Search results for: particles concentration
1048 Variability and Stability of Bread and Durum Wheat for Phytic Acid Content
Authors: Gordana Branković, Vesna Dragičević, Dejan Dodig, Desimir Knežević, Srbislav Denčić, Gordana Šurlan-Momirović
Abstract:
Phytic acid is a major pool in the flux of phosphorus through agroecosystems and represents a sum equivalent to > 50% of all phosphorus fertilizer used annually. Nutrition rich in phytic acid can substantially decrease micronutrients apsorption as calcium, zink, iron, manganese, copper due to phytate salts excretion by human and non-ruminant animals as poultry, swine and fish, having in common very scarce phytase activity, and consequently the ability to digest and utilize phytic acid, thus phytic acid derived phosphorus in animal waste contributes to water pollution. The tested accessions consisted of 15 genotypes of bread wheat (Triticum aestivum L. ssp. vulgare) and of 15 genotypes of durum wheat (Triticum durum Desf.). The trials were sown at the three test sites in Serbia: Rimski Šančevi (RS) (45º19´51´´N; 19º50´59´´E), Zemun Polje (ZP) (44º52´N; 20º19´E) and Padinska Skela (PS) (44º57´N 20º26´E) during two vegetation seasons 2010-2011 and 2011-2012. The experimental design was randomized complete block design with four replications. The elementary plot consisted of 3 internal rows of 0.6 m2 area (3 × 0.2 m × 1 m). Grains were grinded with Laboratory Mill 120 Perten (“Perten”, Sweden) (particles size < 500 μm) and flour was used for the analysis. Phytic acid grain content was determined spectrophotometrically with the Shimadzu UV-1601 spectrophotometer (Shimadzu Corporation, Japan). Objectives of this study were to determine: i) variability and stability of the phytic acid content among selected genotypes of bread and durum wheat, ii) predominant source of variation regarding genotype (G), environment (E) and genotype × environment interaction (GEI) from the multi-environment trial, iii) influence of climatic variables on the GEI for the phytic acid content. Based on the analysis of variance it had been determined that the variation of phytic acid content was predominantly influenced by environment in durum wheat, while the GEI prevailed for the variation of the phytic acid content in bread wheat. Phytic acid content expressed on the dry mass basis was in the range 14.21-17.86 mg g-1 with the average of 16.05 mg g-1 for bread wheat and 14.63-16.78 mg g-1 with the average of 15.91 mg g-1 for durum wheat. Average-environment coordination view of the genotype by environment (GGE) biplot was used for the selection of the most desirable genotypes for breeding for low phytic acid content in the sense of good stability and lower level of phytic acid content. The most desirable genotypes of bread and durum wheat for breeding for phytic acid were Apache and 37EDUYT /07 No. 7849. Models of climatic factors in the highest percentage (> 91%) were useful in interpreting GEI for phytic acid content, and included relative humidity in June, sunshine hours in April, mean temperature in April and winter moisture reserves for genotypes of bread wheat, as well as precipitation in June and April, maximum temperature in April and mean temperature in June for genotypes of durum wheat.Keywords: genotype × environment interaction, phytic acid, stability, variability
Procedia PDF Downloads 3911047 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery
Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen
Abstract:
The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates
Procedia PDF Downloads 531046 Oxidative Stability of Methyl and Ethyl Microalgae Biodiesel with Synthetic Antioxidants
Authors: Willian L. G. Silva, Fabio R. M. Batista, Matthieu Tubino
Abstract:
Microalgae can be considered a potential source of oil for biodiesel synthesis since this microorganism can grow rapidly in either fresh or salty water, not competing with food production. There are several favorable conditions in Brazil for this type of culture due to the country’s great amount of water. Another very positive aspect of this type of culture is its ability to fix atmospheric CO2, contributing to the reduction of greenhouse gases and their effects on global warming. Despite this biodiesel environmental advantages it degrades resulting in changes in its physical and chemical properties. In this work, the methyl and ethyl microalgae biodiesel oxidative stability was studied in the absence and presence of a synthetic antioxidant. The synthetic antioxidants used were propyl gallate (PG) and tert-butylhydroquinone (TBHQ), at a 0,12% (w/w) concentration. The biodiesel mixture was kept in a sealed glass flask, sheltered from light, and at room temperature (about 25 ºC) for 180 days. During this period, aliquots from this biodiesel were subjected to induced degradation by the Rancimat method, which determines an important quality parameter, provided in the current methods, and is used to monitor the degradation processes that occur in the biodiesel over time. The induction period (IP) expresses the biodiesel oxidative stability. It was stablished that the minimum accepted IP value for biodiesel is 8 hours. The results show that ethylic biodiesel increased its IP value from 7,6 hours to 31 hours when using PG, and to 67 hours when using TBHQ, exceeding the minimum accepted IP value. When the antioxidants were added to the methylic biodiesel samples, the IP was raised to 28 hours when using PG, and to 62 hours when using TBHQ. These values were maintained throughout the entire period of study (180 days). On the other hand, the biodiesel samples without additives maintained an IP above the allowed value for only 30 days. Therefore, in order to preserve microalgae biodiesel for longer periods of time, it is necessary to add antioxidants to both derivatives, i.e., the ethylic and methylic.Keywords: biodiesel, microalgae, oxidative stability, storage, synthetic antioxidants
Procedia PDF Downloads 4601045 Study of the Genotoxic Potential of Plant Growth Regulator Ethephon
Authors: Mahshid Hodjat, Maryam Baeeri, Mohammad Amin Rezvanfar, Mohammad Abdollahi
Abstract:
