Search results for: neural machine translation (NMT)
4166 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features
Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari
Abstract:
An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)
Procedia PDF Downloads 4464165 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error
Procedia PDF Downloads 4444164 Translation Skills and Language Acquisition
Authors: Frieda Amitai
Abstract:
The field of Translation Studies includes both descriptive and applied aspects, one of which is developing curricula. Within this topic there are theories dealing with curricula aimed at translator training, and theories meant to explore teaching translation as means through which awareness to language is developed in order to enhance language knowledge. An example of the latter is a unique study program in Israeli high schools – Teaching Translation Skills Program (TTSP). This study program has been taught in Israel for more than two decades and is aimed at raising students' meta-linguistic awareness as well as their language proficiency in both source language and target language in order to enable them become better language learners. The objective of the current research was to examine whether the goals of this program are achieved – increase in students' metalinguistic awareness and language proficiency. A follow-up case study was aimed at examining the level of proficiency which would develop most by this way of teaching English. The study was conducted in two stages – before and after participating in the program. 400 subjects took part in the first stage, and 100 took part in the second. In both parts of the study, participants were given the same five tasks in both Hebrew and English in addition to a questionnaire, in which they were asked about their own knowledge of Hebrew and in comparison to that of their peers. Their teachers were asked about the success of the program and about the methodology they use in class. Findings show significant change in the level of meta-linguistic awareness of the students as well as their language proficiency. A comparison between their answers before and after the program shows that their meta-linguistic awareness increased, as did their ability to recognize linguistic mistakes. These findings serve as strong evidence for the positive effect such study program has on the development of meta-linguistic awareness and linguistic knowledge. The follow-up case study tests the change among weaker language learners.Keywords: comparison, metalinguistic awareness, language learning, translation skills
Procedia PDF Downloads 3564163 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms
Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen
Abstract:
Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.Keywords: decision support, computed tomography, coronary artery, machine learning
Procedia PDF Downloads 2294162 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter
Authors: Yi Huang, Clemens Guehmann
Abstract:
In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model
Procedia PDF Downloads 2854161 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 5244160 Early Stage Suicide Ideation Detection Using Supervised Machine Learning and Neural Network Classifier
Authors: Devendra Kr Tayal, Vrinda Gupta, Aastha Bansal, Khushi Singh, Sristi Sharma, Hunny Gaur
Abstract:
In today's world, suicide is a serious problem. In order to save lives, early suicide attempt detection and prevention should be addressed. A good number of at-risk people utilize social media platforms to talk about their issues or find knowledge on related chores. Twitter and Reddit are two of the most common platforms that are used for expressing oneself. Extensive research has already been done in this field. Through supervised classification techniques like Nave Bayes, Bernoulli Nave Bayes, and Multiple Layer Perceptron on a Reddit dataset, we demonstrate the early recognition of suicidal ideation. We also performed comparative analysis on these approaches and used accuracy, recall score, F1 score, and precision score for analysis.Keywords: machine learning, suicide ideation detection, supervised classification, natural language processing
Procedia PDF Downloads 904159 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 1744158 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.Keywords: rough sets, rough neural networks, cellular automata, image processing
Procedia PDF Downloads 4394157 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 2264156 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 904155 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?
Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq
Abstract:
Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.Keywords: Cox regression, neural networks, survival, cancer.
