Search results for: atomic layer deposition (ALD)
3265 Doped TiO2 Thin Films Microstructural and Electrical Properties
Authors: Mantas Sriubas, Kristina Bockute, Darius Virbukas, Giedrius Laukaitis
Abstract:
In this work, the doped TiO2 (dopants – Ca, Mg) was investigated. The comparison between the physical vapour deposition methods as electron beam vapour deposition and magnetron sputtering was performed and the structural and electrical properties of the formed thin films were investigated. Thin films were deposited on different type of substrates: SiO2, Alloy 600 (Fe-Ni-Cr) and Al2O3 substrates. The structural properties were investigated using Ambios XP-200 profilometer, scanning electron microscope (SEM) Hitachi S-3400N, X-ray energy-dispersive spectroscope (EDS) Quad 5040 (Bruker AXS Microanalysis GmbH), X-ray diffractometer (XRD) D8 Discover (Bruker AXS GmbH) with glancing angles focusing geometry in a 20 – 70° range using the Cu Kα1 λ = 0.1540562 nm radiation). The impedance spectroscopy measurements were performed using Probostat® (NorECs AS) measurement cell in the frequency range from 10-1-106 Hz under reducing and oxidizing conditions in temperature range of 200 °C to 1200 °C. The investigation of the e-beam deposited Ca and Mg doped-TiO2 thin films shows that the thin films are dense without any visible pores and cavities and the thin films grow in zone T according Barna-Adamik SZM. Substrate temperature was kept 600 °C during the deposition and Ts/Tm ≈ 0.32 (substrate temperature (Ts) and coating material melting temperature (Tm)). The surface diffusion is high however, the grain boundary migration is strongly limited at this temperature. This means that structure is inhomogeneous and the columnar structure is mostly visible in the upper part of the films. According to XRD, the increasing of the Ca dopants’ concentration increases the crystallinity of the formed thin films and the crystallites size increase linearly and Ca dopants act as prohibitors. Thin films are comprised of anatase TiO2 phase with an exception of 2 % Ca doped TiO2, where a small peak of Ca arise. In the case of Mg doped-TiO2 the intensities of the XRD peaks decreases with increasing Mg molar concentration. It means that there are less diffraction planes of the particular orientation in thin films with higher impurities concentration. Thus, the crystallinity decreases with increasing Mg concentration and Mg dopants act as inhibitors. The impedance measurements show that the dopants changed the conductivity of the formed thin films. The conductivity varies from 10-3 S/cm to 10-4 S/cm at 800 °C under wet reducing conditions. The microstructure of the magnetron sputtered thin TiO2 films is different comparing to the thin films deposited using e-beam deposition therefore influencing other structural and electrical properties.Keywords: electrical properties, electron beam deposition, magnetron sputtering, microstructure, titanium dioxide
Procedia PDF Downloads 2943264 Optimizing the Morphology and Flow Patterns of Scaffold Perfusion Systems for Effective Cell Deposition Using Computational Fluid Dynamics
Authors: Vineeth Siripuram, Abhineet Nigam
Abstract:
A bioreactor is an engineered system that supports a biologically active environment. Along the years, the advancements in bioreactors have been widely accepted all over the world for varied applications ranging from sewage treatment to tissue cloning. Driven by tissue and organ shortage, tissue engineering has emerged as an alternative to transplantation for the reconstruction of lost or damaged organs. In this study, Computational fluid dynamics (CFD) has been used to model porous medium flow in scaffolds (taken from the literature) with different flow patterns. A detailed analysis of different scaffold geometries and their influence on cell deposition in the perfusion system is been carried out using Computational fluid dynamics (CFD). Considering the fact that, the scaffold should mimic the organs or tissues structures in a three-dimensional manner, certain assumptions were made accordingly. The research on scaffolds has been extensively carried out in different bioreactors. However, there has been less focus on the morphology of the scaffolds and the flow patterns in which the perfusion system is laid upon. The objective of this paper is to employ a computational approach using CFD simulation to determine the optimal morphology and the anisotropic measurements of the various samples of scaffolds. Using predictive computational modelling approach, variables which exert dominant effects on the cell deposition within the scaffold were prioritised and corresponding changes in morphology of scaffold and flow patterns in the perfusion systems are made. A Eulerian approach was carried on in multiple CFD simulations, and it is observed that the morphological and topological changes in the scaffold perfusion system are of great importance in the commercial applications of scaffolds.Keywords: cell seeding, CFD, flow patterns, modelling, perfusion systems, scaffold
