has led to the incorporation of kaitiakitanga (resource stewardship) into implementation programmes. Emerging issues are the need for improved integration of surface water and groundwater interactions, increased use of modelling of water and financial outcomes to guide decision making, and, equity in allocation among existing users as well as between existing and future users. Conclusions: However, sustainability analysis indicates that the proposed levels of management interventions are not sufficient to achieve community targets for water management. There is a need for more proactive recovery and rehabilitation measures. Managing to environmental limits is not sufficient, rather managing adaptive cycles is needed. Better measurement and management of water use efficiency is required. Proposed implementation packages are not sufficient to deliver desired water quality outcomes. Greater attention to targets important to environmental and recreational interests is needed to maintain trust in the collaborative process. Implementation programmes don’t adequately address climate change adaptations and greenhouse gas mitigation. Affordability is a constraint on adaptive capacity of farmers and communities. More funding mechanisms are required to implement proactive measures. The legislative and institutional framework needs to be changed to incorporate water framework legislation, regional sustainability strategies and water infrastructure coordination.

Keywords: collaborative governance, irrigation management, nested adaptive systems, sustainable water management

Procedia PDF Downloads 131
291 Changes in Attitudes of State Towards Orthodox Church: Greek Case after Eurozone Crisis in Alexis Tsipras Era

Authors: Zeynep Selin Balci, Altug Gunal

Abstract:

Religion has always an effect on the policies of states. In the case of religion having a central role in defining identity, especially when becoming an independent state, the bond between religious authority and state cannot easily be broken. As independence of Greece from the Ottoman Empire was acquired at the same time with the creation of its own church under the name of the Church of Greece by declaring its independence from the Greek Orthodox Patriarchate in Istanbul, the new church became an important part of Greek national identity. As the Church has the ability to influence Greeks, its rituals, public appearances, and practices are used to provide support to the state. Although there sometimes have been controversies between church and state, it has always been a fact that church is an integral part of the state, which is proved by that paying the salaries of priest by state payroll and them being naturally civil servants. European Union membership, on the other hand, has a changing impact on this relationship. This impact started to be more visible in 2000 when then government decided to exclude the religion section from identity cards. Church’s reaction was to gather people around recalling their religious identity and followed by redefining the content of nationality, which aspired nationalist fronts. After 2015 when leftist coalition Syriza and its self-described atheist leader came to power, the situation for nationalists and Church became more tangling in addition to the economic crisis started in 2010 and evolved into the Eurozone crisis by affecting not only Greece but also other members. Although the church did not have direct confrontations with the government, the fact that Tsipras refused to take the oath on Bible created tensions because it was not acceptable for a state whose Constitution starts ‘in the name of the Holy, Consubstantial and Indivisible Trinity’. Moreover, austerity measures to overcome the economic crisis, which affected the everyday life of citizens in terms of both prices and salaries, did not harm the church’s economic situation much. Considering church being the second biggest landowner after state and paying no taxes, the fact that church was exempt from austerity measures showed to the government the necessity to find a way to make church contribute to solution for the crisis. In 2018, when the government agreed with the head of the church on cutting off the priests from government payroll automatically meaning to end priests’ civil servant status, it created tensions both for church and in society. As a result of the elections held in July 2019, Tsipras could not have the chance to apply the decision as he left the office. In light of these, this study aims to analyze the position of the church in the economic crisis and its effects on Tsipras term. In order to sufficiently understand this, it is to look at the historical changing points of Church’s influence in Greek’s eyes.

Keywords: Eurozone crisis, Greece, Orthodox Church, Tsipras

Procedia PDF Downloads 104
290 Graphene-Graphene Oxide Dopping Effect on the Mechanical Properties of Polyamide Composites

Authors: Daniel Sava, Dragos Gudovan, Iulia Alexandra Gudovan, Ioana Ardelean, Maria Sonmez, Denisa Ficai, Laurentia Alexandrescu, Ecaterina Andronescu

Abstract:

Graphene and graphene oxide have been intensively studied due to the very good properties, which are intrinsic to the material or come from the easy doping of those with other functional groups. Graphene and graphene oxide have known a broad band of useful applications, in electronic devices, drug delivery systems, medical devices, sensors and opto-electronics, coating materials, sorbents of different agents for environmental applications, etc. The board range of applications does not come only from the use of graphene or graphene oxide alone, or by its prior functionalization with different moieties, but also it is a building block and an important component in many composite devices, its addition coming with new functionalities on the final composite or strengthening the ones that are already existent on the parent product. An attempt to improve the mechanical properties of polyamide elastomers by compounding with graphene oxide in the parent polymer composition was attempted. The addition of the graphene oxide contributes to the properties of the final product, improving the hardness and aging resistance. Graphene oxide has a lower hardness and textile strength, and if the amount of graphene oxide in the final product is not correctly estimated, it can lead to mechanical properties which are comparable to the starting material or even worse, the graphene oxide agglomerates becoming a tearing point in the final material if the amount added is too high (in a value greater than 3% towards the parent material measured in mass percentages). Two different types of tests were done on the obtained materials, the hardness standard test and the tensile strength standard test, and they were made on the obtained materials before and after the aging process. For the aging process, an accelerated aging was used in order to simulate the effect of natural aging over a long period of time. The accelerated aging was made in extreme heat. For all materials, FT-IR spectra were recorded using FT-IR spectroscopy. From the FT-IR spectra only the bands corresponding to the polyamide were intense, while the characteristic bands for graphene oxide were very small in comparison due to the very small amounts introduced in the final composite along with the low absorptivity of the graphene backbone and limited number of functional groups. In conclusion, some compositions showed very promising results, both in tensile strength test and in hardness tests. The best ratio of graphene to elastomer was between 0.6 and 0.8%, this addition extending the life of the product. Acknowledgements: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project ‘New nanostructured polymeric composites for centre pivot liners, centre plate and other components for the railway industry (RONERANANOSTRUCT)’, No: 18 PTE (PN-III-P2-2.1-PTE-2016-0146) is also acknowledged.

Keywords: graphene, graphene oxide, mechanical properties, dopping effect

Procedia PDF Downloads 289
289 Assessing Diagnostic and Evaluation Tools for Use in Urban Immunisation Programming: A Critical Narrative Review and Proposed Framework

Authors: Tim Crocker-Buque, Sandra Mounier-Jack, Natasha Howard

Abstract:

Background: Due to both the increasing scale and speed of urbanisation, urban areas in low and middle-income countries (LMICs) host increasingly large populations of under-immunized children, with the additional associated risks of rapid disease transmission in high-density living environments. Multiple interdependent factors are associated with these coverage disparities in urban areas and most evidence comes from relatively few countries, e.g., predominantly India, Kenya, Nigeria, and some from Pakistan, Iran, and Brazil. This study aimed to identify, describe, and assess the main tools used to measure or improve coverage of immunisation services in poor urban areas. Methods: Authors used a qualitative review design, including academic and non-academic literature, to identify tools used to improve coverage of public health interventions in urban areas. Authors selected and extracted sources that provided good examples of specific tools, or categories of tools, used in a context relevant to urban immunization. Diagnostic (e.g., for data collection, analysis, and insight generation) and programme tools (e.g., for investigating or improving ongoing programmes) and interventions (e.g., multi-component or stand-alone with evidence) were selected for inclusion to provide a range of type and availability of relevant tools. These were then prioritised using a decision-analysis framework and a tool selection guide for programme managers developed. Results: Authors reviewed tools used in urban immunisation contexts and tools designed for (i) non-immunization and/or non-health interventions in urban areas, and (ii) immunisation in rural contexts that had relevance for urban areas (e.g., Reaching every District/Child/ Zone). Many approaches combined several tools and methods, which authors categorised as diagnostic, programme, and intervention. The most common diagnostic tools were cross-sectional surveys, key informant interviews, focus group discussions, secondary analysis of routine data, and geographical mapping of outcomes, resources, and services. Programme tools involved multiple stages of data collection, analysis, insight generation, and intervention planning and included guidance documents from WHO (World Health Organisation), UNICEF (United Nations Children's Fund), USAID (United States Agency for International Development), and governments, and articles reporting on diagnostics, interventions, and/or evaluations to improve urban immunisation. Interventions involved service improvement, education, reminder/recall, incentives, outreach, mass-media, or were multi-component. The main gaps in existing tools were an assessment of macro/policy-level factors, exploration of effective immunization communication channels, and measuring in/out-migration. The proposed framework uses a problem tree approach to suggest tools to address five common challenges (i.e. identifying populations, understanding communities, issues with service access and use, improving services, improving coverage) based on context and available data. Conclusion: This study identified many tools relevant to evaluating urban LMIC immunisation programmes, including significant crossover between tools. This was encouraging in terms of supporting the identification of common areas, but problematic as data volumes, instructions, and activities could overwhelm managers and tools are not always suitably applied to suitable contexts. Further research is needed on how best to combine tools and methods to suit local contexts. Authors’ initial framework can be tested and developed further.