Ethephon is one of the most widely used plant growth regulator in agriculture that its application has been increased in recent years. The toxicity of organophosphate compounds is mostly attributed to their potent inhibition of acetylcholinesterase and their involvement in neurodegenerative disease. Although there are few reports on butyrylcholinesterase inhibitory role of ethephon, still there is no evidence on neurotoxicity and genotoxicity of this compound. The aim of the current study is to assess the potential genotoxic effect of ethephon using two genotoxic endpoints; γH2AX expression and comet assay on embryonic murine fibroblast. γH2AX serves as an early and sensitive biomarker for evaluating the genotoxic effects of chemicals. Oxidative stress biomarkers, including intracellular reactive oxygen species, lipid peroxidation and antioxidant capacity were also examined. The results showed a significant increase in cell proliferation 24h post-treatment with 10, 40,160µg/ml ethephon. The γH2AX expression and γH2AX foci count per cell were increased at low concentration of ethephon that was concomitant with increased DNA damage break at 40 and 160 µg/ml as illustrated by increased comet tail moment. A significant increase in lipid peroxidation and ROS formation were observed at 160 µg/ml and higher doses. The results showed that low-dose of ethephon promoted cell proliferation while induce DNA damage, raising the possibility of ethephon mutagenicity. Ethephon-induced genotoxic effect of low dose might not related to oxidative damage. However, ethephon was found to increase oxidative stress at higher doses, lead to cellular cytotoxicity. Taken together, all data indicated that ethylene, deserves more attention as a plant regulator with potential genotoxicity for which appropriate control is needed to reduce its usage.Keywords: ethephon, DNA damage, γH2AX, oxidative stress
Procedia PDF Downloads 3071044 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy
Procedia PDF Downloads 4421043 Assessment of Air Quality Around Western Refinery in Libya: Mobile Monitoring
Authors: A. Elmethnani, A. Jroud
Abstract:
This coastal crude oil refinery is situated north of a big city west of Tripoli; the city then could be highly prone to downwind refinery emissions where the NNE wind direction is prevailing through most seasons of the year. Furthermore, due to the absence of an air quality monitoring network and scarce emission data available for the neighboring community, nearby residents have serious worries about the impacts of the oil refining operations on local air quality. In responding to these concerns, a short term survey has performed for three consecutive days where a semi-continues mobile monitoring approach has developed effectively in this study; the monitoring station (Compact AQM 65 AeroQual) was mounted on a vehicle to move quickly between locations, measurements of 10 minutes averaging of 60 seconds then been taken at each fixed sampling point. The downwind ambient concentration of CO, H₂S, NOₓ, NO₂, SO₂, PM₁, PM₂.₅ PM₁₀, and TSP were measured at carefully chosen sampling locations, ranging from 200m nearby the fence-line passing through the city center up to 4.7 km east to attain best spatial coverage. Results showed worrying levels of PM₂.₅ PM₁₀, and TSP at one sampling location in the city center, southeast of the refinery site, with an average mean of 16.395μg/m³, 33.021μg/m³, and 42.426μg/m³ respectively, which could be attributed to road traffic. No significant concentrations have been detected for other pollutants of interest over the study area, as levels observed for CO, SO₂, H₂S, NOₓ, and NO₂ haven’t respectively exceeded 1.707 ppm, 0.021ppm, 0.134 ppm, 0.4582 ppm, and 0.0018 ppm, which was at the same sampling locations as well. Although it wasn’t possible to compare the results with the Libyan air quality standards due to the difference in the averaging time period, the technique was adequate for the baseline air quality screening procedure. Overall, findings primarily suggest modeling of dispersion of the refinery emissions to assess the likely impact and spatial-temporal distribution of air pollutants.Keywords: air quality, mobil monitoring, oil refinery
Procedia PDF Downloads 951042 Advanced Structural Analysis of Energy Storage Materials
Authors: Disha Gupta
Abstract:
The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD
Procedia PDF Downloads 1481041 Effect of Cellulase Pretreatment for n-Hexane Extraction of Oil from Garden Cress Seeds
Authors: Boutemak Khalida, Dahmani Siham
Abstract:
Garden cress (Lepidium Sativum L.) belonging to the family Brassicaceae, is edible growing annual herb. Its various parts (roots, leaves and seeds) have been used to treat various human ailments. Its seed extracts have been screened for various biological activities like hypotensive, antimicrobial, bronchodilator, hypoglycaemic and antianemic. The aim of the present study is to optimize the process parameters (cellulase concentration and incubation time) of enzymatic pre-treatment of the garden cress seeds and to evaluate the effect of cellulase pre-treatment of the crushed seeds on the oil yield, physico-chemical properties and antibacterial activity and comparing to non-enzymatic method. The optimum parameters of cellulase pre-treatment were as follows: cellulase of 0,1% w/w and incubation time of 2h. After enzymatic pre-treatment, the oil was extracted by n-hexane for 1.5 h, the oil yield was 4,01% for cellulase pre-treatment as against 10,99% in the control sample. The decrease in yield might be caused a result of mucilage. Garden cress seeds are covered with a layer of mucilage which gels on contact with water. At the same time, the antibacterial activity was carried out using agar diffusion method against 4 food-borne pathogens (Escherichia coli, Salmonella typhi,Staphylococcus aureus, Bacillus subtilis). The results showed that bacterial strains are very sensitive to the oil with cellulase pre-treatment. Staphylococcus aureus is extremely sensitive with the largest zone of inhibition (40 mm), Escherichia coli and salmonella typhi had a very sensitive to the oil with a zone of inhibition (26 mm). Bacillus subtilizes is averagely sensitive which gave an inhibition of 16 mm. But it does not exhibit sensivity to the oil without enzymatic pre-treatment with a zone inhibition (< 8 mm). Enzymatic pre-treatment could be useful for antimicrobial activity of the oil, and hold a good potential for use in food and pharmaceutical industries.Keywords: Lepidium sativum L., cellulase, enzymatic pretreatment, antibacterial activity.
