Search results for: academic year
1569 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X
Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira
Abstract:
An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.Keywords: boundary-layer, scramjet, simple algorithm, shock wave
Procedia PDF Downloads 4871568 Long-Term Modal Changes in International Traffic - Modelling Exercise
Authors: Tomasz Komornicki
Abstract:
The primary aim of the presentation is to try to model border traffic and, at the same time to explain on which economic variables the intensity of border traffic depended in the long term. For this purpose, long series of traffic data on the Polish borders were used. Models were estimated for three variants of explanatory variables: a) for total arrivals and departures (total movement of Poles and foreigners), b) for arrivals and departures of Poles, and c) for arrivals and departures of foreigners. Each of the defined explanatory variables in the models appeared as the logarithm of the natural number of persons. Data from 1994-2017 were used for modeling (for internal Schengen borders for the years 1994-2007). Information on the number of people arriving in and leaving Poland was collected for a total of 303 border crossings. On the basis of the analyses carried out, it was found that one of the main factors determining border traffic is generally differences in the level of economic development (GDP) and the condition of the economy (level of unemployment) and the degree of border permeability. Also statistically significant for border traffic are differences in the prices of goods (fuels, tobacco, and alcohol products) and services (mainly basic ones, e.g., hairdressing services). Such a relationship exists mainly on the eastern border (border traffic determined largely by differences in the prices of goods) and on the border with Germany (in the first analysed period, border traffic was determined mainly by the prices of goods, later - after Poland's accession to the EU and the Schengen area - also by the prices of services). The models also confirmed differences in the set of factors shaping the volume and structure of border traffic on the Polish borders resulting from general geopolitical conditions, with the year 2007 being an important caesura, after which the classical population mobility factors became visible. The results obtained were additionally related to changes in traffic that occurred as a result of the CPOVID-19 pandemic and as a result of the Russian aggression against Ukraine.Keywords: border, modal structure, transport, Ukraine
Procedia PDF Downloads 1141567 Shear Strength Parameters of an Unsaturated Lateritic Soil
Authors: Jeferson Brito Fernades, Breno Padovezi Rocha, Roger Augusto Rodrigues, Heraldo Luiz Giacheti
Abstract:
The geotechnical projects demand the appropriate knowledge of soil characteristics and parameters. The determination of geotechnical soil parameters can be done by means of laboratory or in situ tests. In countries with tropical weather, like Brazil, unsaturated soils are very usual. In these soils, the soil suction has been recognized as an important stress state variable, which commands the geo-mechanical behavior. Triaxial and direct shear tests on saturated soils samples allow determine only the minimal soil shear strength, in other words, no suction contribution. This paper briefly describes the triaxial test with controlled suction as well as discusses the influence of suction on the shear strength parameters of a lateritic tropical sandy soil from a Brazilian research site. In this site, a sample pit was excavated to retrieve disturbed and undisturbed soil blocks. The samples extracted from these blocks were tested in laboratory to represent the soil from 1.5, 3.0 and 5.0 m depth. The stress curves and shear strength envelopes determined by triaxial tests varying suction and confining pressure are presented and discussed. The water retention characteristics on this soil complement this analysis. In situ CPT tests were also carried out at this site in different seasons of the year. In this case, the soil suction profile was determined by means of the soil water retention. This extra information allowed assessing how soil suction also affected the CPT data and the shear strength parameters estimative via correlation. The major conclusions of this paper are: the undisturbed soil samples contracted before shearing and the soil shear strength increased hyperbolically with suction; and it was possible to assess how soil suction also influenced CPT test data based on the water content soil profile as well as the water retention curve. This study contributed with a better understanding of the shear strength parameters and the soil variability of a typical unsaturated tropical soil.Keywords: site characterization, triaxial test, CPT, suction, variability
Procedia PDF Downloads 4151566 A Survey to Determine the Incidence of Piglets' Mortality in Outdoor Farms in New Zealand
Authors: Patrick C. H. Morel, Ian W. Barugh, Kirsty L. Chidgey
Abstract:
The aim of this study was to quantify the level of piglet deaths in outdoor farrowing systems in New Zealand. A total of 14 farms were visited, the farmers interviewed, and data collected. A total of 10,154 sows were kept on those farms representing an estimated 33% of the NZ sow herd or 80% of the outdoor sow herd in 2016. Data from 25,911 litters was available for the different analyses. The characteristics and reproductive performance for the years 2015-2016 from the 14 farms surveyed in this study were analysed, and the following results were obtained. The average percentage of stillbirths was 7.1% ranging between 3.5 and 10.7%, and the average pre-weaning live-born mortality was 16.7% ranging between 3.7% and 23.6%. The majority of piglet deaths (89%) occurred during the first week after birth, with 81% of deaths occurring up to day three. The number of piglets born alive was 12.3 (8.0 to 14.0), and average number of piglets weaned per sow per year was 22.4, range 10.5-27.3. The average stocking rate per ha (number of sows and mated gilts) was 15.3 and ranged from 2.8 to 28.6. The sow to boar ratio average was 20.9:1 and the range was 7.1: 1 to 63:1. The sow replacement rate ranged between 37% and 78%. There was a large variation in the piglet live-born mortality both between months within a farm and between farms within a given month. The monthly recorded piglet mortality ranged between 7.7% and 31.5%, and there was no statistically significant difference between months on the number of piglets born, born alive, weaned or on pre-weaning piglet mortality. Twelve different types of hut/farrowing systems were used on the 14 farms. No difference in piglet mortality was observed between A-Frame, A-Frame Modified and for Box-shape huts. There was a positive relationship between the average number of piglets born per litter and the number of piglets born alive (r=0.975) or the number weaned per litter (r=0.845). Moreover, as the average number of piglets born-alive increases, both pre-weaning live-born mortality rate and the number of piglets weaned increased. An increase of 1 piglet in the number born alive corresponds to an increase of 2.9% in live-born mortality and an increase of 0.56 piglets weaned. Farmers reported that staff are the key to success with the key attributes being: good and reliable with attention to detail and skills with the stock.Keywords: mortality, piglets, outdoor, pig farm