Keywords: health equity, immunisation, low and middle-income countries, poverty, urban health

Procedia PDF Downloads 123
288 Acrylate-Based Photopolymer Resin Combined with Acrylated Epoxidized Soybean Oil for 3D-Printing

Authors: Raphael Palucci Rosa, Giuseppe Rosace

Abstract:

Stereolithography (SLA) is one of the 3D-printing technologies that has been steadily growing in popularity for both industrial and personal applications due to its versatility, high accuracy, and low cost. Its printing process consists of using a light emitter to solidify photosensitive liquid resins layer-by-layer to produce solid objects. However, the majority of the resins used in SLA are derived from petroleum and characterized by toxicity, stability, and recalcitrance to degradation in natural environments. Aiming to develop an eco-friendly resin, in this work, different combinations of a standard commercial SLA resin (Peopoly UV professional) with a vegetable-based resin were investigated. To reach this goal, different mass concentrations (varying from 10 to 50 wt%) of acrylated epoxidized soybean oil (AESO), a vegetable resin produced from soyabean oil, were mixed with a commercial acrylate-based resin. 1.0 wt% of Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) was used as photo-initiator, and the samples were printed using a Peopoly moai 130. The machine was set to operate at standard configurations when printing commercial resins. After the print was finished, the excess resin was drained off, and the samples were washed in isopropanol and water to remove any non-reacted resin. Finally, the samples were post-cured for 30 min in a UV chamber. FT-IR analysis was used to confirm the UV polymerization of the formulated resin with different AESO/Peopoly ratios. The signals from 1643.7 to 1616, which corresponds to the C=C stretching of the AESO acrylic acids and Peopoly acrylic groups, significantly decreases after the reaction. The signal decrease indicates the consumption of the double bonds during the radical polymerization. Furthermore, the slight change of the C-O-C signal from 1186.1 to 1159.9 decrease of the signals at 809.5 and 983.1, which corresponds to unsaturated double bonds, are both proofs of the successful polymerization. Mechanical analyses showed a decrease of 50.44% on tensile strength when adding 10 wt% of AESO, but it was still in the same range as other commercial resins. The elongation of break increased by 24% with 10 wt% of AESO and swelling analysis showed that samples with a higher concentration of AESO mixed absorbed less water than their counterparts. Furthermore, high-resolution prototypes were printed using both resins, and visual analysis did not show any significant difference between both products. In conclusion, the AESO resin was successful incorporated into a commercial resin without affecting its printability. The bio-based resin showed lower tensile strength than the Peopoly resin due to network loosening, but it was still in the range of other commercial resins. The hybrid resin also showed better flexibility and water resistance than Peopoly resin without affecting its resolution. Finally, the development of new types of SLA resins is essential to provide new sustainable alternatives to the commercial petroleum-based ones.

Keywords: 3D-printing, bio-based, resin, soybean, stereolithography

Procedia PDF Downloads 107
287 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 283
286 Nitrate Photoremoval in Water Using Nanocatalysts Based on Ag / Pt over TiO2

Authors: Ana M. Antolín, Sandra Contreras, Francesc Medina, Didier Tichit

Abstract:

Introduction: High levels of nitrates (> 50 ppm NO3-) in drinking water are potentially risky to human health. In the recent years, the trend of nitrate concentration in groundwater is rising in the EU and other countries. Conventional catalytic nitrate reduction processes into N2 and H2O lead to some toxic intermediates and by-products, such as NO2-, NH4+, and NOx gases. Alternatively, photocatalytic nitrate removal using solar irradiation and heterogeneous catalysts is a very promising and ecofriendly technique. It has been scarcely performed and more research on highly efficient catalysts is still needed. In this work, different nanocatalysts supported on Aeroxide Titania P25 (P25) have been prepared varying: 0.5-4 % wt. Ag); Pt (2, 4 % wt.); Pt precursor (H2PtCl6/K2PtCl6); and impregnation order of both metals. Pt was chosen in order to increase the selectivity to N2 and decrease that to NO2-. Catalysts were characterized by nitrogen physisorption, X-Ray diffraction, UV-visible spectroscopy, TEM and X Ray-Photoelectron Spectroscopy. The aim was to determine the influence of the composition and the preparation method of the catalysts on the conversion and selectivity in the nitrate reduction, as well as going through an overall and better understanding of the process. Nanocatalysts synthesis: For the mono and bimetallic catalysts preparation, wise-drop wetness impregnation of the precursors (AgNO3, H2PtCl6, K2PtCl6) followed by a reduction step (NaBH4) was used to obtain the metal colloids. Results and conclusions: Denitration experiments were performed in a 350 mL PTFE batch reactor under inert standard operational conditions, ultraviolet irradiations (λ=254 nm (UV-C); λ=365 nm (UV-A)), and presence/absence of hydrogen gas as a reducing agent, contrary to most studies using oxalic or formic acid. Samples were analyzed by Ionic Chromatography. Blank experiments using respectively P25 (dark conditions), hydrogen only and UV irradiations without hydrogen demonstrated a clear influence of the presence of hydrogen on nitrate reduction. Also, they demonstrated that UV irradiation increased the selectivity to N2. Interestingly, the best activity was obtained under ultraviolet lamps, especially at a closer wavelength to visible light irradiation (λ = 365 nm) and H2. 2% Ag/P25 leaded to the highest NO3- conversion among the monometallic catalysts. However, nitrite quantities have to be diminished. On the other hand, practically no nitrate conversion was observed with the monometallics based on Pt/P25. Therefore, the amount of 2% Ag was chosen for the bimetallic catalysts. Regarding the bimetallic catalysts, it is observed that the metal impregnation order, amount and Pt precursor highly affects the results. Higher selectivity to the desirable N2 gas is obtained when Pt was firstly added, especially with K2PtCl6 as Pt precursor. This suggests that when Pt is secondly added, it covers the Ag particles, which are the most active in this reaction. It could be concluded that Ag allows the nitrate reduction step to nitrite, and Pt the nitrite reduction step toward the desirable N2 gas.

Keywords: heterogeneous catalysis, hydrogenation, nanocatalyst, nitrate removal, photocatalysis

Procedia PDF Downloads 245
285 Remote BioMonitoring of Mothers and Newborns for Temperature Surveillance Using a Smart Wearable Sensor: Techno-Feasibility Study and Clinical Trial in Southern India

Authors: Prem K. Mony, Bharadwaj Amrutur, Prashanth Thankachan, Swarnarekha Bhat, Suman Rao, Maryann Washington, Annamma Thomas, N. Sheela, Hiteshwar Rao, Sumi Antony

Abstract:

The disease burden among mothers and newborns is caused mostly by a handful of avoidable conditions occurring around the time of childbirth and within the first month following delivery. Real-time monitoring of vital parameters of mothers and neonates offers a potential opportunity to impact access as well as the quality of care in vulnerable populations. We describe the design, development and testing of an innovative wearable device for remote biomonitoring (RBM) of body temperatures in mothers and neonates in a hospital in southern India. The architecture consists of: [1] a low-cost, wearable sensor tag; [2] a gateway device for ‘real-time’ communication link; [3] piggy-backing on a commercial GSM communication network; and [4] an algorithm-based data analytics system. Requirements for the device were: long battery-life upto 28 days (with sampling frequency 5/hr); robustness; IP 68 hermetic sealing; and human-centric design. We undertook pre-clinical laboratory testing followed by clinical trial phases I & IIa for evaluation of safety and efficacy in the following sequence: seven healthy adult volunteers; 18 healthy mothers; and three sets of babies – 3 healthy babies; 10 stable babies in the Neonatal Intensive Care Unit (NICU) and 1 baby with hypoxic ischaemic encephalopathy (HIE). The 3-coin thickness, pebble-design sensor weighing about 8 gms was secured onto the abdomen for the baby and over the upper arm for adults. In the laboratory setting, the response-time of the sensor device to attain thermal equilibrium with the surroundings was 4 minutes vis-a-vis 3 minutes observed with a precision-grade digital thermometer used as a reference standard. The accuracy was ±0.1°C of the reference standard within the temperature range of 25-40°C. The adult volunteers, aged 20 to 45 years, contributed a total of 345 hours of readings over a 7-day period and the postnatal mothers provided a total of 403 paired readings. The mean skin temperatures measured in the adults by the sensor were about 2°C lower than the axillary temperature readings (sensor =34.1 vs digital = 36.1); this difference was statistically significant (t-test=13.8; p<0.001). The healthy neonates provided a total of 39 paired readings; the mean difference in temperature was 0.13°C (sensor =36.9 vs digital = 36.7; p=0.2). The neonates in the NICU provided a total of 130 paired readings. Their mean skin temperature measured by the sensor was 0.6°C lower than that measured by the radiant warmer probe (sensor =35.9 vs warmer probe = 36.5; p < 0.001). The neonate with HIE provided a total of 25 paired readings with the mean sensor reading being not different from the radian warmer probe reading (sensor =33.5 vs warmer probe = 33.5; p=0.8). No major adverse events were noted in both the adults and neonates; four adult volunteers reported mild sweating under the device/arm band and one volunteer developed mild skin allergy. This proof-of-concept study shows that real-time monitoring of temperatures is technically feasible and that this innovation appears to be promising in terms of both safety and accuracy (with appropriate calibration) for improved maternal and neonatal health.

