Search results for: subsidiary performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12861

Search results for: subsidiary performance

7461 Using Cooperation without Communication in a Multi-Agent Unpredictable Dynamic Real-Time Environment

Authors: Abbas Khosravi

Abstract:

This paper discusses the use of cooperation without communication in a multi-agent, unpredictable, dynamic real-time environment. The architecture of the Persian Gulf agent consists of three layers: fixed rule, low level, and high level layers, allowing for cooperation without direct communication. A scenario is presented to each agent in the form of a file, specifying each player's role and actions in the game. The scenario helps in cases of miscommunication, improving team performance. Cooperation without communication enhances reliability and coordination among agents, leading to better results in challenging situations.

Keywords: multi-agent systems, communication, Robocop, software engineering

Procedia PDF Downloads 34
7460 Exploring Language Attrition Through Processing: The Case of Mising Language in Assam

Authors: Chumki Payun, Bidisha Som

Abstract:

The Mising language, spoken by the Mising community in Assam, belongs to the Tibeto-Burman family of languages. This is one of the smaller languages of the region and is facing endangerment due to the dominance of the larger languages, like Assamese. The language is spoken in close in-group scenarios and is gradually losing ground to the dominant languages, partly also due to the education setup where schools use only dominant languages. While there are a number of factors for the current contemporary status of the language, and those can be studied using sociolinguistic tools, the current work aims to contribute to the understanding of language attrition through language processing in order to establish if the effect of second language dominance is more than mere ‘usage’ patterns and has an impact on cognitive strategies. When bilingualism spreads widely in society and results in a language shift, speakers perform people often do better in their second language (L2) than in their first language (L1) across a variety of task settings, in both comprehension and production tasks. This phenomenon was investigated in the case of Mising-Assamese bilinguals, using a picture naming task, in two districts of Jorhat and Tinsukia in Assam, where the relative dominance of L2 is slightly different. This explorative study aimed to investigate if the L2 dominance is visible in their performance and also if the pattern is different in the two different places, thus pointing to the degree of language loss in this case. The findings would have implications for native language education, as education in one’s mother tongue can help reverse the effect of language attrition helping preserve the traditional knowledge system. The hypothesis was that due to the dominance of the L2, subjects’ performance in the task would be better in Assamese than that of Missing. The experiment: Mising-Assamese bilingual participants (age ranges 21-31; N= 20 each from both districts) had to perform a picture naming task in which participants were shown pictures of familiar objects and asked to name them in four scenarios: (a) only in Mising; (b) only in Assamese; (c) a cued mix block: an auditory cue determines the language in which to name the object, and (d) non-cued mix block: participants are not given any specific language cues, but instructed to name the pictures in whichever language they feel most comfortable. The experiment was designed and executed using E-prime 3.0 and was conducted responses were recorded using the help of a Chronos response box and was recorded with the help of a recorder. Preliminary analysis reveals the presence of dominance of L2 over L1. The paper will present a comparison of the response latency, error analysis, and switch cost in L1 and L2 and explain the same from the perspective of language attrition.

Keywords: bilingualism, language attrition, language processing, Mising language.

Procedia PDF Downloads 22
7459 Synthesis and Characterization of PVDF, FG, PTFE, and PES Membrane Distillation Modified with Silver Nanoparticles

Authors: Lopez J., Mehrvar M., Quinones E., Suarez A., RomeroC.

Abstract:

The Silver Nanoparticles (AgNP) are used as deliver of heat on surface of Membrane Distillation in order to fight against Thermal Polarization and improving the Desalination Process. In this study AgNPwere deposited by dip coating process over PVDF, FG hydrophilic, and PTFE hydrophobic commercial membranes as substrate. Membranes were characterized by SEM, EDS, contact angle, Pore size distributionand using a UV lamp and a thermal camera were measured the performance of heat deliver. The presence of AgNP 50 – 150 nm and the increase in absorption of energy over membrane were verified.

Keywords: silver nanoparticles, membrane distillation, plasmon effect, heat deliver

Procedia PDF Downloads 125
7458 Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment

Authors: V. Sankaranarayanan, V. Amrita Sundari, Sunit P. Gopal

Abstract:

This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system.