Procedia PDF Downloads 1111565 “The Effectiveness of Group Logo Therapy on Meaning and Quality of Life of Women in Old Age Home”
Authors: Sophia Cyril Vincent
Abstract:
Background: As per the Indian Census 2011, there is nearly 104 million elderly population aged above 60 years (53 million females and 51 males), and the count is expected to be 173 million by the end of 2026. Nearly 5.5% of women and 1.5% of men are living alone.1 In India, even though it is the moral duty of the children to take care of aged parents, many elders are landing in old age homes due to the social transformation factors like mushrooming of nuclear families, migration of children, cultural echoes, differences in mindset and values. Nearly 728 old age homes are seen across the country, out of which 78 old age homes with approximately 3000 inmates are seen only in Bangalore2. The existing literature shows that elderly women residing in old age homes experience the challenges like- loneliness, health issues, rejection from children, grief, death anxiety, etc, which leads to mental and physical wellbeing in numerous and tangible ways3. Hence the best and cost-effective way to improve the meaning and quality of life among elderly females is logotherapy, a type of psychotherapeutic analysis and treatment, motivating and driving force4 within the human experience to lead a decent life. Aim: The current research is aimed at studying the effectiveness of a logotherapy intervention on meaning and quality of life among elderly women of old age homes. Samples:200 women aged < 60 years and staying in the old age home for more than 1 year were randomly allocated to the control group and experimental group. Methodology: Using the Meaning in life questionnaire (MLQ)and the World health organization quality of life (WHOQOL) questionnaire, meaning and quality of life were assessed among both groups' women. Intensive Logotherapy and meaning in life program for five days were provided for the experimental group and the control group, with no treatment. Result: Under analysis. Conclusion: It is the right of the elderly woman to lead a happy and peaceful life till her death irrespective of the residing place. Hence, continuous monitoring and effective management are necessary for elderly women.Keywords: quality of life, meaning of life, logo therapy, old age home
Procedia PDF Downloads 2041564 Design and Computational Fluid Dynamics Analysis of Aerodynamic Package of a Formula Student Car
Authors: Aniketh Ravukutam, Rajath Rao M., Pradyumna S. A.
Abstract:
In the past few decades there has been great advancement in use of aerodynamics in cars. Now its use has been evident from commercial cars to race cars for achieving higher speeds, stability and efficiency. This paper focusses on studying the effects of aerodynamics in Formula Student car. These cars weigh around 200kgs with an average speed of 60kmph. With increasing competition every year, developing a competitive car is a herculean task. The race track comprises mostly of tight corners and little or no straights thus testing the car’s cornering capabilities. Higher cornering speeds can be achieved by increasing traction at the tires. Studying the aerodynamics helps in achieving higher traction without much addition in overall weight of car. The main focus is to develop an aerodynamic package involving front wing, under tray and body to obtain an optimum value of down force. The initial process involves the detail study of geometrical constraints mentioned in the rule book and calculating the limiting value of drag as per the engine specifications. The successive steps involve conduction of various iterations in ANSYS for selection of airfoils, deciding the number of elements, designing the nose for low drag, channelizing the flow under the body and obtain an optimum value of down force within the limits defined in the initial process. The final step involves design of model using these results in Virtual environment called OptimumLap® for detailed study of performance with and without the presence of aerodynamics. The CFD analysis results showed an overall down force of 377.44N with a drag of 164.08N. The corresponding parameters of the last model were applied in OptimumLap® and an improvement of 3.5 seconds in lap times was observed.Keywords: aerodynamics, formula student, traction, front wing, undertray, body, rule book, drag, down force, virtual environment, computational fluid dynamics (CFD)
Procedia PDF Downloads 2391563 Developing Scaffolds for Tissue Regeneration using Low Temperature Plasma (LTP)
Authors: Komal Vig
Abstract:
Cardiovascular disease (CVD)-related deaths occur in 17.3 million people globally each year, accounting for 30% of all deaths worldwide, with a predicted annual incidence of deaths to reach 23.3 million globally by 2030. Autologous bypass grafts remain an important therapeutic option for the treatment of CVD, but the poor quality of the donor patient’s blood vessels, the invasiveness of the resection surgery, and postoperative movement restrictions create issues. The present study is aimed to improve the endothelialization of intimal surface of graft by using low temperature plasma (LTP) to increase the cell attachment and proliferation. Polytetrafluoroethylene (PTFE) was treated with LTP. Air was used as the feed-gas, and the pressure in the plasma chamber was kept at 800 mTorr. Scaffolds were also modified with gelatin and collagen by dipping method. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds, and cell proliferation was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). XPS confirmed the introduction of oxygenated functionalities from LTP. HUVEC cells showed 80% seeding efficiency on the scaffold. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds, especially when treated with gelatin or collagen, compared to untreated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. LTP treated scaffolds exhibited better cell proliferation and viability compared to untreated scaffolds. Protein treatment of scaffold increased cell proliferation. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies. Acknowledgments: This work is supported by the NSF EPSCoR RII-Track-1 Cooperative Agreement OIA-2148653.Keywords: LTP, HUVEC cells, vascular graft, endothelialization
Procedia PDF Downloads 691562 Prevalence of Dengue in Sickle Cell Disease in Pre-school Children
Authors: Nikhil A. Gavhane, Sachin Shah, Ishant S. Mahajan, Pawan D. Bahekar
Abstract:
Introduction: Millions of people are affected with dengue fever every year, which drives up healthcare expenses in many low-income countries. Organ failure and other serious symptoms may result. Another worldwide public health problem is sickle cell anaemia, which is most prevalent in Africa, the Caribbean, and Europe. Dengue epidemics have reportedly occurred in locations with a high frequency of sickle cell disease, compounding the health problems in these areas. Aims and Objectives: This study examines dengue infection in sickle cell disease-afflicted pre-schoolers. Method:This Retrospective cohort study examined paediatric patients. Young people with sickle cell disease (SCD), dengue infection, and a control group without SCD or dengue were studied. Data on demographics, SCD consequences, medical treatments, and laboratory findings were gathered to analyse the influence of SCD on dengue severity and clinical outcomes, classified as severe or non-severe by the 2009 WHO classification. Using fever or admission symptoms, the research estimated acute illness duration. Result: Table 1 compares haemoglobin genotype-based dengue episode features in SS, SC, and controls. Table 2 shows that severe dengue cases are older, have longer admission delays, and have particular symptoms. Table 3's multivariate analysis indicates SS genotype's high connection with severe dengue, multiorgan failure, and acute pulmonary problems. Table 4 relates severe dengue to greater white blood cell counts, anaemia, liver enzymes, and reduced lactate dehydrogenase. Conclusion: This study is valuable but confined to hospitalised dengue patients with sickle cell illness. Small cohorts limit comparisons. Further study is needed since findings contradict predictions.Keywords: dengue, chills, headache, severe myalgia, vomiting, nausea, prostration