Keywords: public health, remote biomonitoring, temperature surveillance, wearable sensors, mothers and newborns

Procedia PDF Downloads 181
284 Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries

Authors: Kumlachew Zelalem Walle, Chun-Chen Yang

Abstract:

Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8  10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs.

Keywords: high-voltage cathodes, hybrid solid electrolytes, garnet, graphitic-carbon nitride (g-C3N4), ZIF-8 MOF

Procedia PDF Downloads 44
283 Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation

Authors: Alan N. A. Heberle, Salatiel W. Da Silva, Valentin Perez-Herranz, Andrea M. Bernardes

Abstract:

Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface.

Keywords: contaminants of emerging concern, advanced electrochemical oxidation, atenolol, cationic membrane, double compartment reactor

Procedia PDF Downloads 111
282 Expression of Selected miRNAs in Placenta of the Intrauterine Restricted Growth Fetuses in Cattle

Authors: Karolina Rutkowska, Hubert Pausch, Jolanta Oprzadek, Krzysztof Flisikowski

Abstract:

The placenta is one of the most important organs that plays a crucial role in the fetal growth and development. Placenta dysfunction is one of the primary cause of the intrauterine growth restriction (IUGR). Cattle have the cotyledonary placenta which consists of two anatomical parts: fetal and maternal. In the case of cattle during the first months of pregnancy, it is very easy to separate maternal caruncle from fetal cotyledon tissue, easier in fact than removing an ordinary glove from one's hand. Which in fact make easier to conduct tissue-specific molecular studies. Typically, animal models for the study of IUGR are created using surgical methods and malnutrition of the pregnant mother or in the case of mice by genetic modifications. However, proposed cattle model with MIMT1Del/WT deletion is unique because it was created without any surgical methods what significantly distinguish it from the other animal models. The primary objective of the study was to identify differential expression of selected miRNAs in the placenta from normal and intrauterine growth restricted fetuses. There was examined the expression of miRNA in the fetal and maternal part of the placenta from 24 fetuses (12 samples from the fetal part of the placenta and 12 samples from maternal part of the placenta). In the study, there was done miRNAs sequencing in the placenta of MIMT1Del/WT fetuses and MIMT1WT/WT fetuses. Then, there were selected miRNAs that are involved in fetal growth and development. Analysis of miRNAs expression was conducted on ABI7500 machine. miRNAs expression was analyzed by reverse-transcription polymerase chain reaction (RT-PCR). As the reference gene was used SNORD47. The results were expressed as 2ΔΔCt: ΔΔCt = (Ctij − CtSNORD47j) − (Cti1 − CtSNORD471). Where Ctij and CtSNORD47j are the Ct values for gene i and for SNORD47 in a sample (named j); Cti1 and CtSNORD471 are the Ct values in sample 1. Differences between groups were evaluated with analysis of variance by using One-Way ANOVA. Bonferroni’s tests were used for interpretation of the data. All normalised miRNA expression values are expressed on a value of natural logarithm. The data were expressed as least squares mean with standard errors. Significance was declared when P < 0.05. The study shows that miRNAs expression depends on the part of the placenta where they origin (fetal or maternal) and on the genotype of the animal. miRNAs offer a particularly new approach to study IUGR. Corresponding tissue samples were collected according to the standard veterinary protocols according to the European Union Normative for Care and Use of Experimental Animals. All animal experiments were approved by the Animal Ethics Committee of the State Provincial Office of Southern Finland (ESAVI-2010-08583/YM-23).