Procedia PDF Downloads 1603263 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties
Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts
Abstract:
Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.Keywords: bismuth seleinde, nanostructures, topological insulator, vapour-solid deposition
Procedia PDF Downloads 2313262 Design with Nature: Vernacular Buildings Adaptation to Sand Landforms in Sahara Desert
Authors: Mohammed Sherzad
Abstract:
The Sahara desert covers third of the total surface of Africa with a quarter of this area within the national boundaries of Algeria. Sand drift and deposition is considered one of the major factors of the desertification process in the area. It is estimated that a third of the world's hot arid lands are covered by aeolian sand deposits, forming extensive sand bedforms. The Gourrara region in the Grand Erg Occidental (west of Algerian Sahara) and the region of Souf in the Grand Erg Oriental (east of Algerian Sahara) have been chosen as case studies. These were significant cultural and trading centers for many centuries despite their remote location and their harsh desert environment particularly solar radiation and sand drift and deposition. The architecture of the sustained vernacular settlements in each of the two regions has unique design features for this environment. So do the irrigation systems used - palm groves and the foggara system for capturing and distributing groundwater. However, the ecological balance which enabled the Saharans to live with the desert has been upset. New buildings often use technology based on models imported or imposed from areas that climatically have little in common. These make the inhabitants live ‘in the desert’ rather than ‘with the desert’. This paper will describe the qualities of the vernacular architecture and demonstrate its effectiveness and adaptability to the region’s harsh desert environment in comparison with contemporary buildings. Developing design guides and approaches based on lessons from the traditional architecture is important to ensure sustained livelihoods of the inhabitants in these areas.Keywords: vernacular architecture, desert architecture, hot climate, aeolian sand deposition
Procedia PDF Downloads 4653261 Assessment of Aminopolyether on 18F-FDG Samples
Authors: Renata L. C. Leão, João E. Nascimento, Natalia C. E. S. Nascimento, Elaine S. Vasconcelos, Mércia L. Oliveira
Abstract:
The quality control procedures of a radiopharmaceutical include the assessment of its chemical purity. The method suggested by international pharmacopeias consists of a thin layer chromatographic run. In this paper, the method proposed by the United States Pharmacopeia (USP) is compared to a direct method to determine the final concentration of aminopolyether in Fludeoxyglucose (18F-FDG) preparations. The approach (no chromatographic run) was achieved by placing the thin-layer chromatography (TLC) plate directly on an iodine vapor chamber. Both methods were validated and they showed adequate results to determine the concentration of aminopolyether in 18F-FDG preparations. However, the direct method is more sensitive, faster and simpler when compared to the reference method (with chromatographic run), and it may be chosen for use in routine quality control of 18F-FDG.Keywords: chemical purity, Kryptofix 222, thin layer chromatography, validation
Procedia PDF Downloads 2013260 Structural and Optical Characterization of Silica@PbS Core–Shell Nanoparticles
Authors: A. Pourahmad, Sh. Gharipour
Abstract:
The present work describes the preparation and characterization of nanosized SiO2@PbS core-shell particles by using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted lead sulphide shell layer formation. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and transmission electron microscopy (TEM) experiments. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 18 nm. The electron microscopic images also indicate the irregular morphology of lead sulphide shell layer. The structural studies indicate the face-centered cubic system of PbS shell with no other trace for impurities in the crystal structure.Keywords: core-shell, nanostructure, semiconductor, optical property, XRD