Procedia PDF Downloads 711561 The Affordances and Challenges of Online Learning and Teaching for Secondary School Students
Authors: Hahido Samaras
Abstract:
In many cases, especially with the pandemic playing a major role in fast-tracking the growth of the digital industry, online learning has become a necessity or even a standard educational model nowadays, reliably overcoming barriers such as location, time and cost and frequently combined with a face-to-face format (e.g., in blended learning). This being the case, it is evident that students in many parts of the world, as well as their parents, will increasingly need to become aware of the pros and cons of online versus traditional courses. This fast-growing mode of learning, accelerated during the years of the pandemic, presents an abundance of exciting options especially matched for a large number of secondary school students in remote places of the world where access to stimulating educational settings and opportunities for a variety of learning alternatives are scarce, adding advantages such as flexibility, affordability, engagement, flow and personalization of the learning experience. However, online learning can also present several challenges, such as a lack of student motivation and social interactions in natural settings, digital literacy, and technical issues, to name a few. Therefore, educational researchers will need to conduct further studies focusing on the benefits and weaknesses of online learning vs. traditional learning, while instructional designers propose ways of enhancing student motivation and engagement in virtual environments. Similarly, teachers will be required to become more and more technology-capable, at the same time developing their knowledge about their students’ particular characteristics and needs so as to match them with the affordances the technology offers. And, of course, schools, education programs, and policymakers will have to invest in powerful tools and advanced courses for online instruction. By developing digital courses that incorporate intentional opportunities for community-building and interaction in the learning environment, as well as taking care to include built-in design principles and strategies that align learning outcomes with learning assignments, activities, and assessment practices, rewarding academic experiences can derive for all students. This paper raises various issues regarding the effectiveness of online learning on students by reviewing a large number of research studies related to the usefulness and impact of online learning following the COVID-19-induced digital education shift. It also discusses what students, teachers, decision-makers, and parents have reported about this mode of learning to date. Best practices are proposed for parties involved in the development of online learning materials, particularly for secondary school students, as there is a need for educators and developers to be increasingly concerned about the impact of virtual learning environments on student learning and wellbeing.Keywords: blended learning, online learning, secondary schools, virtual environments
Procedia PDF Downloads 991560 Feedback of an Automated Hospital about the Performance of an Automated Drug Dispensing System’s Implementation
Authors: Bouami Hind, Millot Patrick
Abstract:
The implementation of automated devices in life-critical systems such as hospitals can bring a new set of challenges related to automation malfunctions. While automation has been identified as great leverage for the medication dispensing system’s security and efficiency, it also increases the complexity of the organization. In particular, the installation and operation stage of automated devices can be complex when malfunctions related to automated systems occur. This paper aims to document operators’ situation awareness about the malfunctions of automated drug delivery systems (ADCs) during their implementation through Saint Brieuc hospital’s feedback. Our evaluation approach has been deployed in Saint Brieuc hospital center’s pharmacy, which has been equipped with automated nominative drug dispensing systems since January of 2021. The analysis of Saint Brieuc hospital center pharmacy’s automation revealed numerous malfunctions related to the implementation of Automated Delivery Cabinets. It appears that the targeted performance is not reached in the first year of implementation in this case study. Also, errors have been collected in patients' automated treatments’ production such as lack of drugs in pill boxes or nominative carnets, excess of drugs, wrong location of the drug, drug blister damaged, non-compliant sachet, or ticket errors. Saint Brieuc hospital center’s pharmacy is doing a tremendous job of setting up and monitoring performance indicators from the beginning of automation and throughout ADC’s operation to control ADC’s malfunctions and meet the performance targeted by the hospital. Health professionals, including pharmacists, biomedical engineers and directors of work, technical services and safety, are heavily involved in an automation project. This study highlights the importance of the evaluation of ADCs’ performance throughout the implementation process and the hospital’s team involvement in automation supervision and management.Keywords: life-critical systems, situation awareness, automated delivery cabinets, implementation, risks and malfunctions
Procedia PDF Downloads 981559 Effective Factors on Self-Care in Women with Osteoporosis: A Study with Content Analysis Approach
Authors: Arezoo Fallahi, Siamak Derakhshan, Parvaneh Taymoori, Babak Nematshahrbabaki
Abstract:
Background: Osteoporosis, the most common metabolic bone disease, is an important health care issue. Not only the cost of disease is high but also is one of the causes of disability and mortality and effect on quality of life. Although self-care is effective on disease, s control and treatment but still effective factors on self-care of patient, s viewpoint have not been survey. The aim of this study was to explore effective factors on self-care in women with osteoporosis. Materials and methods: This study was done by conventional content analysis approach in year 2014. Through purposeful sampling 15 women referred to bone mass densitometry centers participated in this study. Inclusion criteria were: Women older than 50 years old with osteoporosis, final diagnosis of osteoporosis for over six –month period, T-score index below -2.5 (lower back or hip), drug use by patients with a physician’s prescription, ability in speaking and attending to participate in the study. Data was collected by face to face and group semi-structure deep interviews and analyzed via content analysis method. To support of rigor of data, criteria credibility, confirmability and transferability were used. Results: during data analysis five categories developed: “hope and disability in the face of illness”, “mutual roles of physician”, “role of family” and “administrative centers and organizations”. To perform self-care behaviors, the participations of this study emphasized on pay attention to their own healthy, regarding patients' rights by physician, pay attention to women's health by men, and the role of media especially radio and television. Conclusion: the finding of the study showed that women’s responsibility with osteoporosis for their health is not a factor but it is multifactorial. Increasing life expectancy in patients, attention to patients needs by physician, increasing health promotion programs in the media and enhancing role of family may provide conditions and infrastructure to empowerment women in doing self-care behavior.Keywords: women, osteoporosis, self-care, content analysis