Keywords: placenta, intrauterine growth restriction, miRNA, cattle

Procedia PDF Downloads 292
281 Role of Empirical Evidence in Law-Making: Case Study from India

Authors: Kaushiki Sanyal, Rajesh Chakrabarti

Abstract:

In India, on average, about 60 Bills are passed every year in both Houses of Parliament – Lok Sabha and Rajya Sabha (calculated from information on websites of both Houses). These are debated in both Lok Sabha (House of Commons) and Rajya Sabha (Council of States) before they are passed. However, lawmakers rarely use empirical evidence to make a case for a law. Most of the time, they support a law on the basis of anecdote, intuition, and common sense. While these do play a role in law-making, without the necessary empirical evidence, laws often fail to achieve their desired results. The quality of legislative debates is an indicator of the efficacy of the legislative process through which a Bill is enacted. However, the study of legislative debates has not received much attention either in India or worldwide due to the difficulty of objectively measuring the quality of a debate. Broadly, three approaches have emerged in the study of legislative debates. The rational-choice or formal approach shows that speeches vary based on different institutional arrangements, intra-party politics, and the political culture of a country. The discourse approach focuses on the underlying rules and conventions and how they impact the content of the debates. The deliberative approach posits that legislative speech can be reasoned, respectful, and informed. This paper aims to (a) develop a framework to judge the quality of debates by using the deliberative approach; (b) examine the legislative debates of three Bills passed in different periods as a demonstration of the framework, and (c) examine the broader structural issues that disincentive MPs from scrutinizing Bills. The framework would include qualitative and quantitative indicators to judge a debate. The idea is that the framework would provide useful insights into the legislators’ knowledge of the subject, the depth of their scrutiny of Bills, and their inclination toward evidence-based research. The three Bills that the paper plans to examine are as follows: 1. The Narcotics Drugs and Psychotropic Substances Act, 1985: This act was passed to curb drug trafficking and abuse. However, it mostly failed to fulfill its purpose. Consequently, it was amended thrice but without much impact on the ground. 2. The Criminal Laws (Amendment) Act, 2013: This act amended the Indian Penal Code to add a section on human trafficking. The purpose was to curb trafficking and penalise traffickers, pimps, and middlemen. However, the crime rate remains high while the conviction rate is low. 3. The Surrogacy (Regulation) Act, 2021: This act bans commercial surrogacy allowing only relatives to act as surrogates as long as there is no monetary payment. Experts fear that instead of preventing commercial surrogacy, it would drive the activity underground. The consequences would be borne by the surrogate, who would not be protected by law. The purpose of the paper is to objectively analyse the quality of parliamentary debates, get insights into how MPs understand the evidence and deliberate on steps to incentivise them to use empirical evidence.

Keywords: legislature, debates, empirical, India

Procedia PDF Downloads 63
280 Assessing Organizational Resilience Capacity to Flooding: Index Development and Application to Greek Small & Medium-Sized Enterprises

Authors: Antonis Skouloudis, Konstantinos Evangelinos, Walter Leal-Filho, Panagiotis Vouros, Ioannis Nikolaou

Abstract:

Organizational resilience capacity to extreme weather events (EWEs) has sparked a growth in scholarly attention over the past decade as an essential aspect in business continuity management, with supporting evidence for this claim to suggest that it retains a key role in successful responses to adverse situations, crises and shocks. Small and medium-sized enterprises (SMEs) are more vulnerable to face floods compared to their larger counterparts, so they are disproportionately affected by such extreme weather events. The limited resources at their disposal, the lack of time and skills all conduce to inadequate preparedness to challenges posed by floods. SMEs tend to plan in the short-term, reacting to circumstances as they arise and focussing on their very survival. Likewise, they share less formalised structures and codified policies while they are most usually owner-managed, resulting in a command-and-control management culture. Such characteristics result in them having limited opportunities to recover from flooding and quickly turnaround their operation from a loss making to a profit making one. Scholars frame the capacity of business entities to be resilient upon an EWE disturbance (such as flash floods) as the rate of recovery and restoration of organizational performance to pre-disturbance conditions, the amount of disturbance (i.e. threshold level) a business can absorb before losing structural and/or functional components that will alter or cease operation, as well as the extent to which the organization maintains its function (i.e. impact resistance) before performance levels are driven to zero. Nevertheless, while it seems to be accepted as an essential trait of firms effectively transcending uncertain conditions, research deconstructing the enabling conditions and/or inhibitory factors of SMEs resilience capacity to natural hazards is still sparse, fragmentary and mostly fuelled by anecdotal evidence or normative assumptions. Focusing on the individual level of analysis, i.e. the individual enterprise and its endeavours to succeed, the emergent picture from this relatively new research strand delineates the specification of variables, conceptual relationships or dynamic boundaries of resilience capacity components in an attempt to provide prescriptions for policy-making as well as business management. This study will present the development of a flood resilience capacity index (FRCI) and its application to Greek SMEs. The proposed composite indicator pertains to cognitive, behavioral/managerial and contextual factors that influence an enterprise’s ability to shape effective responses to meet flood challenges. Through the proposed indicator-based approach, an analytical framework is set forth that will help standardize such assessments with the overarching aim of reducing the vulnerability of SMEs to flooding. This will be achieved by identifying major internal and external attributes explaining resilience capacity which is particularly important given the limited resources these enterprises have and that they tend to be primary sources of vulnerabilities in supply chain networks, generating Single Points of Failure (SPOF).