Keywords: mobile inverted pendulum, switched control, nonlinear systems, lyapunov stability

Procedia PDF Downloads 328
7457 Horizontal Cooperative Game Theory in Hotel Revenue Management

Authors: Ririh Rahma Ratinghayu, Jayu Pramudya, Nur Aini Masruroh, Shi-Woei Lin

Abstract:

This research studies pricing strategy in cooperative setting of hotel duopoly selling perishable product under fixed capacity constraint by using the perspective of managers. In hotel revenue management, competitor’s average room rate and occupancy rate should be taken into manager’s consideration in determining pricing strategy to generate optimum revenue. This information is not provided by business intelligence or available in competitor’s website. Thus, Information Sharing (IS) among players might result in improved performance of pricing strategy. IS is widely adopted in the logistics industry, but IS within hospitality industry has not been well-studied. This research put IS as one of cooperative game schemes, besides Mutual Price Setting (MPS) scheme. In off-peak season, hotel manager arranges pricing strategy to offer promotion package and various kinds of discounts up to 60% of full-price to attract customers. Competitor selling homogenous product will react the same, then triggers a price war. Price war which generates lower revenue may be avoided by creating collaboration in pricing strategy to optimize payoff for both players. In MPS cooperative game, players collaborate to set a room rate applied for both players. Cooperative game may avoid unfavorable players’ payoff caused by price war. Researches on horizontal cooperative game in logistics show better performance and payoff for the players, however, horizontal cooperative game in hotel revenue management has not been demonstrated. This paper aims to develop hotel revenue management models under duopoly cooperative schemes (IS & MPS), which are compared to models under non-cooperative scheme too. Each scheme has five models, Capacity Allocation Model; Demand Model; Revenue Model; Optimal Price Model; and Equilibrium Price Model. Capacity Allocation Model and Demand Model employs self-hotel and competitor’s full and discount price as predictors under non-linear relation. Optimal price is obtained by assuming revenue maximization motive. Equilibrium price is observed by interacting self-hotel’s and competitor’s optimal price under reaction equation. Equilibrium is analyzed using game theory approach. The sequence applies for three schemes. MPS Scheme differently aims to optimize total players’ payoff. The case study in which theoretical models are applied observes two hotels offering homogenous product in Indonesia during a year. The Capacity Allocation, Demand, and Revenue Models are built using multiple regression and statistically tested for validation. Case study data confirms that price behaves within demand model in a non-linear manner. IS Models can represent the actual demand and revenue data better than Non-IS Models. Furthermore, IS enables hotels to earn significantly higher revenue. Thus, duopoly hotel players in general, might have reasonable incentives to share information horizontally. During off-peak season, MPS Models are able to predict the optimal equal price for both hotels. However, Nash equilibrium may not always exist depending on actual payoff of adhering or betraying mutual agreement. To optimize performance, horizontal cooperative game may be chosen over non-cooperative game. Mathematical models can be used to detect collusion among business players. Empirical testing can be used as policy input for market regulator in preventing unethical business practices potentially harming society welfare.

Keywords: horizontal cooperative game theory, hotel revenue management, information sharing, mutual price setting

Procedia PDF Downloads 289
7456 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 225
7455 A Review on Geomembrane Characteristics and Application in Geotechnical Engineering

Authors: Sandra Ghavam Shirazi, Komeil Valipourian, Mohammad Reza Golhashem

Abstract:

This paper represents the basic idea and mechanisms associated with the durability of geomembranes and discusses the factors influencing the service life and temperature of geomembrane liners. Geomembrane durability is stated as field performance and laboratory test outcomes under various conditions. Due to the high demand of geomembranes as landfill barriers and their crucial role in sensitive projects, sufficient service life of geomembranes is very important, therefore in this paper, the durability, the effect of temperature on geomembrane and the role of this type of reinforcement in different types of soil will be discussed. Also, the role of geomembrane in the earthquake will be considered in the last part of the paper.

Keywords: geomembrane, durability temperature soil mechanic, soil

Procedia PDF Downloads 309
7454 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education

Authors: Felix Golla

Abstract:

In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.

Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies

Procedia PDF Downloads 69
7453 Optimization of Temperature Coefficients for MEMS Based Piezoresistive Pressure Sensor

Authors: Vijay Kumar, Jaspreet Singh, Manoj Wadhwa

Abstract:

Piezo-resistive pressure sensors were one of the first developed micromechanical system (MEMS) devices and still display a significant growth prompted by the advancements in micromachining techniques and material technology. In MEMS based piezo-resistive pressure sensors, temperature can be considered as the main environmental condition which affects the system performance. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics to drift. In this work, a study on the effects of temperature and doping concentration in a boron implanted piezoresistor for a silicon-based pressure sensor is discussed. We have optimized the temperature coefficient of resistance (TCR) and temperature coefficient of sensitivity (TCS) values to determine the effect of temperature drift on the sensor performance. To be more precise, in order to reduce the temperature drift, a high doping concentration is needed. And it is well known that the Wheatstone bridge in a pressure sensor is supplied with a constant voltage or a constant current input supply. With a constant voltage supply, the thermal drift can be compensated along with an external compensation circuit, whereas the thermal drift in the constant current supply can be directly compensated by the bridge itself. But it would be beneficial to also compensate the temperature coefficient of piezoresistors so as to further reduce the temperature drift. So, with a current supply, the TCS is dependent on both the TCπ and TCR. As TCπ is a negative quantity and TCR is a positive quantity, it is possible to choose an appropriate doping concentration at which both of them cancel each other. An exact cancellation of TCR and TCπ values is not readily attainable; therefore, an adjustable approach is generally used in practical applications. Thus, one goal of this work has been to better understand the origin of temperature drift in pressure sensor devices so that the temperature effects can be minimized or eliminated. This paper describes the optimum doping levels for the piezoresistors where the TCS of the pressure transducers will be zero due to the cancellation of TCR and TCπ values. Also, the fabrication and characterization of the pressure sensor are carried out. The optimized TCR value obtained for the fabricated die is 2300 ± 100ppm/ᵒC, for which the piezoresistors are implanted at a doping concentration of 5E13 ions/cm³ and the TCS value of -2100ppm/ᵒC is achieved. Therefore, the desired TCR and TCS value is achieved, which are approximately equal to each other, so the thermal effects are considerably reduced. Finally, we have calculated the effect of temperature and doping concentration on the output characteristics of the sensor. This study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the doping concentration.

Keywords: piezo-resistive, pressure sensor, doping concentration, TCR, TCS

Procedia PDF Downloads 180
7452 Advancing Microstructure Evolution in Tungsten Through Rolling in Laser Powder Bed Fusion

Authors: Narges Shayesteh Moghaddam

Abstract:

Tungsten (W), a refractory metal known for its remarkably high melting temperature, offers tremendous potential for use in challenging environments prevalent in sectors such as space exploration, defense, and nuclear industries. Additive manufacturing, especially the Laser Powder-Bed Fusion (LPBF) technique, emerges as a beneficial method for fabricating tungsten parts. This technique enables the production of intricate components while simultaneously reducing production lead times and associated costs. However, the inherent brittleness of tungsten and its tendency to crack under high-temperature conditions pose significant challenges to the manufacturing process. Our research primarily focuses on the process of rolling tungsten parts in a layer-by-layer manner in LPBF and the subsequent changes in microstructure. Our objective is not only to identify the alterations in the microstructure but also to assess their implications on the physical properties and performance of the fabricated tungsten parts. To examine these aspects, we conducted an extensive series of experiments that included the fabrication of tungsten samples through LPBF and subsequent characterization using advanced materials analysis techniques. These investigations allowed us to scrutinize shifts in various microstructural features, including, but not limited to, grain size and grain boundaries occurring during the rolling process. The results of our study provide crucial insights into how specific factors, such as plastic deformation occurring during the rolling process, influence the microstructural characteristics of the fabricated parts. This information is vital as it provides a foundation for understanding how the parameters of the layer-by-layer rolling process affect the final tungsten parts. Our research significantly broadens the current understanding of microstructural evolution in tungsten parts produced via the layer-by-layer rolling process in LPBF. The insights obtained will play a pivotal role in refining and optimizing manufacturing parameters, thus improving the mechanical properties of tungsten parts and, therefore, enhancing their performance. Furthermore, these findings will contribute to the advancement of manufacturing techniques, facilitating the wider application of tungsten parts in various high-demand sectors. Through these advancements, this research represents a significant step towards harnessing the full potential of tungsten in high-temperature and high-stress applications.