Procedia PDF Downloads 4601040 Analysing the Mesoscale Variations of 7Be and 210Pb Concentrations in a Complex Orography, Guadalquivir Valley, Southern Spain
Authors: M. A. Hernández-Ceballos, E. G. San Miguel, C. Galán, J. P. Bolívar
Abstract:
The evolution of 7Be and 210Pb activity concentrations in surface air along the Guadalquivir valley (southern Iberian Peninsula) is presented in this study. Samples collected for 48 h, every fifteen days, from September 2012 to November 2013 at two sampling sites (Huelva city in the mouth and Cordoba city in the middle (located 250 km far away)), are used to 1) analysing the spatial variability and 2) understanding the influence of wind conditions on 7Be and 210Pb. Similar average concentrations were registered along the valley. The mean 7Be activity concentration was 4.46 ± 0.21 mBq/m3 at Huelva and 4.33 ± 0.20 mBq/m3 at Cordoba, although registering higher maximum and minimum values at Cordoba (9.44 mBq/m3 and 1.80 mBq/m3) than at Huelva (7.95 mBq/m3 and 1.04 mBq/m3). No significant differences were observed in the 210Pb mean activity concentrations between Cordoba (0.40 ± 0.04 mBq/m3) and Huelva (0.35 ± 0.04 mBq/m3), although the maximum (1.10 mBq/m3 and 0.87 mBq/m3) and minimum (0.02 mBq/m3 and 0.04 mBq/m3) values were recorded in Cordoba. Although similar average concentrations were obtained in both sites, the temporal evolution of both natural radionuclides presents differences between them. The meteorological analysis of two sampling periods, in which large differences on 7Be and 210Pb concentrations are observed, indicates the different impact of surface and upper wind dynamics. The analysis reveals the different impact of the two sea-land breeze patterns usually observed along the valley (pure and non-pure) and the corresponding air masses at higher layers associated with each one. The pure, with short development (around 30 km inland) and increasing accumulation process, favours high concentrations of both radionuclides in Huelva (coastal site), while the non-pure, with winds sweeping the valley until arrive to Cordoba (250 km far away), causes high activity values at this site. These results reveal the impact of mesoscale conditions on these two natural radionuclides, and the importance of these circulations on its spatial and temporal variability.Keywords: 7Be, 210Pb, air masses, mesoscale process
Procedia PDF Downloads 4081039 Rapid Assessment the Ability of Forest Vegetation in Kulonprogo to Store Carbon Using Multispectral Satellite Imagery and Vegetation Index
Authors: Ima Rahmawati, Nur Hafizul Kalam
Abstract:
Development of industrial and economic sectors in various countries very rapidly caused raising the greenhouse gas (GHG) emissions. Greenhouse gases are dominated by carbon dioxide (CO2) and methane (CH4) in the atmosphere that make the surface temperature of the earth always increase. The increasing gases caused by incomplete combustion of fossil fuels such as petroleum and coals and also high rate of deforestation. Yogyakarta Special Province which every year always become tourist destination, has a great potency in increasing of greenhouse gas emissions mainly from the incomplete combustion. One of effort to reduce the concentration of gases in the atmosphere is keeping and empowering the existing forests in the Province of Yogyakarta, especially forest in Kulonprogro is to be maintained the greenness so that it can absorb and store carbon maximally. Remote sensing technology can be used to determine the ability of forests to absorb carbon and it is connected to the density of vegetation. The purpose of this study is to determine the density of the biomass of forest vegetation and determine the ability of forests to store carbon through Photo-interpretation and Geographic Information System approach. Remote sensing imagery that used in this study is LANDSAT 8 OLI year 2015 recording. LANDSAT 8 OLI imagery has 30 meters spatial resolution for multispectral bands and it can give general overview the condition of the carbon stored from every density of existing vegetation. The method is the transformation of vegetation index combined with allometric calculation of field data then doing regression analysis. The results are model maps of density and capability level of forest vegetation in Kulonprogro, Yogyakarta in storing carbon.Keywords: remote sensing, carbon, kulonprogo, forest vegetation, vegetation index
Procedia PDF Downloads 3951038 Polyphenols: Isolation, Purification, Characterization and Evaluation of Various Biological Activities
Authors: Abdullah Ijaz Hussain
Abstract:
The purpose of this study was to explore the cardioprotective and anti-inflammatory effects of polyphenol-rich extracts from cucurbitaceae family members, including Cucurbita pepo, C. moschata, and C. maxima, on rat models. The initial crude extracts from these cucurbits were further separated into hexane, chloroform, ethyl acetate, butanol, and aqueous ethanol fractions, labeled as HEF, CHF, EAF, BUF, and AEF, respectively. Of these, AEF yielded the highest amount, followed by BUF, HEF, EAF, and CHF in descending order. Notably, EAF contained the greatest concentration of total phenolics, flavonoids, and flavonols. In terms of antioxidant activity, EAF demonstrated the most potent DPPH radical scavenging capability, succeeded by CHF, BUF, AEF, and HEF. EAF also exhibited the strongest reducing potential among the fractions. RP-HPLC analysis identified various phenolic acids and flavonoids across the cucurbita fractions, including ferulic acid, vanillic acid, p-coumeric acid, gallic acid, p-hydroxybenzoic acid, chlorogenic acid, catechin, rutin, quercetin, myricetin, and kaempferol. Doses of 250 and 500 mg/kg body weight of cucurbita fractions were administered orally to male WKY rats daily for 21 days. The rats' body weight, heart rate, and blood pressure were monitored bi-weekly. Oxidative status assessments were conducted using plasma samples to measure levels of malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH), nitric oxide (NO), and total antioxidant capacity (TAC). At the study's conclusion, surgical assessments, including blood pressure, pulse wave velocity (PWV), and echocardiograms (ECG) were performed. The findings indicated that EAF from cucurbita significantly enhanced antihypertensive and antioxidant activities in the SHR rat group.Keywords: polyphenols, chlorogenic acid, antihypertensive activity, oxidative stress, lcms