Procedia PDF Downloads 2993259 Metal-Semiconductor-Metal Photodetector Based on Porous In0.08Ga0.92N
Authors: Saleh H. Abud, Z. Hassan, F. K. Yam
Abstract:
Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15 min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390 nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.Keywords: porous InGaN, photoluminescence, SMS photodetector, atomic force microscopy
Procedia PDF Downloads 4893258 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density
Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany
Abstract:
Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination
Procedia PDF Downloads 2613257 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache
Abstract:
This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting
Procedia PDF Downloads 523256 Improved Photo-Active Layer Properties for Efficient Organic Solar Cells
Authors: Chahrazed Bendenia, Souhila Bendenia, Samia Moulebhar, Hanaa Merad-Dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri
Abstract:
In recent years, organic solar cells (OSCs) have become the fundamental concern of researchers thanks to their advantages in terms of flexibility, manufacturing processes and low cost. The performance of these devices is influenced by various factors, such as the layers introduced in the stacking of the solar cell realized. In our work, the modeling of a reverse OSC under AM1.5G illumination will be determined. The photo-active polymer/fullerene layer will be analyzed from the polymer variation of this layer using the SCAPS simulator to extract the J-V characteristics: open circuit voltage (Voc), short circuit current (Jsc), filling factor (FF) and power conversion efficiency (η). The results obtained indicated that the materials used have a significant impact on improving the photovoltaic parameters of the devices studied.Keywords: solar, polymer, simulator, characteristics
Procedia PDF Downloads 783255 Opto-Electronic Study of the Silicon Nitride Doped Cerium Thin Films Deposed by Evaporation
Authors: Bekhedda Kheira
Abstract:
Rare earth-doped luminescent materials (Ce, Eu, Yb, Tb, etc.) are now widely used in flat-screen displays, fluorescent lamps, and photovoltaic solar cells. They exhibit several fine emission bands in a spectral range from near UV to infrared when added to inorganic materials. This study chose cerium oxide (CeO2) because of its exceptional intrinsic properties, energy levels, and ease of implementation of doped layer synthesis. In this study, thin films were obtained by the evaporation deposition technique of cerium oxide (CeO2) on silicon Nitride (SiNx) layers and then annealing under nitrogen N2. The characterization of these films was carried out by different techniques, scanning electron microscopy (SEM) to visualize morphological properties and (EDS) was used to determine the elemental composition of individual dots, optical analysis characterization of thin films was studied by a spectrophotometer in reflectance mode to determine different energies gap of the nanostructured layers and to adjust these values for the photovoltaic application.Keywords: thin films, photovoltaic, rare earth, evaporation
Procedia PDF Downloads 883254 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling
Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar
Abstract:
The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength
Procedia PDF Downloads 733253 Environmental Pb-Free Cu Front Electrode for Si-Base Solar Cell Application
Authors: Wen-Hsi Lee, C.G. Kao
Abstract:
In this study, Cu paste was prepared and printed with narrow line screen printing process on polycrystalline Si solar cell which has already finished the back Al printing and deposition of double anti-reflection coatings (DARCs). Then, two-step firing process was applied to sinter the front electrode and obtain the ohmic contact between front electrode and solar cell. The first step was in air atmosphere. In this process, PbO-based glass frit etched the DARCs and Ag recrystallized at the surface of Si, constructing the preliminary contact. The second step was in reducing atmosphere. In this process, CuO reduced to Cu and sintered. Besides, Ag nanoparticles recrystallized in the glass layer at interface due to the interactions between H2, Ag and PbO-based glass frit and the volatility of Pb, constructing the ohmic contact between electrode and solar cell. By experiment and analysis, reaction mechanism in each stage was surmised, and it was also proven that ohmic contact and good sheet resistance for front electrode could both be obtained by applying newly-invented paste and process.Keywords: front electrode, solar cell, ohmic contact, screen printing, paste