Keywords: additive manufacturing, rolling, tungsten, refractory materials

Procedia PDF Downloads 97
7451 Monitoring and Prediction of Intra-Crosstalk in All-Optical Network

Authors: Ahmed Jedidi, Mesfer Mohammed Alshamrani, Alwi Mohammad A. Bamhdi

Abstract:

Optical performance monitoring and optical network management are essential in building a reliable, high-capacity, and service-differentiation enabled all-optical network. One of the serious problems in this network is the fact that optical crosstalk is additive, and thus the aggregate effect of crosstalk over a whole AON may be more nefarious than a single point of crosstalk. As results, we note a huge degradation of the Quality of Service (QoS) in our network. For that, it is necessary to identify and monitor the impairments in whole network. In this way, this paper presents new system to identify and monitor crosstalk in AONs in real-time fashion. particular, it proposes a new technique to manage intra-crosstalk in objective to relax QoS of the network.

Keywords: all-optical networks, optical crosstalk, optical cross-connect, crosstalk, monitoring crosstalk

Procedia PDF Downloads 462
7450 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 111
7449 Financial Feasibility of Clean Development Mechanism (CDM) Projects in India

Authors: Renuka H. Deshmukh, Snehal Nifadkar, Anil P. Dongre

Abstract:

The research study aims to analyze the financial performance of the companies associated with CDM projects implemented in India from 2001 to 2014 by calculating net profit with and without CDM revenue. Further the study also highlights the Year-wise and sector-wise lending to CDM projects in India as well as in the state of Maharashtra. The study further aims to examine the year-wise trend of Certified Emission Reductions (CER) issued by the CDM projects implemented in Maharashtra from 2001-2014. The study as well analyses the responses of selected corporate with respect to the challenges in implementing and obtaining finance from commercial banks.

Keywords: adaptation costs, internal rate of return, mitigation, vulnerability, CER

Procedia PDF Downloads 347
7448 Organizational Efficiency in the Age of the Current Financial Crisis Strategies and Tracks Progress

Authors: Aharouay Soumaya

Abstract:

Efficiency is a relative concept. It is measured by comparing the productivity obtained in what is intended as standard or objective criteria. The quantity and quality of output achieved and the level of service are also compared to targets or standards, to determine to what extent they could cause changes in efficiency. Efficiency improves when more outputs of a specified quality are produced with the same resource inputs or less, or when the same amount of output is produced with fewer resources. This article proposes a review of the literature on strategies adopted by firms in the age of the financial crisis to overcome these negative effects, and tracks progress chosen by the organization to remain successful despite the plight of firms.

Keywords: effectiveness, efficiency, organizational capacity, strategy, management tool, progress, performance

Procedia PDF Downloads 346
7447 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame

Authors: Ardalan Sabamehr, Ashutosh Bagchi

Abstract:

Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.

Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform

Procedia PDF Downloads 296
7446 An Overview of Thermal Storage Techniques for Solar Thermal Applications

Authors: Talha Shafiq

Abstract:

The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed.

Keywords: thermal energy storage, sensible heat storage, latent heat storage, thermochemical heat storage

Procedia PDF Downloads 563
7445 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube

Authors: Cathal Merz, Gareth O’Donnell

Abstract:

Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.

Keywords: neurovascular catheter, coil reinforced tube, buckling, three-point bend, tensile

Procedia PDF Downloads 117
7444 A Block World Problem Based Sudoku Solver

Authors: Luciana Abednego, Cecilia Nugraheni

Abstract:

There are many approaches proposed for solving Sudoku puzzles. One of them is by modelling the puzzles as block world problems. There have been three model for Sudoku solvers based on this approach. Each model expresses Sudoku solver as a parameterized multi agent systems. In this work, we propose a new model which is an improvement over the existing models. This paper presents the development of a Sudoku solver that implements all the proposed models. Some experiments have been conducted to determine the performance of each model.