Procedia PDF Downloads 201037 Incorporating Circular Economy into Passive Design Strategies in Tropical Nigeria
Authors: Noah G. Akhimien, Eshrar Latif
Abstract:
The natural environment is in need for an urgent rescue due to dilapidation and recession of resources. Passive design strategies have proven to be one of the effective ways to reduce CO2 emissions and to improve building performance. On the other hand, there is a huge drop in material availability due to poor recycling culture. Consequently, building waste pose environmental hazard due to unrecycled building materials from construction and deconstruction. Buildings are seen to be material banks for a circular economy, therefore incorporating circular economy into passive housing will not only safe guide the climate but also improve resource efficiency. The study focuses on incorporating a circular economy in passive design strategies for an affordable energy and resource efficient residential building in Nigeria. Carbon dioxide (CO2) concentration is still on the increase as buildings are responsible for a significant amount of this emission globally. Therefore, prompt measures need to be taken to combat the effect of global warming and associated threats. Nigeria is rapidly growing in human population, resources on the other hand have receded greatly, and there is an abrupt need for recycling even in the built environment. It is necessary that Nigeria responds to these challenges effectively and efficiently considering building resource and energy. Passive design strategies were assessed using simulations to obtain qualitative and quantitative data which were inferred to case studies as it relates to the Nigeria climate. Building materials were analysed using the ReSOLVE model in order to explore possible recycling phase. This provided relevant information and strategies to illustrate the possibility of circular economy in passive buildings. The study offers an alternative approach, as it is the general principle for the reworking of an economy on ecological lines in passive housing and by closing material loops in circular economy.Keywords: building, circular, efficiency, environment, sustainability
Procedia PDF Downloads 2521036 Subcritical and Supercritical Water Gasification of Xylose
Authors: Shyh-Ming Chern, Te-Hsiu Tang
Abstract:
Hemicellulose is one of the major constituents of all plant cell walls, making up 15-25% of dry wood. It is a biopolymer from many different sugar monomers, including pentoses, like xylose, and hexoses, like mannose. In an effort to gasify real biomass in subcritical and supercritical water in a single process, it is necessary to understand the gasification of hemicellulose, in addition to cellulose and lignin, in subcritical and supercritical water. In the present study, xylose is chosen as the model compound for hemicellulose, since it has the largest amount in most hardwoods. Xylose is gasified in subcritical and supercritical water for the production of higher-valued gaseous products. Experiments were conducted with a 16-ml autoclave batch-type reactor. Hydrogen peroxide is adopted as the oxidant in an attempt to promote the gasification yield. The major operating parameters for the gasification include reaction temperature (400 - 600°C), reaction pressure (5 - 25 MPa), the concentration of xylose (0.05 and 0.30 M), and level of oxidant added (0 and 0.25 chemical oxygen demand). 102 experimental runs were completed out of 46 different set of experimental conditions. Product gases were analyzed with a GC-TCD and determined to be mainly composed of H₂ (10 – 74 mol. %), CO (1 – 56 mol. %), CH₄ (1 – 27 mol. %), CO₂ (10 – 50 mol. %), and C₂H₆ (0 – 8 mol. %). It has been found that the gas yield (amount of gas produced per gram of xylose gasified), higher heating value (HHV) of the dry product gas, and energy yield (energy stored in the product gas divided by the energy stored in xylose) all increase significantly with rising temperature and moderately with reducing pressure. The overall best operating condition occurred at 873 K and 10 MPa, with a gas yield of 54 mmol/g of xylose, a gas HHV of 440 kJ/mol, and an energy yield of 1.3. A seemingly unreasonably energy yield of greater than unity resulted from the external heating employed in the experiments to drive the gasification process. It is concluded that xylose can be completely gasified in subcritical and supercritical water under proper operating conditions. The addition of oxidant does not promote the gasification of xylose.Keywords: gasification, subcritical water, supercritical water, xylose
Procedia PDF Downloads 2361035 Influence of High Hydrostatic Pressure Application (HHP) and Osmotic Dehydration (DO) as a Pretreatment to Hot –Air Drying of Abalone (Haliotis Rufescens) Cubes
Authors: Teresa Roco, Mario Perez Won, Roberto Lemus-Mondaca, Sebastian Pizarro
Abstract:
This research presents the simultaneous application of high hydrostatic pressure application (HHP) and osmotic dehydration (DO) as a pretreatment to hot –air drying of abalone cubes. The drying time was reduced to 6 hours at 60ºC as compared to the abalone drying by only a 15% NaCl osmotic pretreatment and at an atmospheric pressure that took 10 hours to dry at the same temperature. This was due to the salt and HHP saturation since osmotic pressure increases as water loss increases, thus needing a more reduced time in a convective drying, so water effective diffusion in drying plays an important role in this research. Different working conditions as pressure (350-550 MPa), pressure time ( 5-10 min), salt concentration, NaCl 15% and drying temperature (40-60ºC) will be optimized according to kinetic parameters of each mathematical model (Table 1). The models used for drying experimental curves were those corresponding to Weibull, Logarithmic and Midilli-Kucuk, but the latest one was the best fitted to the experimental data (Figure 1). The