Procedia PDF Downloads 2004154 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering
Procedia PDF Downloads 3544153 Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network
Authors: Katsumi Hirata
Abstract:
Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.Keywords: environmental sound, bispectrum, spectrogram, slice bispectrogram, convolutional neural network
Procedia PDF Downloads 1264152 A Comparative Study of Series-Connected Two-Motor Drive Fed by a Single Inverter
Authors: A. Djahbar, E. Bounadja, A. Zegaoui, H. Allouache
Abstract:
In this paper, vector control of a series-connected two-machine drive system fed by a single inverter (CSI/VSI) is presented. The two stator windings of both machines are connected in series while the rotors may be connected to different loads, are called series-connected two-machine drive. Appropriate phase transposition is introduced while connecting the series stator winding to obtain decoupled control the two-machines. The dynamic decoupling of each machine from the group is obtained using the vector control algorithm. The independent control is demonstrated by analyzing the characteristics of torque and speed of each machine obtained via simulation under vector control scheme. The viability of the control techniques is proved using analytically and simulation approach.Keywords: drives, inverter, multi-phase induction machine, vector control
Procedia PDF Downloads 4804151 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application
Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior
Abstract:
Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks
Procedia PDF Downloads 1704150 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1444149 Tradition and Modernity in Translation Studies: The Case of Undergraduate and Graduate Programs at Unicamp, Brazil
Authors: Erica Lima
Abstract:
In Brazil, considering the (little) age of translation studies, it can be argued that the University of Campinas is traditionally an important place for graduate studies in translation. The story is told from the accreditation for the Masters, in 1987, and the Doctoral program, in 1993, within the Graduate Program in Applied Linguistics. Since the beginning, the program boasted cutting-edge research, with theoretical reflections on various aspects, and with different methodological trends. However, on the one hand, the graduate studies development was continuously growing, but on the other, it is not what was observed in the undergraduate degree program. Currently, there are only a few disciplines of Translation Theory and Practice, which does not seem to respond to student aspirations. The objective of this paper is to present the characteristics of the university’s graduate program as something profitable, considering the concern in relating the research to the historical moment in which we are living, with research conducted in a socially compromised environment and committed to the impact that it will cause ethically and socially, as well as to question the undergraduate program paths. The objective is also to discuss and propose changes, considering the limited scope currently achieved. In light of the information age, in which we have an avalanche of information, we believe that the training of translators in the undergraduate degree should be reviewed, with the goal of retracing current paths and following others that are consistent with our historical period, marked by virtual and real, by the shuffling of borders and languages, the need for new language policies, greater inclusion, and more acceptance of others. We conclude that we need new proposals for the development of the translator in an undergraduate program, and also present suggestions to be implemented in the graduate program.Keywords: graduate Brazilian program, undergraduate Brazilian program, translator’s education, Unicamp
Procedia PDF Downloads 3344148 Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks
Authors: H. Kiani, S. Moradi, B. Soltani Soulgani, S. Mousavian
Abstract:
Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data.Keywords: desalting unit, crude oil, neural networks, simulation, recovery, separation
Procedia PDF Downloads 4504147 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.Keywords: gravitational resistance, neural network, non-linear, pattern recognition
Procedia PDF Downloads 2134146 Simulated Translator-Client Relations in Translator Training: Translator Behavior around Risk Management
Authors: Maggie Hui
Abstract:
Risk management is not a new concept; however, it is an uncharted area as applied to the translation process and translator training. Risk managers are responsible for managing risk, i.e. adopting strategies with the intention to minimize loss and maximize gains in spite of uncertainty. Which risk strategy to use often depends on the frequency of an event (i.e. probability) and the severity of its outcomes (i.e. impact). This is basically the way translation/localization project managers handle risk management. Although risk management could involve both positive and negative impacts, impact seems to be always negative in professional translators’ management models, e.g. how many days of project time are lost or how many clients are lost. However, for analysis of translation performance, the impact should be possibly positive (e.g. increased readability of the translation) or negative (e.g. loss of source-text information). In other words, the straight business model of risk management is not directly applicable to the study of risk management in the rendition process. This research aims to explore trainee translators’ risk managing while translating in a simulated setting that involves translator-client relations. A two-cycle experiment involving two roles, the translator and the simulated client, was carried out with a class of translation students to test the effects of the main variable of peer-group interaction. The researcher made use of a user-friendly screen-voice recording freeware to record subjects’ screen activities, including every word the translator typed and every change they made to the rendition, the websites they browsed and the reference tools they used, in addition to the verbalization of their thoughts throughout the process. The research observes the translation procedures subjects considered and finally adopted, and looks into the justifications for their procedures, in order to interpret their risk management. The qualitative and quantitative results of this study have some implications for translator training: (a) the experience of being a client seems to reinforce the translator’s risk aversion; (b) there is a wide gap between the translator’s internal risk management and their external presentation of risk; and (c) the use of role-playing simulation can empower students’ learning by enhancing their attitudinal or psycho-physiological competence, interpersonal competence and strategic competence.Keywords: risk management, role-playing simulation, translation pedagogy, translator-client relations
