Search results for: early grain-filling stage
6024 Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis
Authors: Shah Abbas
Abstract:
Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients.Keywords: rheumatoid arthritis, peptide sensor, graphene oxide, anti citrullinated peptide antibodies, cyclic voltammetry
Procedia PDF Downloads 1466023 The Impact of Non-Surgical and Non-Medical Interventions on the Treatment of Infertile Women with Ovarian Reserve Below One and Early Menopause Symptoms
Authors: Flora Tajiki
Abstract:
This study investigates the effectiveness of non-surgical and non-medical interventions in treating infertile women with severely diminished ovarian reserve (below one), low Anti-Müllerian Hormone (AMH) levels, and symptoms of early menopause. The intervention included yoga, sunlight exposure, vitamin and mineral supplementation, relaxation techniques, and daily prayers performed both before sleep and upon waking. These methods were applied to women who had shown poor response to high-dose fertility treatments, such as IVF and microinjection cycles, leading to low-quality egg production. The focus was on women with severely reduced ovarian reserve and early menopause symptoms, some of whom continued to experience relatively regular menstrual cycles despite the onset of these symptoms. This treatment was aimed at women for whom conventional fertility methods had been ineffective. The study sample consisted of 120 married women, aged 25 to 45, from the provinces of Tehran, Alborz, and western Iran, with 35 participants completing the intervention. Individual factors such as residence, education, employment status, marriage duration, family infertility history, and previous infertility treatments were examined, with income considered as a contextual variable. The results indicate that AMH may not be a definitive marker of ovarian reserve, as lifestyle modifications, such as those implemented in this study, were associated with increased AMH levels, the return of regular menstrual cycles, and successful pregnancies. No short- or long-term complications were reported during the two-year follow-up, highlighting the potential benefits of non-surgical interventions for women with early menopause symptoms and diminished ovarian reserve.Keywords: anti-müllerian hormone, infertility, ovarian reserve, early menopause, fertility, women’s health, lifestyle modification, pregnancy
Procedia PDF Downloads 276022 KSVD-SVM Approach for Spontaneous Facial Expression Recognition
Authors: Dawood Al Chanti, Alice Caplier
Abstract:
Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation
Procedia PDF Downloads 3096021 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks
Authors: S. Neelima, P. S. Subramanyam
Abstract:
The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)
Procedia PDF Downloads 4406020 Reflections on Economic Recession in the Early Period of Islam: Lessons for Nigeria
Authors: Khalid Ishola Bello
Abstract:
No condition is permanent in life. This phenomenon is more evident in the socio-economic and political life of man regardless of race, colour or religious affiliation. As the economy of an individual or nation stands to be favourable at one time, it may also experience decline and become unbearable at another time. Muslims, towards the third decade of Islam, experienced economic hardship due to some natural and artificial factors. The recession, which lasted for four years, was rescued by different approaches, and economic prosperity was later regained. Some years ago, Nigeria was drastically affected by an economic recession characterized by high rates of unemployment, illiquidity and inflation, which have caused depression to many individuals and organizations. It is the aim of this paper to look into the causes and remedies of the recession in that early period of Islam in order to suggest a way out of the unfriendly economic situation of Nigeria. An analytical method is adopted to draw some lessons from the situation of Muslims of that time to address the current economic challenges in Nigeria. Though Nigeria is not under any natural disaster, the causes seem to be a deliberate reaction of some Nigerians against the government's attempts to curb corruption at all costs and lapses in some government policies.Keywords: recession, hardship, spiritual, lessons, early period of Islam
Procedia PDF Downloads 736019 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance
Procedia PDF Downloads 1096018 Assessing Conceptions of Climate Change: An Exploratory Study among Japanese Early-Adolescents
Authors: Kelvin Tang
Abstract:
As the world is approaching global warming of 1.5°C above pre-industrial levels, more atrocious consequences of climate change are projected to occur in the future. Consequently, it is today’s adolescents who will encounter the grand consequences of climate change. Therefore, nurturing adolescents that are well-informed, emotionally engaged, and motivated to take actions for combating climate change may be pivotal. Climate change education has a role in not only raising awareness, but also promoting behaviour change for climate change mitigation and adaptation. However, what kind of climate change education is suitable for whom? Requiring a learner-centred approach, tailoring climate change education requires a comprehensive understanding of the audience and their preconditions. In Japan, where climate change education has yet to be recognised as a field of environmental education, understanding climate change conceptions possessed by early adolescents is critical for a better design and more impactful implementation of climate change education. This exploratory study aims to investigate climate change conceptions among Japanese early adolescents from the perspective of cognition, affective, and conative dimensions. Questionnaire surveys were conducted targeting 423 students aged 12–14 in three public junior high schools located in Kashiwa City and Oita City. Findings suggest that the majority of Japanese early adolescents belong to groups that exhibit lower levels of cognition, affect, and conation in relation to climate change. The relationships among those dimensions were found to be positive and bidirectional. Moreover, several misconceptions about climate change and the effectiveness of its solutions were identified among the sample.Keywords: climate change conceptions, climate change education, environmental education, adolescents, three learning dimensions, Japan
Procedia PDF Downloads 696017 Biomarkers for Rectal Adenocarcinoma Identified by Lipidomic and Bioinformatic
Authors: Patricia O. Carvalho, Marcia C. F. Messias, Laura Credidio, Carlos A. R. Martinez
Abstract:
Lipidomic strategy can provide important information regarding cancer pathogenesis mechanisms and could reveal new biomarkers to enable early diagnosis of rectal adenocarcinoma (RAC). This study set out to evaluate lipoperoxidation biomarkers, and lipidomic signature by gas chromatography (GC) and electrospray ionization-qToF-mass spectrometry (ESI-qToF-MS) combined with multivariate data analysis in plasma from 23 RAC patients (early- or advanced-stages cancer) and 18 healthy controls. The most abundant ions identified in the RAC patients were those of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) while those of lisophosphatidylcholine (LPC), identified as LPC (16:1), LPC (18:1) and LPC (18:2), were down-regulated. LPC plasmalogen containing palmitoleic acid (LPC (P-16:1)), with highest VIP score, showed a low tendency in the cancer patients. Malondialdehyde plasma levels were higher in patients with advanced cancer (III/IV stages) than in the early stages groups and the healthy group (p<0.05). No differences in F2-isoprostane levels were observed between these groups. This study shows that the reduction in plasma levels of LPC plasmalogens associated to an increase in MDA levels may indicate increased oxidative stress in these patients and identify the metabolite LPC (P-16:1) as new biomarkers for RAC.Keywords: biomarkers, lipidomic, plasmalogen, rectal adenocarcinoma
Procedia PDF Downloads 2336016 Effect of Pregnancy Intention, Postnatal Depressive Symptoms and Social Support on Early Childhood Stunting: Findings from India
Authors: Swati Srivastava, Ashish Kumar Upadhyay
Abstract:
Background: According to United Nation Children’s Fund, it has been estimated that worldwide about 165 million children were stunted in 2012 and India alone accounts for 38% of global burden of stunting. In terms of incidence, India is home of more than 60 million stunted children worldwide. Our study aims to examine the effect of pregnancy intention and maternal postnatal depressive symptoms on early childhood stunting in India. We hypothesized that effect of pregnancy intention and postnatal maternal depressive symptoms were mediated by social support. Methods: We used data from first wave of Young Lives Study India. Out of 2011 children recruited in original cohort, 1833 children had complete information on pregnancy intention, maternal depression and other variables. A series of multivariate logistic regression model were used to examine the effect of pregnancy intention and postnatal depressive symptoms on early childhood stunting. Results: Bivariate result indicates that a higher percent of children born after unintended pregnancy (40%) were stunted than children of intended pregnancy (26%). Likewise, proportion of stunted children was also higher among women of high postnatal depressive symptoms (35%) than low level of depression (24%). Results of multivariate logistic regression model indicate that children born after unintended pregnancy were significantly more likely to be stunted than children born after intended pregnancy (Coefficient: 1.70, CI: 1.17, 2.48). Likewise, early childhood stunting was also associated with maternal postnatal depressive symptoms among women (Coefficient: 1.48, CI: 1.16, 1.88). The effect of pregnancy intention and postnatal depressive symptoms on early childhood stunting remains unchanged after controlling for social support and other variables. Conclusions: The findings of this study provide conclusive evidence regarding consequences of pregnancy intention and postnatal depressive symptoms on early childhood stunting in India. Therefore, there is need to identify the women with unintended pregnancy and incorporate the promotion of mental health into their national reproductive and child health programme.Keywords: pregnancy intention, postnatal depressive symptoms, social support, childhood stunting, young lives study, India
Procedia PDF Downloads 3046015 Occupational Health Services (OHS) in Hong Kong Hospitals and the Experience of Nurses: A Mixed Methods Study
Authors: Wong Yat Cheung Maggie
Abstract:
Occupational Safety and Health Ordinance (OS&HO) (Chap 509) was enacted in 1997, OHS in HK should be growing and maturing, with a holistic approach to occupational health and safety in the workplace including physical, mental, social and spiritual well-being. The question is “How effective are OHSPs in meeting the current needs of HK health workers?” This study was designed to explore the issue for the first time, to empirically analyse the views of those who work in the system. The study employed a mixed method approach to collect various data from Occupational Health Service Providers (OHSPs), Occupational Health Service Consumers (OHSC): Registered nurses working in the hospital setting. This study was designed in two phases and two stages. Phase I Stage I was a paper survey to collect the data on OHSP. Then Phase I Stage II was a follow-up interview. Phase II Stage I was a paper survey to collect the data on OHSC. Then Phase II Stage II was a follow-up focus group study on OHSC for further clarification of the Phase II and Stage I result. The Phase I result reflects HK OHSPs point of view and their experience in the existing OHS practice in the local hospitals. It reflects various styles of reporting systems, staff profiles background and resource in providing OHS in HK hospitals. However, the basic OHS concern is similar between hospitals. In general, the OHS policies and procedures are available on site even though they may have different foci. The Phase II result is reflecting the HKs OHSCs echoes the OHSP feedback at providing of OHS, OHS concern and related policies and procedure are available on site. However, the most significant feedback from the OHSC at Phase II Stage II shows, nurses experienced various OHS concern most commonly work stress, workplace harassment and back strain without formal or official report to the related parties. The lack of reporting was due to the management handling attitude, stakeholders’ compliance and term of definition still have room to be improved even the related policies and procedures are available on site.Keywords: occupational health service, registered nurse, Hong Kong hospital, mixed method
Procedia PDF Downloads 3356014 Deep Learning Approach for Chronic Kidney Disease Complications
Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia
Abstract:
Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis
Procedia PDF Downloads 1386013 Study of Debonding of Composite Material from a Deforming Concrete Beam Using Infrared Thermography
Authors: Igor Shardakov, Anton Bykov, Alexey Shestakov, Irina Glot
Abstract:
This article focuses on the cycle of experimental studies of the formation of cracks and debondings in the concrete reinforced with carbon fiber. This research was carried out in Perm National Research Polytechnic University. A series of CFRP-strengthened RC beams was tested to investigate the influence of preload and crack repairing factors on CFRP debonding. IRT was applied to detect the early stage of IC debonding during the laboratory bending tests. It was found that for the beams strengthened under load after crack injecting, СFRP debonding strain is 4-65% lower than for the preliminary strengthened beams. The beams strengthened under the load had a relative area of debonding of 2 times higher than preliminary strengthened beams. The СFRP debonding strain is weakly dependent on the strength of the concrete substrate. For beams with a transverse wrapping anchorage in support sections FRP debonding is not a failure mode.Keywords: IC debonding, infrared thermography, non-destructive testing methods, quality control, strengthening
Procedia PDF Downloads 2696012 Compensatory Increased Activities of Mitochondrial Respiratory Chain Complexes from Eyes of Glucose-Immersed Zebrafish
Authors: Jisun Jun, Eun Ko, Sooim Shin, Kitae Kim, Moonsung Choi
Abstract:
Diabetes is a metabolic disease characterized by hyperglycemia, insulin resistant, mitochondrial dysfunction. Diabetes is associated with the development of diabetic retinopathy resulting in worsening vision and eventual blindness. In this study, eyes were enucleated from glucose-immersed zebrafish which is a good animal model to generate diabetes, and then mitochondria were isolated to evaluate activities of mitochondrial electron transfer complexes. Surprisingly, the amount of isolated mitochondria was increased in eyes from glucose-immersed zebrafish compared to those from non-glucose-immerged zebrafish. Spectrophotometric analysis for measuring activities of mitochondrial complex I, II, III, and IV revealed that mitochondria functions was even enhanced in eyes from glucose-immersed zebrafish. These results indicated that 3 days or 7 days glucose-immersion on zebrafish to induce diabetes might contribute metabolic compensatory mechanism to restore their mitochondrial homeostasis on the early stage of diabetes in eyes.Keywords: diabetes, glucose immersion, mitochondrial complexes, zebrafish
Procedia PDF Downloads 2066011 Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets
Authors: Sanghoon Bae, Hanju Cha
Abstract:
Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location.Keywords: computational flow dynamics (CFD), failed fuel detector (FFD), fresh fuel assembly (FFA), spent fuel assembly (SFA)
Procedia PDF Downloads 2416010 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 2606009 Effect of Multi-Stage Fractured Patterns on Production Improvement of Horizontal Wells
Authors: Armin Shirbazo, Mohammad Vahab, Hamed Lamei Ramandi, Jalal Fahimpour
Abstract:
One of the most effective ways for increasing production in wells that are faced with problems such as pressure depletion and low rate is hydraulic fracturing. Hydraulic fracturing is creating a high permeable path through the reservoir and simulated area around the wellbore. This is very important for low permeability reservoirs, which their production is uneconomical. In this study, the influence of the fracturing pattern in multi-stage fractured horizontal wells is analyzed for a tight, heavy oil reservoir to explore the impact of fracturing patterns on improving oil recovery. The horizontal well has five transverse fractures with the same fracture length, width, height, and conductivity properties. The fracture patterns are divided into four distinct shapes: uniform shape, diamond shape, U shape, and W shape. The results show that different fracturing patterns produce various cumulative production after ten years, and the best pattern can be selected based on the most cumulative production. The result also illustrates that optimum design in fracturing can boost the production up to 3% through the permeability distribution around the wellbore and reservoir.Keywords: multi-stage fracturing, horizontal well, fracture patterns, fracture length, number of stages
Procedia PDF Downloads 2246008 Vénus Noire: A (Post)Colonial Gaze
Authors: Hania Pasandi
Abstract:
Over his first three films, Abdellatif Kechiche established himself as one of the most celebrated directors at work in twenty-first-century French cinema. While his first three movies, La Faute à Voltaire (2000), L’Esquive (2003), and La Graine et le mulet (2007) tell stories about individuals of the Maghrebi origin or descent struggling to find their place in the contemporary French Republic, his 2010’s movie, Vénus noire (2010) recounts the true story of the so-called ‘Hottentot Venus’, Saartjie Baartman, who became famous after her stage appearances in London and Paris in the early eighteenth century. The movie shows the complex ways in which gender and ethnicity can combine in exclusionary discourse. This paper studies gender and racial identities, the irony of science theorisation about ethnicities through the male colonial gaze on a heavily exhibited woman. This paper explores how Vénus Noire engages the spectator’s own corporeal awareness of violence and calls attention to the othering practices of (post)colonial times.Keywords: gender, (post)colonial gaze, other, violence
Procedia PDF Downloads 1426007 Insecticidal Effect of Nanoparticles against Helicoverpa armigera Infesting Chickpea
Authors: Shabistana Nisar, Parvez Qamar Rizvi, Sheeraz Malik
Abstract:
The potential advantage of nanotechnology is comparably marginal due to its unclear benefits in agriculture and insufficiency in public opinion. The nanotech products might solve the pesticide problems of societal concern fairly at acceptable or low risk for consumers and environmental applications. The deleterious effect of chemicals used on crops can be compacted either by reducing the existing active ingredient to nanosize or by plummeting the metals into nanoform. Considering the above facts, an attempt was made to determine the efficacy of nanoelements viz., Silver, Copper Manganese and Neem seed kernel extract (NSKE) for effective management of gram pod borer, Helicoverpa armigera infesting chickpea, being the most damaging pest of large number of crops, gram pod borer was selected as test insect to ascertain the impact of nanoparticles under controlled conditions (25-27 ˚C, 60-80% RH). The respective nanoformulations (0.01, 0.005, 0.003, 0.0025, 0.002, 0.001) were topically applied on 4th instar larvae of pod borer. In general, nanochemicals (silver, copper, manganese, NSKE) produced relatively high mortality at low dilutions (0.01, 0.005, 0.003). The least mortality was however recorded at 0.001 concentration. Nanosilver proved most efficient producing significantly highest (f₄,₂₄=129.56, p < 0.05) mortality 63.13±1.77, 83.21±2.02 and 96.10±1.25 % at 0.01 concentration after 2nd, 4th and 6th day, respectively. The least mortality was however recorded with nanoNSKE. The mortality values obtained at respective days were 21.25±1.50%, 25.20±2.00%, and 56.20±2.25%. Nanocopper and nanomanganese showed slow rate of killing on 2nd day of exposure, but increased (79.20±3.25 and 65.33±1.25) at 0.01 dilution on 3rd day, followed by 83.00±3.50% and 70.20±2.20% mortality on 6thday. The sluggishness coupled with antifeedancy was noticed at early stage of exposure. The change in body colour to brown due to additional melanisation in copper, manganese, and silver treated larvae and demalinization in nanoNSKE exposed larvae was observed at later stage of treatment. Thus, all the nanochemicals applied, produced the significant lethal impact on Helicoverpa armigera and can be used as valuable tool for its effective management.Keywords: chickpea, helicoverpa armigera, management, nanoparticles
Procedia PDF Downloads 3596006 Inhibitory Effects of Ambrosia trifida L. on the Development of Root Hairs and Protein Patterns of Radicles
Authors: Ji-Hyon Kil, Kew-Cheol Shim, Kyoung-Ae Park, Kyoungho Kim
Abstract:
Ambrosia trifida L. is designated as invasive alien species by the Act on the Conservation and Use of Biodiversity by the Ministry of Environment, Korea. The purpose of present paper was to investigate the inhibitory effects of aqueous extracts of A.trifida on the development of root hairs of Triticum aestivum L., and Allium tuberosum Rottler ex Spreng and the electrophoretic protein patterns of their radicles. The development of root hairs was inhibited by increasing of aqueous extract concentrations. Through SDS-PAGE, the electrophoretic protein bands of extracted proteins from their radicles were appeared in controls, but protein bands of specific molecular weight disappeared or weakened in treatments. In conclusion, inhibitory effects of A. trifida made two receptor species changed morphologically, and at the molecular level in early growth stage.Keywords: Ambrosia trifida L., invasive alien species, inhibitory effect, root hair, electrophoretic protein, radicle