values for water effective diffusivity varied from 4.54 – to 9.95x10-9 m2/s for the 8 curves (DO+HHP) whereas the control samples (neither DO nor HHP) varied among 4.35 and 5.60x10-9 m2/s, for 40 and 60°C, respectively and as to drying by osmotic pretreatment at 15% NaCl from 3.804 to 4.36x10-9 m2/s at the same temperatures. Finally as to energy and efficiency consumption values for drying process (control and pretreated samples) it was found that they would be within a range of 777-1815 KJ/Kg and 8.22–19.20% respectively. Therefore, a knowledge concerning the drying kinetic as well as the consumption energy, in addition to knowledge about the quality of abalones subjected to an osmotic pretreatment (DO) and a high hydrostatic pressure (HHP) are extremely important to an industrial level so that the drying process can be successful at different pretreatment conditions and/or variable processes.Keywords: abalone, convective drying, high pressure hydrostatic, pretreatments, diffusion coefficient
Procedia PDF Downloads 6641034 Nano Sol Based Solar Responsive Smart Window for Aircraft
Authors: K. A. D. D. Kuruppu, R. M. De Silva, K. M. N. De Silva
Abstract:
This research work was based on developing a solar responsive aircraft window panel which can be used as a self-cleaning surface and also a surface which degrade Volatile Organic compounds (VOC) available in the aircraft cabin areas. Further, this surface has the potential of harvesting energy from Solar. The transparent inorganic nano sol solution was prepared. The obtained sol solution was characterized using X-ray diffraction, Particle size analyzer and FT-IR. The existing nano material which shows the similar characteristics was also used to compare the efficiencies with the newly prepared nano sol. Nano sol solution was coated on cleaned four aircraft window pieces separately using a spin coater machine. The existing nano material was dissolved and prepared a solution having the similar concentration as nano sol solution. Pre-cleaned four aircraft window pieces were coated with this solution and the rest cleaned four aircraft window pieces were considered as control samples. The control samples were uncoated from anything. All the window pieces were allowed to dry at room temperature. All the twelve aircraft window pieces were uniform in all the factors other than the type of coating. The surface morphologies of the samples were analyzed using SEM. The photocatalytic degradation of VOC was determined after incorporating gas of Toluene to each sample followed by the analysis done by UV-VIS spectroscopy. The self- cleaning capabilities were analyzed after adding of several types of stains on the window pieces. The self-cleaning property of each sample was analyzed using UV-VIS spectroscopy. The highest photocatalytic degradation of Volatile Organic compound and the highest photocatalytic degradation of stains were obtained for the samples which were coated by the nano sol solution. Therefore, the experimental results clearly show that there is a potential of using this nano sol in aircraft window pieces which favors the self-cleaning property as well as efficient photocatalytic degradation of VOC gases. This will ensure safer environment inside aircraft cabins.Keywords: aircraft, nano, smart windows, solar
Procedia PDF Downloads 2551033 In vitro Control of Aedes aegypti Larvae Using Beauveria bassiana
Authors: R. O. B. Bitencourt, F. S. Farias, M. C. Freitas, C. J. R. Balduino, E.S. Mesquita, A. R. C. Corval, P. S. Gôlo, E. G. Pontes, V. R. E. P. Bittencourt, I. C. Angelo
Abstract:
Aedes aegypti larval survival rate was assessed after exposure to blastopores or conidia (mineral oil-in-water formulation or aqueous suspension) of Beauveria bassiana CG 479 propagules (blastospores or conidia). Here, mineral oil was used in the fungal formulation to control Aedes aegypti larvae. 1%, 0.5% or 0.1% mineral oil-in-water solutions were used to evaluate mineral oil toxicity for mosquito larvae. In the oil toxicity test, 0.1% mineral oil solution reduced only 4.5% larval survival; accordingly, this concentration was chosen for fungal oil-in-water formulations. Aqueous suspensions were prepared using 0.01% Tween 80® in sterile dechlorinated water. A. aegypti larvae (L2) were exposed in aqueous suspensions or mineral oil-in-water fungal formulations at 1×107 propagules mL-1; the survival rate (assessed daily, for 7 days) and the median survival time (S50) were calculated. Seven days after the treatment, mosquito larvae survival rates were 8.56%, 16.22%, 58%, and 42.56% after exposure to oil-in-water blastospores, oil-in-water conidia, blastospores aqueous suspension and conidia aqueous suspension (respectively). Larvae exposed to 0.01% Tween 80® had 100% survival rate and the ones treated with 0.1% mineral oil-in-water had 95.11% survival rate. Larvae treated with conidia (regardless the presence of oil) or treated with blastospores formulation had survival median time (S50) ranging from one to two days. S50 was not determined (ND) when larvae were exposed to blastospores aqueous suspension, 0.01% Tween 80® (aqueous control) or 0.1% mineral oil-in-water formulation (oil control). B. bassiana conidia and blastospores (mineral oil-in-water formulated or suspended in water) had potential to control A. aegypti mosquito larvae, despite mineral oil-in-water formulation yielded better results in comparison to aqueous suspensions. Here, B. bassiana CG 479 isolate is suggested as a potential biocontrol agent of A. aegypti mosquito larvae.Keywords: blastospores, formulation, mosquitoes, conidia
Procedia PDF Downloads 1851032 Child Abuse: Emotional, Physical, Neglect, Sexual and the Psychological Effects: A Case Scenario in Lagos State
Authors: Aminu Ololade Matilda
Abstract:
Child abuse is a significant issue worldwide, affecting the socio-development and mental and physical health of young individuals. It is the maltreatment of a child by an adult or a child. This paper focuses on child abuse in Communities in Lagos State. The aim of this study is to investigate the extent of child abuse and its impact on the mood, social activities, self-worth, concentration, and academic performance of children in Communities in Lagos State. The primary research instrument used in this study was the interview (Forensic), which consisted of two sections. The first section gathered data on the details of the child and the forms and impacts of abuse experienced, while the second section focused on parental style. The study found that children who experienced various forms of abuse, such as emotional, neglect, physical, or sexual abuse, were hesitant to report it out of fear of threats or even death from the abuser. These abused children displayed withdrawn behaviour, depression, and low self-worth and underperformed academically compared to their peers who did not experience abuse. The findings align with socio-learning and intergenerational transmission of violence theories, which suggest that parents and caregivers who engage in child abuse often do so because they themselves experienced or witnessed abuse as children, thereby normalizing violence. The study highlights the prevalent issue of child abuse in Lagos State and emphasizes the need for advocacy programs and capacity building to raise awareness about child abuse and prevention. The distribution of the Child’s Rights Act in various sectors is also recommended to underscore the importance of protecting the rights of children. Additionally, the inclusion of courses on child abuse in the school curriculum is proposed to ensure children are educated on recognizing and reporting abuse.Keywords: abuse, child, awareness, effects, emotional, neglect, physical, psychological, sexual, recognize, reporting, right
Procedia PDF Downloads 791031 Bio-Estimation of Selected Heavy Metals in Shellfish and Their Surrounding Environmental Media
Authors: Ebeed A. Saleh, Kadry M. Sadek, Safaa H. Ghorbal
Abstract:
Due to the determination of the pollution status of fresh resources in the Egyptian territorial waters is very important for public health, this study was carried out to reveal the levels of heavy metals in the shellfish and their environment and its relation to the highly developed industrial activities in those areas. A total of 100 shellfish samples from the Rosetta, Edku, El-Maadiya, Abo-Kir and El-Max coasts [10 crustaceans (shrimp) and 10 mollusks (oysters)] were randomly collected from each coast. Additionally, 10 samples from both the water and the sediment were collected from each coast. Each collected sample was analyzed for cadmium, chromium, copper, lead and zinc residues using a Perkin Elmer atomic absorption spectrophotometer (AAS). The results showed that the levels of heavy metals were higher in the water and sediment from Abo-Kir. The heavy metal levels decreased successively for the Rosetta, Edku, El-Maadiya, and El-Max coasts, and the concentrations of heavy metals, except copper and zinc, in shellfish exhibited the same pattern. For the concentration of heavy metals in shellfish tissue, the highest was zinc and the concentrations decreased successively for copper, lead, chromium and cadmium for all coasts, except the Abo-Kir coast, where the chromium level was highest and the other metals decreased successively for zinc, copper, lead and cadmium. In Rosetta, chromium was higher only in the mollusks, while the level of this metal was lower in the crustaceans; this trend was observed at the Edku, El-Maadiya and El-Max coasts as well. Herein, we discuss the importance of such contamination for public health and the sources of shellfish contamination with heavy metals. We suggest measures to minimize and prevent these pollutants in the aquatic environment and, furthermore, how to protect humans from excessive intake.Keywords: atomic absorption, heavy metals, sediment, shellfish, water
Procedia PDF Downloads 3181030 Fluvial Stage-Discharge Rating of a Selected Reach of Jamuna River
Authors: Makduma Zahan Badhan, M. Abdul Matin
Abstract:
A study has been undertaken to develop a fluvial stage-discharge rating curve for Jamuna River. Past Cross-sectional survey of Jamuna River reach within Sirajgonj and Tangail has been analyzed. The analysis includes the estimation of discharge carrying capacity, possible maximum scour depth and sediment transport capacity of the selected reaches. To predict the discharge and sediment carrying capacity, stream flow data which include cross-sectional area, top width, water surface slope and median diameter of the bed material of selected stations have been collected and some are calculated from reduced level data. A well-known resistance equation has been adopted and modified to a simple form in order to be used in the present analysis. The modified resistance equation has been used to calculate the mean velocity through the channel sections. In addition, a sediment transport equation has been applied for the prediction of transport capacity of the various sections. Results show that the existing drainage sections of Jamuna channel reach under study have adequate carrying capacity under existing bank-full conditions, but these reaches are subject to bed erosion even in low flow situations. Regarding sediment transport rate, it can be estimated that the channel flow has a relatively high range of bed material concentration. Finally, stage discharge curves for various sections have been developed. Based on stage-discharge rating data of various sections, water surface profile and sediment-rating curve of Jamuna River have been developed and also the flooding conditions have been analyzed from predicted water surface profile.Keywords: discharge rating, flow profile, fluvial, sediment rating
Procedia PDF Downloads 1831029 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050
Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva
Abstract:
Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta
Procedia PDF Downloads 801028 Mixed Hydrotropic Zaleplon Oral Tablets: Formulation and Neuropharmacological Effect on Plasma GABA Level
Authors: Ghada A. Abdelbary, Maha M. Amin, Mostafa Abdelmoteleb
Abstract:
Zaleplon (ZP) is a non-benzodiazepine poorly soluble hypnotic drug indicated for the short term treatment of insomnia having a bioavailability of about 30%. The aim of the present study is to enhance the solubility and consequently the bioavailability of ZP using hydrotropic agents (HA). Phase solubility diagrams of ZP in presence of different molar concentrations of HA (Sodium benzoate, Urea, Ascorbic acid, Resorcinol, Nicotinamide, and Piperazine) were constructed. ZP/Sodium benzoate and Resorcinol microparticles were prepared adopting melt, solvent evaporation and melt-evaporation techniques followed by XRD. Directly compressed mixed hydrotropic ZP tablets of Sodium benzoate and Resorcinol in different weight ratios were prepared and evaluated compared to the commercially available tablets (Sleep aid® 5 mg). The effect of shelf and accelerated stability storage (40°C ± 2°C/75%RH ± 5%RH) on the optimum tablet formula (F5) for six months were studied. The enhancement of ZP solubility follows the order of: Resorcinol > Sodium benzoate > Ascorbic acid > Piperazine > Urea > Nicotinamide with about 350 and 2000 fold increase using 1M of Sodium benzoate and Resorcinol respectively. ZP/HA microparticles exhibit the order of: Solvent evaporation > melt-solvent evaporation > melt > physical mixture which was further confirmed by the complete conversion of ZP into amorphous form. Mixed hydrotropic tablet formula (F5) composed of ZP/(Resorcinol: Sodium benzoate 4:1w/w) microparticles prepared by solvent evaporation exhibits in-vitro dissolution of 31.7±0.11% after five minutes (Q5min) compared to 10.0±0.10% for Sleep aid® (5 mg) respectively. F5 showed significantly higher GABA concentration of 122.5±5.5mg/mL in plasma compared to 118±1.00 and 27.8±1.5 mg/mL in case of Sleep aid® (5 mg) and control taking only saline respectively suggesting a higher neuropharmacological effect of ZP following hydrotropic solubilization.Keywords: zaleplon, hydrotropic solubilization, plasma GABA level, mixed hydrotropy
Procedia PDF Downloads 4431027 Process Development for the Conversion of Organic Waste into Valuable Products
Authors: Ife O. Bolaji
Abstract:
Environmental concerns arising from the use of fossil fuels has increased the interest in the development of renewable and sustainable sources of energy. This would minimize the dependence on fossil fuels and serve as future alternatives. Organic wastes contain carbohydrates, proteins and lipids, which can be utilised as carbon sources for the production of bio-based products. Cellulose is the most abundant natural biopolymer, being the main structural component of lignocellulosic materials. The aim of this project is to develop a biological process for the hydrolysis and fermentation of organic wastes into ethanol and organic acids. The hydrolysis and fermentation processes are integrated in a single vessel using undefined mixed culture microorganisms. The anaerobic fermentation of microcrystalline cellulose was investigated in continuous and batch reactors at 25°C with an appropriate growth medium for cellulase formation, hydrolysis, and fermentation. The reactors were inoculated with soil (B1, C1, C3) or sludge from an anaerobic digester (B2, C2) and the breakdown of cellulose was monitored by measuring the production of ethanol, organic acids and the residual cellulose. The batch reactors B1 and B2 showed negligible microbial activity due to inhibition while the continuous reactors, C1, C2 and C3, exhibited little cellulose hydrolysis which was concealed by the cellulose accumulation in the reactor. At the end of the continuous operation, the reactors C1, C2 and C3 were operated under batch conditions. 48%, 34% and 42% cellulose had been fermented by day 88, 55 and 55 respectively of the batch fermentation. Acetic acid, ethanol, propionic acid and butyric acids were the main fermentation products in the reactors. A stable concentration of 0.6 g/l ethanol and 5 g/L acetic acid was maintained in C3 for several weeks due to reduced activity of methanogens caused by the decrease in pH. Thus far, the results have demonstrated that mixed microbial culture is capable of hydrolysing and fermenting cellulose under lenient conditions. The fermentation of cellulose has been found effective in a combination of continuous and batch processes.Keywords: cellulose, hydrolysis, mixed culture, organic waste
Procedia PDF Downloads 3651026 Rare Differential Diagnostic Dilemma
Authors: Angelis P. Barlampas
Abstract:
Theoretical background Disorders of fixation and rotation of the large intestine, result in the existence of its parts in ectopic anatomical positions. In case of symptomatology, the clinical picture is complicated by the possible symptomatology of the neighboring anatomical structures and a differential diagnostic problem arises. Target The purpose of this work is to demonstrate the difficulty of revealing the real cause of abdominal pain, in cases of anatomical variants and the decisive contribution of imaging and especially that of computed tomography. Methods A patient came to the emergency room, because of acute pain in the right hypochondrium. Clinical examination revealed tenderness in the gallbladder area and a positive Murphy's sign. An ultrasound exam depicted a normal gallbladder and the patient was referred for a CT scan. Results Flexible, unfixed ascending colon and cecum, located in the anatomical region of the right mesentery. Opacities of the surrounding peritoneal fat and a small linear concentration of fluid can be seen. There was an appendix of normal anteroposterior diameter with the presence of air in its lumen and without clear signs of inflammation. There was an impression of possible inflammatory swelling at the base of the appendix, (DD phenomenon of partial volume; e.t.c.). Linear opacities of the peritoneal fat in the region of the second loop of the duodenum. Multiple diverticula throughout the colon. Differential Diagnosis The differential diagnosis includes the following: Inflammation of the base of the appendix, diverticulitis of the cecum-ascending colon, a rare case of second duodenal loop ulcer, tuberculosis, terminal ileitis, pancreatitis, torsion of unfixed cecum-ascending colon, embolism or thrombosis of a vascular intestinal branch. Final Diagnosis There is an unfixed cecum-ascending colon, which is exhibiting diverticulitis.Keywords: unfixed cecum-ascending colon, abdominal pain, malrotation, abdominal CT, congenital anomalies