Procedia PDF Downloads 2614145 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4474144 Coming Closer to Communities of Practice through Situated Learning: The Case Study of Polish-English, English-Polish Undergraduate BA Level Language for Specific Purposes of Translation Class
Authors: Marta Lisowska
Abstract:
The growing trend of market specialization imposes upon translators the need for proficiency in the working knowledge of specialist discourse. The notion of specialization differs from a broad general category to a highly specialized narrow field. The specialised discourse is used in the channel of communication based upon distinctive features typical for communities of practice whose co-existence is codified and hermetically locked against outsiders. Consequently, any translator deprived of professional discourse competence and social skills is incapable of providing competent translation product from source language into target language. In this paper, we report on research that explores the pedagogical practices aiming to bridge the dichotomy between the professionals and the specialist translators, while accounting for the reality of the world of professional communities entered by undergraduates on two levels: the text-based generic, and the social one. Drawing from the functional social constructivist approach, seen here as situated learning, this paper reports on the case of English-Polish, Polish-English undergraduate BA Level LSP of law translation class run in line with the simulated classroom-based and the reality-based (apprenticeship) approach. This blended method serves the purpose of introducing the young trainees to the professional world. The research provides new insights into how the LSP translation undergraduates become legitimized through discursive and social participation and engagement. The undergraduates, situated peripherally at the outset, experience their own transformation towards becoming members of these professional groups. With subjective evaluation, the trainees take a stance on this dual mode class and development of their skills. Comparing and contrasting their own work done in line with two models of translation teaching: authentic and near-authentic, the undergraduates answer research questions devised by a questionnaire survey The responses take us closer to how students feel about their LSP translation competence development. The major findings show how the trainees perceive the benefits and hardships of their functional translation class. In terms of skills, they related to communication as the most enhanced one; they highly valued the fact of being ‘exposed’ to a variety of texts (cf. multi literalism), team work, learning how to schedule work, IT skills boost and the ability to learn how to work individually. Another finding indicates that students struggled most with specialized language, and co-working with other students. The short-term research shows the momentum when the undergraduate LSP translation trainees entered the path of transformation i.e. gained consciousness of ‘how it is’ to be a participant-translator of real-life communities of practice, gaining pragmatic dint of the social and linguistic skills understood here as discursive competence (text > genre > discourse > professional practice). The undergraduates need to be aware of the work they have to do and challenges they are to face before arriving at the expert level of professional translation competence.Keywords: communities of practice in LSP translation teaching, learning LSP translation as situated experience, peripheral participation, professional discourse for LSP translation teaching, professional translation competence
Procedia PDF Downloads 954143 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine
Authors: B. Engel, Sara Salman Hassan Al-Maeeni
Abstract:
Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.Keywords: failure analysis, fatigue life, FEM analysis, shaft, stress analysis
Procedia PDF Downloads 3024142 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4904141 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5134140 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network
Authors: Boukari Nassim
Abstract:
This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network
Procedia PDF Downloads 3464139 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms
Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani
Abstract:
This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.Keywords: tunnel fire, flame length, ANN, genetic algorithm
Procedia PDF Downloads 6434138 Translation in Greek and Psychometric Properties of the 9-Item Internet Gaming Disorder Scale-Short Form (IGDS9-Sf)
Authors: Aspasia Simpsi
Abstract:
The aim of this study was to translate into Greek and then validate the psychometric properties of the Internet Gaming Disorder Scale–Short-Form (IGDS9-SF) (Pontes & Griffiths, 2015). This is the first short standardized psychometric tool to assess Internet Gaming Disorder (IGD) according to the DSM-V nine clinical criteria and among the most frequently examined. The translation of the test was done through the process of back-translation. To gain a better insight into the psychometric properties of this test, the questionnaire included demographic questions and the Greek version of the Internet Addiction Test (Young, 1998). The participants of the study were 241 adolescents aged between 12 to 18. They were nationally recruited in Greece through an online survey that was hosted on the platform of Qualtrics. Analysis revealed excellent reliability with Cronbach’s alpha coefficients α = .939 for IGDS9-SF and α = .940 for IAT. The use of Pearson product-moment correlation revealed a significant positive relationship between IGDS9-SF and IAT r (241) =.45, p < .001. Due to inconsistencies in terminology and tests in the field of IGD, what is recommended for future research is a consensus regarding IGD testing and research.Keywords: internet gaming disorder, IGDS9-SF, psychometric properties, internet addiction
Procedia PDF Downloads 564137 A Time Delay Neural Network for Prediction of Human Behavior
Authors: A. Hakimiyan, H. Namazi
Abstract:
Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time
Procedia PDF Downloads 663