Procedia PDF Downloads 3323252 Cyclic Voltammetric Investigations on Nickel Electrodeposition from Industrial Sulfate Electrolyte in Presence of Ca(II), Mg(II), Na(I) Ions
Authors: Udit Mohanty, Mari Lundstrom
Abstract:
Electrochemical investigation by cyclic voltammetry was conducted to explore the polarization behavior of reactions occurring in nickel electrowinning in presence of cationic impurities such as Ca2+ (0-100 mg/L), Na+ (1-10 g/L) and Mg2+ (10-100 mg/L). A comparative study was devised between industrial and synthetic electrolytes to observe the shift in the nucleation overpotentials of nickel deposition, dissolution and hydrogen evolution reactions at the cathode and anode respectively. Significant polarization of cathodic reactions were observed with concentrations of Na ≥ 8g /L and Ca ≤ 40 mg /L in the synthetic electrolytes. Nevertheless, a progressive increase in the concentration of Ca, Mg and Na in the industrial electrolyte demonstrated a depolarization behavior in the cathodic reactions related to nickel deposition and/or hydrogen evolution. Synergistic effect of Ca with Mg and Na in both the industrial and synthetic electrolytes induced a notable depolarization effect, also reflected in the peak currents.Keywords: cationic impurities, cyclic voltammetry, electrowinning, nickel, polarization
Procedia PDF Downloads 2423251 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer
Authors: R. Karmouch
Abstract:
A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.Keywords: photodeterioration, silicon nanocrystals, ion implantation, photoluminescence, surface plasmons
Procedia PDF Downloads 4203250 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process
Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse
Abstract:
Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.Keywords: additive manufacturing, decision-makings, environmental impact, predictive models
Procedia PDF Downloads 1313249 A Comparative Study on the Synthesis, Characterizations and Biological (Antibacterial and Antifungal) Activities of Zinc Doped Silica Oxide Nanoparticles Based on Various Solvents
Authors: Muhammad Arshad, Ghulam Hussain Bhatti, Abdul Qayyum
Abstract:
Zinc-doped silica oxide nanoparticles having size 7.93nm were synthesized by the deposition precipitation method by using different solvents (acetonitrile, n-hexane, isoamylalchol). Biological potential such as antibacterial activities against Bacillussubtilusand Escherichia coli, and antifungal activities against Candida parapsilosis and Aspergilusniger were also investigated by Disc diffusion method. Different characterizations techniques including Fournier Transmission Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermo-gravimeteric Analysis (TGA), Atomic forced microscopy (AFM), and Dynamic Light Scattering (DLS) were used. FT-IR characterization confirmed the presence of metal oxide bond (SiO2) while XRD showed the hexagonal structure. SEM and TEM characterization showed the morphology of nanoparticles. AFM study showed good particle size distribution as depicted by a histogram. DLS study showed the gradual decease in the size of nanoparticles from 24.86nm to 13.24 nm. Highest antibacterial activities revealed by acetonitrile solvents (6%and 4.5%) followed by isoamylalchol (3% and 2.4%) while n-hexane solvent showed the lowest activity (2%and 1%) respectively. Higher antifungal activities exhibited by n-hexane (0.34 % and 0.43%) followed by isoamylalchol (0.27% and 0.19%) solvent while acetonitrile (0.21% and 0.17%) showed least activity respectively. Statistical analysis by using one-way ANOVA also indicated the significant results of both biological activities.Keywords: nanoparticles, precipitation methods, antibacterial, antifungal, characterizations
Procedia PDF Downloads 2073248 A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor
Authors: Ke-Jing Lee, Cheng-Jung Lee, Yu-Chi Chang, Li-Wen Wang, Yeong-Her Wang
Abstract:
To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays.Keywords: one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), resistive random access memory (RRAM), sol-gel
Procedia PDF Downloads 3543247 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.Keywords: gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model