Keywords: Sudoku puzzle, Sudoku solver, block world problem, parameterized multi agent systems

Procedia PDF Downloads 341
7443 Blind Data Hiding Technique Using Interpolation of Subsampled Images

Authors: Singara Singh Kasana, Pankaj Garg

Abstract:

In this paper, a blind data hiding technique based on interpolation of sub sampled versions of a cover image is proposed. Sub sampled image is taken as a reference image and an interpolated image is generated from this reference image. Then difference between original cover image and interpolated image is used to embed secret data. Comparisons with the existing interpolation based techniques show that proposed technique provides higher embedding capacity and better visual quality marked images. Moreover, the performance of the proposed technique is more stable for different images.

Keywords: interpolation, image subsampling, PSNR, SIM

Procedia PDF Downloads 578
7442 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 87
7441 Salicornia bigelovii, a Promising Halophyte for Biosaline Agriculture: Lessons Learned from a 4-Year Field Study in United Arab Emirates

Authors: Dionyssia Lyra, Shoaib Ismail

Abstract:

Salinization of natural resources constitutes a significant component of the degradation force that leads to depletion of productive lands and fresh water reserves. The global extent of salt-affected soils is approximately 7% of the earth’s land surface and is expanding. The problems of excessive salt accumulation are most widespread in coastal, arid and semi-arid regions, where agricultural production is substantially hindered. The use of crops that can withstand high saline conditions is extremely interesting in such a context. Salt-loving plants or else ‘halophytes’ thrive when grown in hostile saline conditions, where traditional crops cannot survive. Salicornia bigelovii, a halophytic crop with multiple uses (vegetable, forage, biofuel), has demonstrated remarkable adaptability to harsh climatic conditions prevailing in dry areas with great potential for its expansion. Since 2011, the International Center for Biosaline Agriculture (ICBA) with Masdar Institute (MI) and King Abdul Aziz University of Science & Technology (KAUST) to look into the potential for growing S. bigelovii under hot and dry conditions. Through the projects undertaken, 50 different S. bigelovii genotypes were assessed under high saline conditions. The overall goal was to select the best performing S. bigelovii populations in terms of seed and biomass production for future breeding. Specific objectives included: 1) evaluation of selected S. bigelovii genotypes for various agronomic and growth parameters under field conditions, 2) seed multiplication of S. bigelovii using saline groundwater and 3) acquisition of inbred lines for further breeding. Field trials were conducted for four consecutive years at ICBA headquarters. During the first year, one Salicornia population was evaluated for seed and biomass production at different salinity levels, fertilizer treatments and planting methods. All growth parameters and biomass productivity for the salicornia population showed better performance with optimal biomass production in terms of both salinity level and fertilizer application. During the second year, 46 Salicornia populations (obtained from KAUST and Masdar Institute) were evaluated for 24 growth parameters and treated with groundwater through drip irrigation. The plant material originated from wild collections. Six populations were also assessed for their growth performance under full-strength seawater. Salicornia populations were highly variable for all characteristics under study for both irrigation treatments, indicating that there is a large pool of genetic information available for breeding. Irrigation with the highest level of salinity had a negative impact on the agronomic performance. The maximum seed yield obtained was 2 t/ha at 20 dS/m (groundwater treatment) at 25 cm x 25 cm planting distance. The best performing Salicornia populations for fresh biomass and seed yield were selected for the following season. After continuous selection, the best performing salicornia will be adopted for scaling-up options. Taking into account the results of the production field trials, salicornia expansion will be targeted in coastal areas of the Arabian Peninsula. As a crop with high biofuel and forage potential, its cultivation can improve the livelihood of local farmers.

Keywords: biosaline agriculture, genotypes selection, halophytes, Salicornia bigelovii

Procedia PDF Downloads 407
7440 Parasitic Capacitance Modeling in Pulse Transformer Using FEA

Authors: D. Habibinia, M. R. Feyzi

Abstract:

Nowadays, specialized software is vastly used to verify the performance of an electric machine prototype by evaluating a model of the system. These models mainly consist of electrical parameters such as inductances and resistances. However, when the operating frequency of the device is above one kHz, the effect of parasitic capacitances grows significantly. In this paper, a software-based procedure is introduced to model these capacitances within the electromagnetic simulation of the device. The case study is a high-frequency high-voltage pulse transformer. The Finite Element Analysis (FEA) software with coupled field analysis is used in this method.