Procedia PDF Downloads 3666005 Treatment of Low-Grade Iron Ore Using Two Stage Wet High-Intensity Magnetic Separation Technique
Authors: Moses C. Siame, Kazutoshi Haga, Atsushi Shibayama
Abstract:
This study investigates the removal of silica, alumina and phosphorus as impurities from Sanje iron ore using wet high-intensity magnetic separation (WHIMS). Sanje iron ore contains low-grade hematite ore found in Nampundwe area of Zambia from which iron is to be used as the feed in the steelmaking process. The chemical composition analysis using X-ray Florence spectrometer showed that Sanje low-grade ore contains 48.90 mass% of hematite (Fe2O3) with 34.18 mass% as an iron grade. The ore also contains silica (SiO2) and alumina (Al2O3) of 31.10 mass% and 7.65 mass% respectively. The mineralogical analysis using X-ray diffraction spectrometer showed hematite and silica as the major mineral components of the ore while magnetite and alumina exist as minor mineral components. Mineral particle distribution analysis was done using scanning electron microscope with an X-ray energy dispersion spectrometry (SEM-EDS) and images showed that the average mineral size distribution of alumina-silicate gangue particles is in order of 100 μm and exists as iron-bearing interlocked particles. Magnetic separation was done using series L model 4 Magnetic Separator. The effect of various magnetic separation parameters such as magnetic flux density, particle size, and pulp density of the feed was studied during magnetic separation experiments. The ore with average particle size of 25 µm and pulp density of 2.5% was concentrated using pulp flow of 7 L/min. The results showed that 10 T was optimal magnetic flux density which enhanced the recovery of 93.08% of iron with 53.22 mass% grade. The gangue mineral particles containing 12 mass% silica and 3.94 mass% alumna remained in the concentrate, therefore the concentrate was further treated in the second stage WHIMS using the same parameters from the first stage. The second stage process recovered 83.41% of iron with 67.07 mass% grade. Silica was reduced to 2.14 mass% and alumina to 1.30 mass%. Accordingly, phosphorus was also reduced to 0.02 mass%. Therefore, the two stage magnetic separation process was established using these results.Keywords: Sanje iron ore, magnetic separation, silica, alumina, recovery
Procedia PDF Downloads 2606004 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data
Authors: Huinan Zhang, Wenjie Jiang
Abstract:
Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.Keywords: Artificial intelligence, deep learning, data mining, remote sensing
Procedia PDF Downloads 646003 Application of ECQFD for Enabling Environmentally Conscious Design
Authors: Gopinath Rathod, Vinod Puranik
Abstract:
Growing business recognizes environmental consciousness as an important concept for survival in the competitive scenario. Environmental consciousness is a critical intersection between manufacturing and product design processes with environmental issues and concerns. This article presents a project in which quality function deployment (QFD) for environment (ECQFD) has been applied to rotary switches for enabling environmentally conscious design in the early stage of product development. ECQFD is capable of handling simultaneously the environmental and traditional product quality requirements. ECQFD consists of four phases. ECQFD phases I and II are concerned with the identification of parts that are important in enhancing environmental consciousness. ECQFD phases III and IV are concerned with the evaluation of effect of design improvement on environmental quality requirements. The case study has been practically validated which indicated the receptivity of applying ECQFD in industrial scenario.Keywords: quality function deployment, environment, product design, design for environment, rotary switches
Procedia PDF Downloads 4306002 Design of New Baby Food Product Using Whey
Authors: Henri El Zakhem, Anthony Dahdah, Lara Frangieh, Jessica Koura
Abstract:
Nowadays, the removal of whey produced in the dairy processes has been the most important problem in the dairy industry. Every year, about 47% of the 115 million tons of whey produced world-wide are disposed in the environment. Whey is a nutritious liquid, containing whey proteins (β-lactoglobulin, α-lactalbumin, immunoglobulin-G, proteose pepton), lactose, vitamins (B5, B2, C, and B6), minerals (Calcium, Magnesium, Phosphorous, Potassium, Chloride, and Sodium), and trace elements (Zinc, Iron, Iodine, and Copper). The first objective was to increase the economical and commercial value of whey which is considered as by-product. The second objective of this study was to formulate a new baby food with good nutritional, sensory and storage properties and acceptable to consumers using the cheese whey. The creation of the new product must pass through the following stages: idea stage, development stage which includes the business planning and the product development prototype, packaging stage, production stage, test marketing stage, quality control/sanitation. Three types of whey-based food were selected and prepared by mixing whey and apple, whey and banana as well as whey, apple, and banana.To compile with the recommended dietary allowances (RDA) and adequate intakes (AI) for vitamins and minerals, each sample is formed from 114g of sliced and smashed fruits mixed with 8 mL of whey. Mixtures are heated to 72oC for 15 seconds, and filled in pasteurized jars. Jars were conserved at 4oC. Following the experimental part, sensory evaluation made by an experienced panel took place. Hedonic tests results show that the mixture of whey, apple, and banana has the most delicious and sweetness taste followed by the mixture of whey and banana, and finally the mixture of whey and apple. This study was concluded with a managerial and engineering study that reveals that the project is economically profitable to be executed in Lebanon.Keywords: baby food, by-product, cheese whey, formulation
Procedia PDF Downloads 2766001 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors
Authors: João Filipe Papel, Tatsuji Munaka
Abstract:
With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living
Procedia PDF Downloads 1066000 Effects of Aerobic Dance on Systolic Blood Pressure in Stage 1 Hypertensive Individuals in Uganda
Authors: Loyce Nahwera, Joy Wachira, Edwin Kiptolo, Constance Nsibambi, Mshilla Maghanga, Timothy Makubuya
Abstract:
Introduction: Hypertension is one of the most prominent risk factors for cardiovascular diseases globally, and it can be modified through lifestyle interventions such as exercise. The objective of this study was to investigate the effects of a 12-week aerobic dance programme on systolic blood pressure (SBP) in stage 1 hypertensive individuals. Methods: This study employed an experimental research design. A total of 36 stage 1 hypertensive individuals who were randomly assigned into experimental and control groups completed the study. Systolic BP was measured using a mercury sphygmomanometer at baseline, mid-point and after the program. The experimental group participants trained 3 days a week, 45 minutes per session, at a moderate intensity of 40-60% of maximum oxygen consumption (VO2max) monitored by Garmin heart rate monitors. Data were analyzed using SPSS version 20. The significance level was set at p<0.05. A paired sample t-test was used to compare mean differences within the groups. Results: Data from the 36 participants (22 males and 14 females) (experimental; n=18, control; n=18) show that the experimental group had a mean SBP of 143.83±6.382 mmHg at baseline while the control had a mean of 137.61±6.400 mmHg. Following the end of a 6-week aerobic dance, the mean SBP of the experimental group reduced to 138.06±9.539 mmHg while that of the control marginally decreased to 137.00±8.073 mmHg. At the completion of a 12-week program, the mean SBP of the experimental group reduced to 136.33±9.191 mmHg, while that of the control marginally increased to 139.56±9.954 mmHg. This implies that both the 6-week and 12-week aerobic dance program reduced the SBP of the experimental group by 5.77±7.133 mmHg and 7.50±8.487 mmHg, respectively, while the control group fast reduced marginally by 0.61 before ultimately increasing by 1.95±7.974 mmHg at 12-weeks. The changes were statistically significant (p<0.05) at both 6 and 12 weeks of an aerobic dance program. Conclusion: The study concluded that aerobic dance is an effective non-pharmacological method for managing SBP of stage 1 hypertensive individuals both in the short-term (6 weeks) and long-term (12 weeks).Keywords: aerobic dance, blood pressure, stage 1 hypertension, systolic blood pressure.