Procedia PDF Downloads 1593246 Effect of Using a Mixture of Al2O3 Nanoparticles and 3-Aminopropyltriethoxysilane as the Sensing Membrane for Polysilicon Wire on pH Sensing
Authors: You-Lin Wu, Zong-Xian Wu, Jing-Jenn Lin, Shih-Hung Lin
Abstract:
In this work, a polysilicon wire (PSW) coated with a mixture of 3-aminopropyltriethoxysilane (r-APTES) and Al2O3 nanoparticles as the sensing membrane prepared with various Al2O3/r-APTES and dispersing agent/r-APTES ratios for pH sensing is studied. The r-APTES and dispersed Al2O3 nanoparticles mixture was directly transferred to PSW surface by solution phase deposition (SPD). It is found that using a mixture of Al2O3 nanoparticles and r-APTES as the sensing membrane help in improving the pH sensing of the PSW sensor and a 5 min SPD deposition time is the best. Dispersing agent is found to be necessary for better pH sensing when preparing the mixture of Al2O3 nanoparticles and r-APTES. The optimum condition for preparing the mixture is found to be Al2O3/r-APTES ratio of 2% and dispersing agent/r-APTES ratio of 0.3%.Keywords: al2o3 nanoparticles, ph sensing, polysilicon wire sensor, r-aptes
Procedia PDF Downloads 4133245 A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion
Authors: Ravi Kant, Banshi D. Gupta
Abstract:
The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness.Keywords: surface plasmon resonance, optical fiber, sensor, fenitrothion
Procedia PDF Downloads 2083244 Cover Layer Evaluation in Soil Organic Matter of Mixing and Compressed Unsaturated
Authors: Nayara Torres B. Acioli, José Fernando T. Jucá
Abstract:
The uncontrolled emission of gases in urban residues' embankment located near urban areas is a social and environmental problem, common in Brazilian cities. Several environmental impacts in the local and global scope may be generated by atmospheric air contamination by the biogas resulted from the decomposition of solid urban materials. In Brazil, the cities of small size figure mostly with 90% of all cities, with the population smaller than 50,000 inhabitants, according to the 2011 IBGE' census, most of the landfill covering layer is composed of clayey, pure soil. The embankments undertaken with pure soil may reach up to 60% of retention of methane, for the other 40% it may be dispersed into the atmosphere. In face of this figures the oxidative covering layer is granted some space of study, envisaging to reduce this perceptual available in the atmosphere, releasing, in spite of methane, carbonic gas which is almost 20 times as less polluting than Methane. This paper exposes the results of studies on the characteristics of the soil used for the oxidative coverage layer of the experimental embankment of Solid Urban Residues (SUR), built in Muribeca-PE, Brazil, supported of the Group of Solid Residues (GSR), located at Federal University of Pernambuco, through laboratory vacuum experiments (determining the characteristics curve), granularity, and permeability, that in soil with saturation over 85% offers dramatic drops in the test of permeability to the air, by little increments of water, based in the existing Brazilian norm for this procedure. The suction was studied, as in the other tests, from the division of prospection of an oxidative coverage layer of 60cm, in the upper half (0.1 m to 0.3 m) and lower half (0.4 m to 0.6 m). Therefore, the consequences to be presented from the lixiviation of the fine materials after 5 years of finalization of the embankment, what made its permeability increase. Concerning its humidity, it is most retained in the upper part, that comprises the compound, with a difference in the order of 8 percent the superior half to inferior half, retaining the least suction from the surface. These results reveal the efficiency of the oxidative coverage layer in retaining the rain water, it has a lower cost when compared to the other types of layer, offering larger availability of this layer as an alternative for a solution for the appropriate disposal of residues.Keywords: oxidative coverage layer, permeability, suction, saturation
Procedia PDF Downloads 2893243 Vibration Characteristics of Functionally Graded Thick Hollow Cylinders Using Galerkin Method
Authors: Pejman Daryabor, Kamal Mohammadi
Abstract:
In the present work, the study of vibration characteristics of a functionally graded thick hollow cylinder is investigated. The cylinder natural frequencies are obtained using Galerkin finite element method. The functionally graded cylinder is assumed to be made from many subcylinders. Each subcylinder is considered as an isotropic layer. Material’s properties in each layer are constant and functionally graded properties result by exponential function of layer radius in multilayer cylinder. To validate the FE results code, plane strain model of functionally graded cylinder are also modeled in ABAQUS. Analytical results are validated for both models. Also, a good agreement is found between the present results and those reported in the literature.Keywords: natural frequency, functionally graded material, finite element method, thick cylinder
Procedia PDF Downloads 4733242 Microfacies Analysis and Paleoenvironmental Trends of the Paleocene Farrud and Mabruk Reservoirs, Concession 11, West Sirte Basin, Libya
Authors: Nisreen Agha
Abstract:
Investigation of representative core samples under the petrological microscope reveals common petrographic and mineralogical characteristics with distinct faunal assemblages, allowing establishing of the microfacies associations and deducing the paleoenvironmental trends of the Paleocene Farrud and Mabruk rock units. Recognition of the early and post-diagenetic processes, particularly dolomitization and micritization, as well as dissolution and precipitation of spary drusy calcite as a new morphism process affecting the reservoir rocks, is established. The microfacies trends detected from the investigation of 46 core samples from Farrud member (Lower Paleocene) representing six wells; QQQ1-11, GG1-11, LLL1-11, RRR1-11, RRR40-11, and RRR45-11 indicate that the deposition was started within the realm of shallow supratidal and intertidal subenvironments followed by deeper environments of the shelf bays with maximum sea level during inner shelf environment where fossiliferous bioclastic packstone dominated. The microfacies associations determined in 8 core samples from two wells LLL1and RRR40 representing Mabruk Member (Upper Paleocene), indicate paleoenvironmental trends marked by sea level fluctuations accompanied with a relatively marine shelf bay conditions intervened with short-lived shallow intertidal and supratidal warm coastal sedimentation. As a result, dolostone, evaporitic dismicrites, and gypsiferous dolostone of supratidal characters were deposited. They reflect rapid oscillation of the sea level marked by drop land-ward shift of the sea shore deposition prevailed by supratidal gypsiferous dolostone and numerous ferruginous materials as clouds straining many parts of dolomite and surrounded the micritized fossils. This situation ends the deposition of the Farrud Member in most of the studied wells. On the other hand, the facies in the northern part of the Concession -11 field indicates deposition in a deeper marine setting than in the southern facies.Keywords: Farrud and Mabruk members, paleocene, microfacies associations, diagenesis, sea level oscillation, depositional environments
Procedia PDF Downloads 763241 Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence
Authors: Evrim Colak, Andriy E. Serebryannikov, Pavel V. Usik, Ekmel Ozbay
Abstract:
Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges.Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality
Procedia PDF Downloads 1843240 Studies on Radio Frequency Sputtered Copper Zinc Tin Sulphide Absorber Layers for Thin Film Solar Cells
Authors: G. Balaji, R. Balasundaraprabhu, S. Prasanna, M. D. Kannan, K. Sivakumaran, David Mcilroy
Abstract:
Copper Zin tin sulphide (Cu2ZnSnS4 or CZTS) is found to be better alternative to Copper Indium gallium diselenide as absorber layers in thin film based solar cells due to the utilisation of earth-abundant materials in the midst of lower toxicity. In the present study, Cu2ZnSnS4 thin films were prepared on soda lime glass using (CuS, ZnS, SnS) targets and were deposited by three different stacking orders, using RF Magnetron sputtering. The substrate temperature was fixed at 300 °C during the depositions. CZTS thin films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-Vis-NIR spectroscopy. All the samples exhibited X-ray peaks pertaining to (112) kesterite phase of CZTS, along with the presence of a predominant wurtzite CZTS phase. X-ray photoelectron spectroscopy revealed the presence of all the elements in all the samples. The change in stacking order clearly shows that it affects the structural and phase properties of the films. Relative atomic concentrations of Zn, Cu, Sn and S, which are determined by high-resolution XPS core level spectra integrated peak areas revealed that the CZTS films exhibit inhomogeneity in both stoichiometry and elemental composition. Raman spectroscopy studies on the film showed the presence of CZTS phase. The energy band gap of the CZTS thin films was found