Keywords: finite element analysis, parasitic capacitance, pulse transformer, high frequency

Procedia PDF Downloads 515
7439 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: features extraction, image segmentation, medical images, tumor detection

Procedia PDF Downloads 167
7438 Hot Forging Process Simulation of Outer Tie Rod to Reduce Forming Load

Authors: Kyo Jin An, Bukyo Seo, Young-Chul Park

Abstract:

The current trend in car market is increase of parts of automobile and weight in vehicle. It comes from improvement of vehicle performance. Outer tie rod is a part of component of steering system and it is lighter than the others. But, weight lightening is still required for improvement of car mileage. So, we have presented a model of aluminized outer tie rod, but the process of fabrication has to be checked to manufacture the product. Therefore, we have anticipated forming load, die stress and abrasion to use the program of forging interpretation in the part of hot forging process of outer tie rod in this study. Also, we have implemented the experiments design to use the table of orthogonal arrays to reduce the forming load.

Keywords: forming load, hot forging, orthogonal array, outer tie rod (OTR), multi–step forging

Procedia PDF Downloads 433
7437 Evaluate Existing Mental Health Intervention Programs Tailored for International Students in China

Authors: Nargiza Nuralieva

Abstract:

This meta-analysis investigates the effectiveness of mental health interventions tailored for international students in China, with a specific focus on Uzbek students and Silk Road scholarship recipients. The comprehensive literature review synthesizes existing studies, papers, and reports, evaluating the outcomes, limitations, and cultural considerations of these programs. Data selection targets mental health programs for international students, honing in on a subset analysis related to Uzbek students and Silk Road scholarship recipients. The analysis encompasses diverse outcome measures, such as reported stress levels, utilization rates of mental health services, academic performance, and more. Results reveal a consistent and statistically significant reduction in reported stress levels, emphasizing the positive impact of these interventions. Utilization rates of mental health services witness a significant increase, highlighting the accessibility and effectiveness of support. Retention rates show marked improvement, though academic performance yields mixed findings, prompting nuanced exploration. Psychological well-being, quality of life, and overall well-being exhibit substantial enhancements, aligning with the overarching goal of holistic student development. Positive outcomes are observed in increased help-seeking behavior, positive correlations with social support, and significant reductions in anxiety levels. Cultural adaptation and satisfaction with interventions both indicate positive outcomes, underscoring the effectiveness of culturally sensitive mental health support. The findings emphasize the importance of tailored mental health interventions for international students, providing novel insights into the specific needs of Uzbek students and Silk Road scholarship recipients. This research contributes to a nuanced understanding of the multifaceted impact of mental health programs on diverse student populations, offering valuable implications for the design and refinement of future interventions. As educational institutions continue to globalize, addressing the mental health needs of international students remains pivotal for fostering inclusive and supportive learning environments.

Keywords: international students, mental health interventions, cross-cultural support, silk road scholarship, meta-analysis

Procedia PDF Downloads 56
7436 Durability of Functionally Graded Concrete

Authors: Prasanna Kumar Acharya, Mausam Kumari Yadav

Abstract:

Cement concrete has emerged as the most consumed construction material. It has also dominated all other construction materials because of its versatility. Apart from numerous advantages it has a disadvantage concerning durability. The large structures constructed with cement concrete involving the consumption of huge natural materials remain in serviceable condition for 5 – 7 decades only while structures made with stones stand for many centuries. The short life span of structures not only affects the economy but also affects the ecology greatly. As such, the improvement of durability of cement concrete is a global concern and scientists around the globe are trying for this purpose. Functionally graded concrete (FGC) is an exciting development. In contrast to conventional concrete, FGC demonstrates different characteristics depending on its thickness, which enables it to conform to particular structural specifications. The purpose of FGC is to improve the performance and longevity of conventional concrete structures with cutting-edge building materials. By carefully distributing various kinds and amounts of reinforcements, additives, mix designs and/or aggregates throughout the concrete matrix, this variety is produced. A key component of functionally graded concrete's performance is its durability, which affects the material's capacity to tolerate aggressive environmental influences and load-bearing circumstances. This paper reports the durability of FGC made using Portland slag cement (PSC). For this purpose, control concretes (CC) of M20, M30 and M40 grades were designed. Single-layered samples were prepared using each grade of concrete. Further using combinations of M20 + M30, M30 + M40 and M40 + M20, doubled layered concrete samples in a depth ratio of 1:1 was prepared those are herein called FGC samples. The efficiency of FGC samples was compared with that of the higher-grade concrete of parent materials in terms of compressive strength, water absorption, sorptivity, acid resistance, sulphate resistance, chloride resistance and abrasion resistance. The properties were checked at the age of 28 and 91 days. Apart from strength and durability parameters, the microstructure of CC and FGC were studied in terms of X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray. The result of the study revealed that there is an increase in the efficiency of concrete evaluated in terms of strength and durability when it is made functionally graded using a layered technology having different grades of concrete in layers. The results may help to enhance the efficiency of structural concrete and its durability.

Keywords: fresh on compacted, functionally graded concrete, acid, chloride, sulphate test, sorptivity, abrasion, water absorption test

Procedia PDF Downloads 18
7435 Integrated Human Resources and Work Environment Management System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

The Integrated Human Resources and Work Environment Management (HOWE) System optimises employee productivity, improves the work environment, and, at the same time, meets the employer’s strategic goals. The HOWE system has been designed to ensure an organisation can successfully compete in the global market, thanks to the high performance of its employees. The HOWE system focuses on raising workforce productivity and improving work conditions to boost employee performance and motivation. The methods used in our research are linear correlation, INVAR multiple criteria analysis, digital twin, and affective computing. The HOWE system is based on two patents issued in Lithuania (LT 6866, LT 6841) and one European Patent application (No: EP 4 020 134 A1). Our research analyses ways to make human resource management more efficient and boost labour productivity by improving and adapting a personalised work environment. The efficiency of human capital and labour productivity can be increased by applying personalised workplace improvement systems that can optimise lighting colours and intensity, scents, data, information, knowledge, activities, media, games, videos, music, air pollution, humidity, temperature, vibrations, and other workplace aspects. HOWE generates and maintains a personalised workspace for an employee, taking into account the person’s affective, physiological and emotional (APSE) states. The purpose of this project was to create a HOWE for the customisation of quality control in smart workspaces taking into account the user’s APSE states in an integrated manner as a single unit. This customised management of quality control covers the levels of lighting and colour intensities, scents, media, information, activities, learning materials, games, music, videos, temperature, energy efficiency, the carbon footprint of a workspace, humidity, air pollution, vibrations and other aspects of smart spaces. The system is based on Digital Twins technology, seen as a logical extension of BIM.

Keywords: human resource management, health economics, work environment, organizational behaviour and employee productivity, prosperity in work, smart system

Procedia PDF Downloads 75
7434 Implementation of Iterative Algorithm for Earthquake Location

Authors: Hussain K. Chaiel

Abstract:

The development in the field of the digital signal processing (DSP) and the microelectronics technology reduces the complexity of the iterative algorithms that need large number of arithmetic operations. Virtex-Field Programmable Gate Arrays (FPGAs) are programmable silicon foundations which offer an important solution for addressing the needs of high performance DSP designer. In this work, Virtex-7 FPGA technology is used to implement an iterative algorithm to estimate the earthquake location. Simulation results show that an implementation based on block RAMB36E1 and DSP48E1 slices of Virtex-7 type reduces the number of cycles of the clock frequency. This enables the algorithm to be used for earthquake prediction.

Keywords: DSP, earthquake, FPGA, iterative algorithm

Procedia PDF Downloads 389
7433 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 18
7432 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications

Authors: A. Andreasyan, C. Connors

Abstract:

The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.

Keywords: cryptography, elliptic curve digital signature algorithm, key exchange, network security protocol

Procedia PDF Downloads 146