Procedia PDF Downloads 585999 Teacher in Character Strengthening for Early Childhood
Authors: Siti Aisyah
Abstract:
This article discusses character education which is a very basic education for early childhood with the aim of instilling moral values to prevent unacceptable behaviours. Children can absorb good character when they are in a supportive environment, for that schools should understand and implement character education in the learning process. In the school environment, good character education and habituation can be developed. All parties in the school should be involved, especially the teachers. This research discusses how teachers apply characters on the values of responsibility, honesty, discipline, love and compassion, caring, courage, independence, hard work, mutual cooperation, courtesy, justice, self-control and tolerance. The respondents of this study were teachers involving 200 children from all over Indonesia. The methodology used was a survey method with the result that more than 80% of teachers have been able to exhibit the expected behaviours. The survey was conducted based on observations, types of tasks and assessed performance. The character values can be optimally taught in the school environment based on the teacher's ability to implement them. Through the character education in schools, children can also instil a positive outlook on life.Keywords: teachers, character strengthening, early childhood, behavior
Procedia PDF Downloads 935998 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech
Authors: Monica Gonzalez Machorro
Abstract:
Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment
Procedia PDF Downloads 1285997 Mike Hat: Coloured-Tape-in-Hat as a Head Circumference Measuring Instrument for Early Detection of Hydrocephalus in an Infant
Authors: Nyimas Annissa Mutiara Andini
Abstract:
Every year, children develop hydrocephalus during the first year of life. If it is not treated, hydrocephalus can lead to brain damage, a loss in mental and physical abilities, and even death. To be treated, first, we have to do a proper diagnosis using some examinations especially to detect hydrocephalus earlier. One of the examination that could be done is using a head circumference measurement. Increased head circumference is a first and main sign of hydrocephalus, especially in infant (0-1 year age). Head circumference is a measurement of a child's head largest area. In this measurement, we want to get the distance from above the eyebrows and ears and around the back of the head using a measurement tape. If the head circumference of an infant is larger than normal, this infant might potentially suffer hydrocephalus. If early diagnosis and timely treatment of hydrocephalus could be done most children can recover successfully. There are some problems with early detection of hydrocephalus using regular tape for head circumference measurement. One of the problem is the infant’s comfort. We need to make the infant feel comfort along the head circumference measurement to get a proper result of the examination. For that, we can use a helpful stuff, like a hat. This paper is aimed to describe the possibility of using a head circumference measuring instrument for early detection of hydrocephalus in an infant with a mike hat, coloured-tape-in-hat. In the first life, infants’ head size is about 35 centimeters. First three months after that infants will gain 2 centimeters each month. The second three months, infant’s head circumference will increase 1 cm each month. And for the six months later, the rate is 0.5 cm per month, and end up with an average of 47 centimeters. This formula is compared to the WHO’s head circumference growth chart. The shape of this tape-in-hat is alike an upper arm measurement. This tape-in-hat diameter is about 47 centimeters. It contains twelve different colours range by age. If it is out of the normal colour, the infant potentially suffers hydrocephalus. This examination should be done monthly. If in two times of measurement there still in the same range abnormal of head circumference, or a rapid growth of the head circumference size, the infant should be referred to a pediatrician. There are the pink hat for girls and blue hat for boys. Based on this paper, we know that this measurement can be used to help early detection of hydrocephalus in an infant.Keywords: head circumference, hydrocephalus, infant, mike hat
Procedia PDF Downloads 2695996 Moral Dilemmas, Difficulties in the Digital Games
Authors: YuPei Chang
Abstract:
In recent years, moral judgement tasks have served as an increasingly popular plot mechanism in digital gameplay. As a moral agency, the player's choice judgment in digital games is to shuttle between the real world and the game world. The purpose of the research is to explore the moral difficulties brewed by the interactive mechanism of the game and the moral choice of players. In the theoretical level, this research tries to combine moral disengagement, moral foundations theory, and gameplay as an aesthetic experience. And in the methodical level, this research tries to use methods that combine text analysis, diary method, and in-depth interviews. There are three research problems that will be solved in three stages. In the first stage, this project will explore how moral dilemmas are represented in game mechanics. In the second stage, this project will analyze the appearance and conflicts of moral dilemmas in game mechanics based on the five aspects of moral foundations theory. In the third stage, this project will try to understand the players' choices when they face the choices of moral dilemmas, as well as their explanations and reflections after making the decisions.Keywords: morality, moral disengagement, moral foundations theory, PC game, gameplay, moral dilemmas, player
Procedia PDF Downloads 805995 Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering
Authors: Pakize Neslihan Taslı, Alev Cumbul, Gul Merve Yalcın, Fikrettin Sahin
Abstract:
A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering.Keywords: tooth regeneration, tissue engineering, adipose stem cells, hydroxyapatite tooth engineering, porous scaffold
Procedia PDF Downloads 235