to be in the range of 1.5 eV to 1.6 eV. The films were then annealed at 450 °C for 5 hrs and it was found that the predominant nature of the X-ray peaks has transformed from Wurtzite to Kesterite phase which is highly desirable for absorber layers in thin film solar cells. The optimized CZTS layer was used as an absorber layer in thin film solar cells. ZnS and CdS were used as buffer layers which in turn prepared by Hot wall epitaxy technique. Gallium doped Zinc oxide was used as a transparent conducting oxide. The solar cell structure Glass/Mo/CZTS/CdS or ZnS/GZO has been fabricated, and solar cell parameters were measured.Keywords: earth-abundant, Kesterite, RF sputtering, thin film solar cells
Procedia PDF Downloads 2803239 Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array
Authors: Badar Muneer, Waseem Shabir, Faisal Karim Shaikh
Abstract:
Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA.Keywords: feeding network, laminated waveguide, PIFA, transverse slots
Procedia PDF Downloads 3113238 The Role of Poling Protocol on Augmentation of Magnetoelectricity in BCZT/NZFO Layered Composites
Authors: Pankhuri Bansal, Sanjeev Kumar
Abstract:
We examined the exotic role of electrical poling of layered BCZT-NZFO bulk composite for sustainable advancement of magnetoelectric (ME) technology. Practically, it seems quite difficult to access the full potential of ME composites due to their weak ME coupling performances. Using a standard poling protocol, we successfully deployed the coupling performance of laminated ME composite, comprised of a ferroelectric (FE) layer of BCZT and a ferrite layer of NZFO. However, the ME coupling constant of laminated composite is optimized by lowering the volume fraction of the FE component to strengthen the mechanical strain in the piezoelectric layer while fixing the thickness of the magnetostrictive ferrite layer. Here, we employed systematic zero field cooled (ZFC) and field cooled (FC) electrical poling protocol on morphotropic phase boundary (MPB) based BCZT composition, well-appreciated for it’s remarkable electromechanical activity. We report a record augmentation in magnetoelectric coupling as a consequence of a prudent field-cooled poling mechanism. On the basis of our findings, we emphasize that the degree of magnetoelectricity may be significantly improved for the miniaturization of efficient devices via proper execution of the poling technique.Keywords: magnetoelectric, lead-free, ferroelctric, ferromagnetic, energy harvesting
Procedia PDF Downloads 433237 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating
Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful
Abstract:
A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.Keywords: biomaterial, flame coating, antibacterial activity, stainless steel
Procedia PDF Downloads 973236 Possibility of Creating Polygon Layers from Raster Layers Obtained by using Classic Image Processing Software: Case of Geological Map of Rwanda
Authors: Louis Nahimana
Abstract:
Most maps are in a raster or pdf format and it is not easy to get vector layers of published maps. Faced to the production of geological simplified map of the northern Lake Tanganyika countries without geological information in vector format, I tried a method of obtaining vector layers from raster layers created from geological maps of Rwanda and DR Congo in pdf and jpg format. The procedure was as follows: The original raster maps were georeferenced using ArcGIS10.2. Under Adobe Photoshop, map areas with the same color corresponding to a lithostratigraphic unit were selected all over the map and saved in a specific raster layer. Using the same image processing software Adobe Photoshop, each RGB raster layer was converted in grayscale type and improved before importation in ArcGIS10. After georeferencing, each lithostratigraphic raster layer was transformed into a multitude of polygons with the tool "Raster to Polygon (Conversion)". Thereafter, tool "Aggregate Polygons (Cartography)" allowed obtaining a single polygon layer. Repeating the same steps for each color corresponding to a homogeneous rock unit, it was possible to reconstruct the simplified geological constitution of Rwanda and the Democratic Republic of Congo in vector format. By using the tool «Append (Management)», vector layers obtained were combined with those from Burundi to achieve vector layers of the geology of the « Northern Lake Tanganyika countries ».Keywords: creating raster layer under image processing software, raster to polygon, aggregate polygons, adobe photoshop
Procedia PDF Downloads 442