Procedia PDF Downloads 4611558 Fostering Diversity, Equity, and Inclusion: Case of Higher Education Institutions in Kazakhstan
Authors: Gainiya Tazhina
Abstract:
Higher education systems of many countries have increased diversity and ensured equal rights and opportunities for inclusive students in the last decades. Issues of diversity-equity-inclusion (DEI) in Kazakhstani higher education began to be considered in legislation in 2021-2023. The adoption of the Road Map of the Ministry of Education and Science for universities’ inclusivity indicated strategies for change. The paper traces how this government initiative is being implemented in universities across the country. Content analysis of legislative documents, media publications, surveys of students, staff and interviews with leaders have demonstrated the inconsistency of these strategic decisions. Thus, the Road Map required that by 2023 conditions for promoting and ensuring inclusive education and barrier-free environments should be created in 60% -100% of Kazakhstani universities, including spaces inside academic buildings and dormitories in a short period of time. (March 2023-August 2025). Educational programs and curricula have not been adapted to the needs of students with special education needs (SEN); teachers do not have the skills and methods to work with students with SEN, students from minority groups, and international students. 60% of universities have not created a barrier-free environment on campuses due to the high cost of elevators, tactile tiles and assistive devices. Only 1% of school-disabled graduates enter universities due to the unwillingness of universities to educate people with disabilities. At the same time, universities do not adapt their educational programs and services to the needs of inclusive students; their needs are not identified; they study under the same conditions as regular students. Accordingly, teaching staff does not have the knowledge and skills to teach inclusive students; university lecturers misunderstand or oversimplify the social phenomena of ‘inclusion’ and ‘diversity’. The situation is more acute with the creation of a barrier-free architectural environment on university campuses. Recent reports indicate that these reforms have not been implemented to date, proven controversial in practice due to the inconsistency of national research on inclusion in higher education. Widely announced reforms have not produced the expected results leading to distortions at the local level. Inconsistent policies, contradictory legislative acts without expertise of needs and developing specific implementation criteria, without training specialists and indicators for achieving reforms are doomed to failure and mistrust of society. Based on the results of this research, recommendations have been developed: (1) to overcome inconsistencies in legislation regarding DEI in higher education; (2) to encourage initiatives in universities' inclusive environments; (3) to develop projects that will promote public awareness of DEI.Keywords: diversity-equity-inclusion, Kazakhstani universities, reforms, legislation, accessibility
Procedia PDF Downloads 101557 Assessment of Current and Future Opportunities of Chemical and Biological Surveillance of Wastewater for Human Health
Authors: Adam Gushgari
Abstract:
The SARS-CoV-2 pandemic has catalyzed the rapid adoption of wastewater-based epidemiology (WBE) methodologies both domestically and internationally. To support the rapid scale-up of pandemic-response wastewater surveillance systems, multiple federal agencies (i.e. US CDC), non-government organizations (i.e. Water Environment Federation), and private charities (i.e. Bill and Melinda Gates Foundation) have funded over $220 million USD supporting development and expanding equitable access of surveillance methods. Funds were primarily distributed directly to municipalities under the CARES Act (90.6%), followed by academic projects (7.6%), and initiatives developed by private companies (1.8%). In addition to federal funding for wastewater monitoring primarily conducted at wastewater treatment plants, state/local governments and private companies have leveraged wastewater sampling to obtain health and lifestyle data on student, prison inmate, and employee populations. We explore the viable paths for expansion of the WBE m1ethodology across a variety of analytical methods; the development of WBE-specific samplers and real-time wastewater sensors; and their application to various governments and private sector industries. Considerable investment in, and public acceptance of WBE suggests the methodology will be applied to other future notifiable diseases and health risks. Early research suggests that WBE methods can be applied to a host of additional “biological insults” including communicable diseases and pathogens, such as influenza, Cryptosporidium, Giardia, mycotoxin exposure, hepatitis, dengue, West Nile, Zika, and yellow fever. Interest in chemical insults is also likely, providing community health and lifestyle data on narcotics consumption, use of pharmaceutical and personal care products (PPCP), PFAS and hazardous chemical exposure, and microplastic exposure. Successful application of WBE to monitor analytes correlated with carcinogen exposure, community stress prevalence, and dietary indicators has also been shown. Additionally, technology developments of in situ wastewater sensors, WBE-specific wastewater samplers, and integration of artificial intelligence will drastically change the landscape of WBE through the development of “smart sewer” networks. The rapid expansion of the WBE field is creating significant business opportunities for professionals across the scientific, engineering, and technology industries ultimately focused on community health improvement.Keywords: wastewater surveillance, wastewater-based epidemiology, smart cities, public health, pandemic management, substance abuse
Procedia PDF Downloads 1081556 Variations in Heat and Cold Waves over Southern India
Authors: Amit G. Dhorde
Abstract:
It is now well established that the global surface air temperatures have increased significantly during the period that followed the industrial revolution. One of the main predictions of climate change is that the occurrences of extreme weather events will increase in future. In many regions of the world, high-temperature extremes have already started occurring with rising frequency. The main objective of the present study is to understand spatial and temporal changes in days with heat and cold wave conditions over southern India. The study area includes the region of India that lies to the south of Tropic of Cancer. To fulfill the objective, daily maximum and minimum temperature data for 80 stations were collected for the period 1969-2006 from National Data Center of India Meteorological Department. After assessing the homogeneity of data, 62 stations were finally selected for the study. Heat and cold waves were classified as slight, moderate and severe based on the criteria given by Indias' meteorological department. For every year, numbers of days experiencing heat and cold wave conditions were computed. This data was analyzed with linear regression to find any existing trend. Further, the time period was divided into four decades to investigate the decadal frequency of the occurrence of heat and cold waves. The results revealed that the average annual temperature over southern India shows an increasing trend, which signifies warming over this area. Further, slight cold waves during winter season have been decreasing at the majority of the stations. The moderate cold waves also show a similar pattern at the majority of the stations. This is an indication of warming winters over the region. Besides this analysis, other extreme indices were also analyzed such as extremely hot days, hot days, very cold nights, cold nights, etc. This analysis revealed that nights are becoming warmer and days are getting warmer over some regions too.Keywords: heat wave, cold wave, southern India, decadal frequency
Procedia PDF Downloads 1271555 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1241554 Entrepreneurship Education: A Panacea for Entrepreneurial Intention of University Undergraduates in Ogun State, Nigeria
Authors: Adedayo Racheal Agbonna
Abstract:
The rising level of graduate unemployment in Nigeria has brought about the introduction of entrepreneurship education as a career option for self–reliance and self-employment. Sequel to this, it is important to have an understanding of the determining factors of entrepreneurial intention. Therefore this research empirically investigated the influence of entrepreneurship education on entrepreneurial intention of undergraduate students of selected universities in Ogun State, Nigeria. The study is significant to researchers, university policy makers, and the government. Survey research design was adopted in the study. The population consisted of 17,659 final year undergraduate students universities in Ogun State. The study adopted stratified and random sampling technique. The table of sample size determination was used to determine the sample size for this study at 95% confidence level and 5% margin error to arrive at a sample size of 1877 respondents. The elements of population were 400 level students of the selected universities. A structured questionnaire titled 'Entrepreneurship Education and students’ Entrepreneurial intention' was administered. The result of the reliability test had the following values 0.716, 0.907 and 0.949 for infrastructure, perceived university support, and entrepreneurial intention respectively. In the same vein, from the construct validity test, the following values were obtained 0.711, 0.663 and 0.759 for infrastructure, perceived university support and entrepreneurial intention respectively. Findings of this study revealed that each of the entrepreneurship education variables significantly affected intention University infrastructure B= -1.200, R²=0.679, F (₁,₁₈₇₅) = 3958.345, P < 0.05) Perceived University Support B= -1.027, R²=0.502, F(₁,₁₈₇₅) = 1924.612, P < 0.05). The perception of respondents in public university and private university on entrepreneurship education have a statistically significant difference [F(₁,₁₈₇₅) = 134.614, p < 0.05) α F(₁,₁₈₇₅) = 363.439]. The study concluded that entrepreneurship education positively influenced entrepreneurial intention of undergraduate students in Ogun State, Nigeria. Also, university infrastructure and perceived university support have negative and significant effect on entrepreneurial intention. The study recommended that to promote entrepreneurial intention of university undergraduate students, infrastructures and the university support that can arouse entrepreneurial intention of students should be put in place.Keywords: entrepreneurship education, entrepreneurial intention, perceived university support, university infrastructure
Procedia PDF Downloads 2321553 Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India
Authors: S. K. Kakraliya, H. S. Jat, Manish Kakraliya, P. C. Sharma, M. L. Jat
Abstract:
The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system.Keywords: Sub-surface drip, Crop residue, Crop yield , Zero tillage
Procedia PDF Downloads 1181552 Community Participation in Decentralized Management of Natural Resources in the Sudano-Sahelian Zone of West Africa
Authors: Clarisse Umutoni, Augustine Ayantunde, Matthew Turner, Germain J. Sawadogo
Abstract:
Decentralized governance of natural resources is considered one of the key strategies for promoting sustainable management of natural resources at local level. The rationale behind decentralization of natural resources is that local populations are both better situated and more highly motivated than outside agencies to manage the resources in an ecologically and economically sustainable manner. Effective decentralized natural resource management requires strong local natural resource institutions. Therefore, strengthening local institutions governing natural resource management is essential to promoting strong participation of local communities in managing their resources. This paper investigated the existing local institutions (rules, norms and or local conventions) governing the management of natural resources and forms of community participation in the development of these natural resource institutions. Group discussions and individual interviews were conducted to collect data. Our findings showed significant variation within the study sites regarding the level of knowledge of existing local rules and norms governing the management of natural resources by the respondents. The results also show that participation was dominated by a small group of individuals, often community leaders and elites. The results suggest that women are marginalized. In general, factors which influence the level of participation include; age, year of residence in the community, gender and education level. This study also highlights the strengths of local natural resource institutions especially if enforced. Presently, the big challenge that faces the institutions governing natural resource use in the study area is the system of representativeness in the community in the development of local rules and norms as community leaders and household heads often dominate, which does not encourage active participation of community members. Therefore, for effective implementation of local natural resource institutions, the interest of key natural resource users should be taken into account. It is also important to promote rules and norms that attempt to protect or strengthen women’s access to natural resources in the community.Keywords: decentralization, land use plan, local institutions, Mali
Procedia PDF Downloads 3841551 Impact of Emotional Intelligence and Cognitive Intelligence on Radio Presenter's Performance in All India Radio, Kolkata, India
Authors: Soumya Dutta
Abstract:
This research paper aims at investigating the impact of emotional intelligence and cognitive intelligence on radio presenter’s performance in the All India Radio, Kolkata (India’s public service broadcaster). The ancient concept of productivity is the ratio of what is produced to what is required to produce it. But, father of modern management Peter F. Drucker (1909-2005) defined productivity of knowledge work and knowledge workers in a new form. In the other hand, the concept of Emotional Intelligence (EI) originated back in 1920’s when Thorndike (1920) for the first time proposed the emotional intelligence into three dimensions, i.e., abstract intelligence, mechanical intelligence, and social intelligence. The contribution of Salovey and Mayer (1990) is substantive, as they proposed a model for emotional intelligence by defining EI as part of the social intelligence, which takes measures the ability of an individual to regulate his/her personal and other’s emotions and feeling. Cognitive intelligence illustrates the specialization of general intelligence in the domain of cognition in ways that possess experience and learning about cognitive processes such as memory. The outcomes of past research on emotional intelligence show that emotional intelligence has a positive effect on social- mental factors of human resource; positive effects of emotional intelligence on leaders and followers in terms of performance, results, work, satisfaction; emotional intelligence has a positive and significant relationship with the teachers' job performance. In this paper, we made a conceptual framework based on theories of emotional intelligence proposed by Salovey and Mayer (1989-1990) and a compensatory model of emotional intelligence, cognitive intelligence, and job performance proposed by Stephen Cote and Christopher T. H. Miners (2006). For investigating the impact of emotional intelligence and cognitive intelligence on radio presenter’s performance, sample size consists 59 radio presenters (considering gender, academic qualification, instructional mood, age group, etc.) from All India Radio, Kolkata station. Questionnaires prepared based on cognitive (henceforth called C based and represented by C1, C2,.., C5) as well as emotional intelligence (henceforth called E based and represented by E1, E2,., E20). These were sent to around 59 respondents (Presenters) for getting their responses. Performance score was collected from the report of program executive of All India Radio, Kolkata. The linear regression has been carried out using all the E-based and C-based variables as the predictor variables. The possible problem of autocorrelation has been tested by having the Durbinson-Watson (DW) Statistic. Values of this statistic, almost within the range of 1.80-2.20, indicate the absence of any significant problem of autocorrelation. The possible problem of multicollinearity has been tested by having the Variable Inflation Factor (VIF) value. Values of this statistic, around within 2, indicates the absence of any significant problem of multicollinearity. It is inferred that the performance scores can be statistically regressed linearly on the E-based and C-based scores, which can explain 74.50% of the variations in the performance.Keywords: cognitive intelligence, emotional intelligence, performance, productivity
Procedia PDF Downloads 1631550 Occurrence of Porcine circovirus Type 2 in Pigs of Eastern Cape Province South Africa
Authors: Kayode O. Afolabi, Benson C. Iweriebor, Anthony I. Okoh, Larry C. Obi
Abstract:
Porcine circovirus type 2 (PCV2) is the major etiological viral agent of porcine multisystemic wasting syndrome (PWMS) and other porcine circovirus-associated diseases (PCVAD) of great economic importance in pig industry globally. In an effort to determine the status of swine herds in the Province as regarding the ‘small but powerful’ viral pathogen; a total of 375 blood, faecal and nasal swab samples were obtained from seven pig farms (commercial and communal) in Amathole, O.R. Tambo and Chris-Hani District Municipalities of Eastern Cape Province between the year 2015 and 2016. Three hundred and thirty nine (339) samples out of the total sample were subjected to molecular screening using PCV2 specific primers by conventional polymerase chain reaction (PCR). Selected sequences were further analyzed and confirmed through genome sequencing and phylogenetic analyses. The data obtained revealed that 15.93% of the screened samples (54/339) from the swine herds of the studied areas were positive for PCV2; while the severity of occurrence of the viral pathogen as observed at farm level ranges from approximately 5.6% to 60% in the studied farms. The Majority, precisely 15 out of 17 (88%) analyzed sequences were found clustering with other PCV2b reference strains in the phylogenetic analysis. More interestingly, two other sequences obtained were also found clustering within PCV2d genogroup, which is presently another fast-spreading genotype with observable higher virulence in global swine herds. This finding confirmed the presence of this all-important viral pathogen in pigs of the region; which could result in a serious outbreak of PCVAD and huge economic loss at the instances of triggering factors if no appropriate measures are taken to curb its spread effectively.Keywords: pigs, polymerase chain reaction, porcine circovirus type 2, South Africa
Procedia PDF Downloads 2071549 Systematic Review of Current Best Practice in the Diagnosis and Treatment of Obsessive Compulsive Disorder
Authors: Zahra R. Almansoor
Abstract:
Background: Selective serotonin reuptake inhibitors (SSRI’s) and cognitive behavioural therapy (CBT) are the main treatment methods used for patients with obsessive compulsive disorder (OCD) under the National Institute of Health and Care Excellence (NICE) guidelines. Yet many patients are left with residual symptoms or remit, so several other therapeutic approaches have been explored. Objective: The objective was to systematically review the available literature regarding the treatment efficacy of current and potential approaches and diagnostic strategies. Method: First, studies were examined concerning diagnosis, prognosis, and influencing factors. Then, one reviewer conducted a systematic search of six databases using stringent search terms. Results of studies exploring the efficacy of treatment interventions were analysed and compared separately for adults and children. This review was limited to randomised controlled trials (RCT’s) conducted from 2016 onwards, and an improved Y-BOCS (Yale- Brown obsessive compulsive scale) score was the primary outcome measure. Results: Technology-based interventions including internet-based cognitive behavioural therapy (iCBT) were deemed as potentially effective. Discrepancy remains about the benefits of SSRI use past one year, but potential medication adjuncts include amantadine. Treatments such as association splitting and family and mindfulness strategies also have future potential. Conclusion: A range of potential therapies exist, either as treatment adjuncts to current interventions or as sole therapies. To further improve efficacy, it may be necessary to remodel the current NICE stepped-care model, especially regarding the potential use of lower intensity, cheaper treatments, including iCBT. Although many interventions show promise, further research is warranted to confirm this.Keywords: family and group treatment, mindfulness strategies, novel treatment approaches, standard treatment, technology-based interventions
Procedia PDF Downloads 1181548 Associated Risks of Spontaneous Lung Collapse after Shoulder Surgery: A Literature Review