Keywords: Floods, Small & Medium-Sized enterprises, organizational resilience capacity, index development

Procedia PDF Downloads 162
279 Transitioning Towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges

Authors: Atefeh Salehipoor

Abstract:

Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: 1. Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. 2. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. 3. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. 4. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. 5. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. 6. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.

Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension

Procedia PDF Downloads 54
278 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 89
277 Resilience in the Face of Environmental Extremes through Networking and Resource Mobilization

Authors: Abdullah Al Mohiuddin

Abstract:

Bangladesh is one of the poorest countries in the world, and ranks low on almost all measures of economic development, thus leaving the population extremely vulnerable to natural disasters and climate events. 20% of GDP come from agriculture but more than 60% of the population relies on agriculture as their main source of income making the entire economy vulnerable to climate change and natural disasters. High population density exacerbates the exposure to and effect of climate events, and increases the levels of vulnerability, as does the poor institutional development of the country. The most vulnerable sectors to climate change impacts in Bangladesh are agriculture, coastal zones, water resources, forestry, fishery, health, biomass, and energy. High temperatures, heavy rainfall, high humidity and fairly marked seasonal variations characterize the climate in Bangladesh: Mild winter, hot humid summer and humid, warm rainy monsoon. Much of the country is flooded during the summer monsoon. The Department of Environment (DOE) under the Ministry of Environment and Forestry (MoEF) is the focal point for the United Nations Framework Convention on Climate Change (UNFCCC) and coordinates climate related activities in the country. Recently, a Climate Change Cell (CCC) has been established to address several issues including adaptation to climate change. The climate change focus started with The National Environmental Management Action Plan (NEMAP) which was prepared in 1995 in order to initiate the process to address environmental and climate change issues as long-term environmental problems for Bangladesh. Bangladesh was one of the first countries to finalise a NAPA (Preparation of a National Adaptation Plan of Action) which addresses climate change issues. The NAPA was completed in 2005, and is the first official initiative for mainstreaming adaptation to national policies and actions to cope with climate change and vulnerability. The NAPA suggests a number of adaptation strategies, for example: - Providing drinking water to coastal communities to fight the enhanced salinity caused by sea level rise, - Integrating climate change in planning and design of infrastructure, - Including climate change issues in education, - Supporting adaptation of agricultural systems to new weather extremes, - Mainstreaming CCA into policies and programmes in different sectors, e.g. disaster management, water and health, - Dissemination of CCA information and awareness raising on enhanced climate disasters, especially in vulnerable communities. Bangladesh has geared up its environment conservation steps to save the world’s poorest countries from the adverse effects of global warming. Now it is turning towards green economy policies to save the degrading ecosystem. Bangladesh is a developing country and always fights against Natural Disaster. At the same time we also fight for establishing ecological environment through promoting Green Economy/Energy by Youth Networking. ANTAR is coordinating a big Youth Network in the southern part of Bangladesh where 30 Youth group involved. It can be explained as the economic development based on sustainable development which generates growth and improvement in human’s lives while significantly reducing environmental risks and ecological scarcities. Green economy in Bangladesh promotes three bottom lines – sustaining economic, environment and social well-being.

Keywords: resilience, networking, mobilizing, resource

Procedia PDF Downloads 285
276 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 135