Authors: Fiona Bei Na Tan, Glen Wen Kiat Ho, Ee Leen Liow, Li Yin Tan, Sean Wei Loong Ho
Abstract:
Background: Shoulder arthroscopy is an increasingly common procedure. Pneumothorax post-shoulder arthroscopy is a rare complication. Objectives: Our aim is to highlight a case report of pneumothorax post shoulder arthroscopy and to conduct a literature review to evaluate the possible risk factors associated with developing a pneumothorax during or after shoulder arthroscopy. Case Report: We report the case of a 75-year-old male non-smoker who underwent left shoulder arthroscopy without regional anaesthesia and in the left lateral position. The general anaesthesia and surgery were uncomplicated. The patient was desaturated postoperatively and was found to have a pneumothorax on examination and chest X-ray. A chest tube drain was inserted promptly into the right chest. He had an uncomplicated postoperative course. Methods: PubMed Medline and Cochrane database search was carried out using the terms shoulder arthroplasty, pneumothorax, pneumomediastinum, and subcutaneous emphysema. We selected full-text articles written in English. Results: Thirty-two articles were identified and thoroughly reviewed. Based on our inclusion and exclusion criteria, 14 articles, which included 20 cases of pneumothorax during or after shoulder arthroscopy, were included. Eighty percent (16/20) of pneumothoraxes occurred postoperatively. In the articles that specify the side of pneumothorax, 91% (10/11) occur on the ipsilateral side of the arthroscopy. Eighty-eight percent (7/8) of pneumothoraxes occurred when subacromial decompression was performed. Fifty-six percent (9/16) occurred in patients placed in the lateral decubitus position. Only 30% (6/20) occurred in current or ex-smokers, and only 25% (5/20) had a pre-existing lung condition. Overall, of the articles that posit a mechanism, 75% (9/12) deem the pathogenesis to be multifactorial. Conclusion: The exact mechanism of pneumothorax is currently unknown. Awareness of this complication and timely recognition are important to prevent life-threatening sequelae. Surgeons should have a low threshold to obtain diagnostic plain radiographs in the event of clinical suspicion.Keywords: rotator cuff repair, decompression, pressure, complication
Procedia PDF Downloads 641547 Gene Expression Signature-Based Chemical Genomic to Identify Potential Therapeutic Compounds for Colorectal Cancer
Authors: Yen-Hao Su, Wan-Chun Tang, Ya-Wen Cheng, Peik Sia, Chi-Chen Huang, Yi-Chao Lee, Hsin-Yi Jiang, Ming-Heng Wu, I-Lu Lai, Jun-Wei Lee, Kuen-Haur Lee
Abstract:
There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II–IV. Therefore, new, more efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly down regulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVPAUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1–β-catenin–cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC.Keywords: berberine, colorectal cancer, connectivity map, heat shock protein 90 inhibitor
Procedia PDF Downloads 3031546 Audit and Assurance Program for AI-Based Technologies
Authors: Beatrice Arthur
Abstract:
The rapid development of artificial intelligence (AI) has transformed various industries, enabling faster and more accurate decision-making processes. However, with these advancements come increased risks, including data privacy issues, systemic biases, and challenges related to transparency and accountability. As AI technologies become more integrated into business processes, there is a growing need for comprehensive auditing and assurance frameworks to manage these risks and ensure ethical use. This paper provides a literature review on AI auditing and assurance programs, highlighting the importance of adapting traditional audit methodologies to the complexities of AI-driven systems. Objective: The objective of this review is to explore current AI audit practices and their role in mitigating risks, ensuring accountability, and fostering trust in AI systems. The study aims to provide a structured framework for developing audit programs tailored to AI technologies while also investigating how AI impacts governance, risk management, and regulatory compliance in various sectors. Methodology: This research synthesizes findings from academic publications and industry reports from 2014 to 2024, focusing on the intersection of AI technologies and IT assurance practices. The study employs a qualitative review of existing audit methodologies and frameworks, particularly the COBIT 2019 framework, to understand how audit processes can be aligned with AI governance and compliance standards. The review also considers real-time auditing as an emerging necessity for influencing AI system design during early development stages. Outcomes: Preliminary findings indicate that while AI auditing is still in its infancy, it is rapidly gaining traction as both a risk management strategy and a potential driver of business innovation. Auditors are increasingly being called upon to develop controls that address the ethical and operational risks posed by AI systems. The study highlights the need for continuous monitoring and adaptable audit techniques to handle the dynamic nature of AI technologies. Future Directions: Future research will explore the development of AI-specific audit tools and real-time auditing capabilities that can keep pace with evolving technologies. There is also a need for cross-industry collaboration to establish universal standards for AI auditing, particularly in high-risk sectors like healthcare and finance. Further work will involve engaging with industry practitioners and policymakers to refine the proposed governance and audit frameworks. Funding/Support Acknowledgements: This research is supported by the Information Systems Assurance Management Program at Concordia University of Edmonton.Keywords: AI auditing, assurance, risk management, governance, COBIT 2019, transparency, accountability, machine learning, compliance
Procedia PDF Downloads 221545 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 681544 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt
Authors: Shereif. H. Mahmoud
Abstract:
Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)
Procedia PDF Downloads 3581543 Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia
Authors: Jamil Hijazi, Stirling Howieson
Abstract:
Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.Keywords: energy efficiency, ground pipe, hybrid cooling, radiative cooling, thermal comfort
Procedia PDF Downloads 2591542 The Psychosis Prodrome: Biomarkers of the Glutamatergic System and Their Potential Role in Prediction and Treatment
Authors: Peter David Reiss
Abstract:
The concept of the psychosis prodrome has allowed for the identification of adolescent and young adult patients who have a significantly elevated risk of developing schizophrenia spectrum disorders. A number of different interventions have been tested in order to prevent or delay progression of symptoms. To date, there has been no consistent meta-analytical evidence to support efficacy of antipsychotic treatment for patients in the prodromal state, and their use remains therefore inconclusive. Although antipsychotics may manage symptoms transiently, they have not been found to prevent or delay onset of psychotic disorders. Furthermore, pharmacological intervention in high-risk individuals remains controversial, because of the antipsychotic side effect profile in a population in which only about 20 to 35 percent will eventually convert to psychosis over a two-year period, with even after two years conversion rates not exceeding 30 to 40 percent. This general estimate is additionally problematic, in that it ignores the fact that there is significant variation in individual risk among clinical high-risk cases. The current lack of reliable tests for at-risk patients makes it difficult to justify individual treatment decisions. Preventive treatment should ideally be dictated by an individual’s risk while minimizing potentially harmful medication exposure. This requires more accurate predictive assessments by using valid and accessible prognostic markers. The following will compare prediction and risk modification potential of behavioral biomarkers such as disturbances of basic sense of self and emotion awareness, neurocognitive biomarkers such as attention, working and declarative memory, and neurophysiological biomarkers such as glutamatergic abnormalities and NMDA receptor dysfunction. Identification of robust biomarkers could therefore not only provide more reliable means of psychosis prediction, but also help test and develop new clinical interventions targeted at the prodromal state.Keywords: at-risk mental state, biomarkers, glutamatergic system, NMDA receptor, psychosis prodrome, schizophrenia
Procedia PDF Downloads 1931541 'Marching into the Classroom' a Second Career in Education for Ex-Military Personnel
Authors: Mira Karnieli, Shosh Veitzman
Abstract:
In recent years, due to transitions in teacher education, professional identities are changing. In many countries, the education system is absorbing ex-military personnel. The aim of this research is to investigate the phenomenon of retired officers in Israel who choose education as a second career and the training provided. The phenomenon of retired military permanent-service officers pursuing a career in education is not unique to Israel. In the United States and the United Kingdom, for example, government-supported accelerated programs (Troops to Teachers) are run for ex-military personnel (soldiers and officers) with a view to their entry into the education system. These programs direct the ex-military personnel to teacher education and training courses to obtain teaching certification. The present study, however, focused specifically on senior officers who have a full academic education, most of the participants hold second degrees in a variety of fields. They all retired from a rich military career, including roles in command, counseling, training, guidance, and management. The research included 80 participants' men and women. Data was drowning from in-depth interviews and questioner. The conceptual framework which guided this study was mixed methods. The qualitative-phenomenological methodology, using in-depth interviews, and a questioner. The study attempted to understand the motives and personal perceptions behind the choice of teaching. Were they able to identify prior skills that they had accumulated throughout their years of service? What were these skills? In addition, which (if any) would stand them in good stead for a career in teaching? In addition, they were asked how they perceived the training program’s contribution to their professionalization and integration in the education system. The data was independently coded by the researchers. Subsequently, the data was discussed by both researchers, codes were developed, and conceptual categories were formed. Analysis of the data shows this population to be characterized by the high motivation for studying, professionalization, contribution to society and a deep sense of commitment to education. All of them had a profession which they acquired in the past which is not related to education. However, their motives for choosing to teach are related to their wish to give expression to their leadership experience and ability, the desire to have an influence and to bring about change. This is derived from personal commitment, as well as from a worldview and value system that are supportive of education. In other words, they feel committed and act out of a sense of vocation. In conclusion, it will emphasize that all the research participants began working in education immediately upon completing the training program. They perceived this path as a way of realizing a mission despite the low status of the teaching profession in Israel and low teacher salaries.Keywords: cross-boundary skills, lifelong learning, professional identities, teaching as a second career, training program
Procedia PDF Downloads 1961540 Mining Scientific Literature to Discover Potential Research Data Sources: An Exploratory Study in the Field of Haemato-Oncology
Authors: A. Anastasiou, K. S. Tingay
Abstract:
Background: Discovering suitable datasets is an important part of health research, particularly for projects working with clinical data from patients organized in cohorts (cohort data), but with the proliferation of so many national and international initiatives, it is becoming increasingly difficult for research teams to locate real world datasets that are most relevant to their project objectives. We present a method for identifying healthcare institutes in the European Union (EU) which may hold haemato-oncology (HO) data. A key enabler of this research was the bibInsight platform, a scientometric data management and analysis system developed by the authors at Swansea University. Method: A PubMed search was conducted using HO clinical terms taken from previous work. The resulting XML file was processed using the bibInsight platform, linking affiliations to the Global Research Identifier Database (GRID). GRID is an international, standardized list of institutions, including the city and country in which the institution exists, as well as a category of the main business type, e.g., Academic, Healthcare, Government, Company. Countries were limited to the 28 current EU members, and institute type to 'Healthcare'. An article was considered valid if at least one author was affiliated with an EU-based healthcare institute. Results: The PubMed search produced 21,310 articles, consisting of 9,885 distinct affiliations with correspondence in GRID. Of these articles, 760 were from EU countries, and 390 of these were healthcare institutes. One affiliation was excluded as being a veterinary hospital. Two EU countries did not have any publications in our analysis dataset. The results were analysed by country and by individual healthcare institute. Networks both within the EU and internationally show institutional collaborations, which may suggest a willingness to share data for research purposes. Geographical mapping can ensure that data has broad population coverage. Collaborations with industry or government may exclude healthcare institutes that may have embargos or additional costs associated with data access. Conclusions: Data reuse is becoming increasingly important both for ensuring the validity of results, and economy of available resources. The ability to identify potential, specific data sources from over twenty thousand articles in less than an hour could assist in improving knowledge of, and access to, data sources. As our method has not yet specified if these healthcare institutes are holding data, or merely publishing on that topic, future work will involve text mining of data-specific concordant terms to identify numbers of participants, demographics, study methodologies, and sub-topics of interest.Keywords: data reuse, data discovery, data linkage, journal articles, text mining
Procedia PDF Downloads 115