Procedia PDF Downloads 541025 Cotton Treated with Spent Coffee Extract for Realizing Functional Textiles
Authors: Kyung Hwa Hong
Abstract:
The objective of this study was to evaluate the ability of spent coffee extract to enhance the antioxidant and antimicrobial properties of cotton fabrics. The emergence and spread of infectious diseases has raised a global interest in the antimicrobial substances. The safety of chemical agents, such as antimicrobials and dyes, which may irritate the skin, cause cellular and organ damage, and have adverse environmental impacts during their manufacturing, in relation to the human body has not been established. Nevertheless, there is a growing interest in natural antimicrobials that kill microorganisms or stop their growth without dangerous effects on human health. Spent coffee is the by-product of coffee brewing and amounted to 96,000 tons worldwide in 2015. Coffee components such as caffeine, melanoidins, and chlorogenic acid have been reported to possess multifunctional properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Therefore, the current study examined the possibility of applying spent coffee in functional textile finishing. Spent coffee was extracted with 60% methanol solution, and the major components of the extract were quantified. In addition, cotton fabrics treated with spent coffee extract through a pad-dry-cure process were investigated for antioxidant and antimicrobial activities. The cotton fabrics finished with the spent coffee extract showed an increase in yellowness, which is an unfavorable outcome from the fabric finishing process. However, the cotton fabrics finished with the spent coffee extract exhibited considerable antioxidant activity. In particular, the antioxidant ability significantly increased with increasing concentrations of the spent coffee extract. The finished cotton fabrics showed antimicrobial ability against S. aureus but relatively low antimicrobial ability against K. pneumoniae. Therefore, further investigations are needed to determine the appropriate concentration of spent coffee extract to inhibit the growth of various pathogenic bacteria.Keywords: spent coffee grounds, cotton, natural finishing agent, antioxidant activity, antimicrobial activity
Procedia PDF Downloads 1651024 Synthesis of ZnFe₂O₄-AC/CeMOF for Improvement Photodegradation of Textile Dyes Under Visible-light: Optimization and Statistical Study
Authors: Esraa Mohamed El-Fawal
Abstract:
A facile solvothermal procedure was applied to fabricate zinc ferrite nanoparticles (ZnFe₂O₄ NPs). Activated carbon (AC) derived from peanut shells is synthesized using a microwave through the chemical activation method. The ZnFe₂O₄-AC composite is then mixed with a cerium-based metal-organic framework (CeMOF) by solid-state adding to formulate ZnFe₂O₄-AC/CeMOF composite. The synthesized photo materials were tested by scanning/transmission electron microscope (SEM/TEM), Photoluminescence (PL), (XRD) X-Ray diffraction, (FTIR) Fourier transform infrared, (UV-Vis/DRS) ultraviolet-visible/diffuse reflectance spectroscopy. The prepared ZnFe₂O₄-AC/CeMOFphotomaterial shows significantly boosted efficiency for photodegradation of methyl orange /methylene blue (MO/MB) compared with the pristine ZnFe₂O₄ and ZnFe₂O₄-AC composite under the irradiation of visible-light. The favorable ZnFe₂O₄-AC/CeMOFphotocatalyst displays the highest photocatalytic degradation efficiency of MB/MO (R: 91.5-88.6%, consecutively) compared with the other as-prepared materials after 30 min of visible-light irradiation. The apparent reaction rate K: 1.94-1.31 min-1 is also calculated. The boosted photocatalytic proficiency is ascribed to the heterojunction at the interface of prepared photo material that assists the separation of the charge carriers. To reach optimization, statistical analysis using response surface methodology was applied. The effect of independent parameters (such as A (pH), B (irradiation time), and (c) initial pollutants concentration on the response function (%)photodegradation of MB/MO dyes (as examples of azodyes) was investigated via using central composite design. At the optimum condition, the photodegradation efficiency (%) of the MB/MO is 99.8-97.8%, respectively. ZnFe2O₄-AC/CeMOF hybrid reveals good stability over four consecutive cycles.Keywords: azo-dyes, photo-catalysis, zinc ferrite, response surface methodology
Procedia PDF Downloads 1661023 Prevention and Treatment of Hay Fever Prevalence by Natural Products: A Phytochemistry Study on India and Iran
Authors: Tina Naser Torabi
Abstract:
Prevalence of allergy is affected by different factors according to its base and seasonal weather changes, and it also needs various treatments.Although reasons of allergy existence are not clear but generally, allergens cause reaction between antigen and antibody because of their antigenic traits. In this state, allergens cause immune system to make mistake and identify safe material as threat, therefore function of immune system impaired because of histamine secretion. There are different reasons for allergy, but herbal reasons are on top of the list, although animal causes cannot be ignored. Important point is that allergenic compounds, cause making dedicated antibody, so in general every kind of allergy is different from the other one. Therefore, most of the plants in herbal allergenic category can cause various allergies for human beings, such as respiratory allergies, nutritional allergies, injection allergies, infection allergies, touch allergies, that each of them show different symptoms based on the reason of allergy and also each of them requires different prevention and treatment. Geographical condition is another effective factor in allergy. Seasonal changes, weather condition, herbal coverage variety play important roles in different allergies. It goes without saying that humid climate and herbal coverage variety in different seasons especially spring cause most allergies in human beings in Iran and India that are discussed in this article. These two countries are good choices for allergy prevalence because of their condition, various herbal coverage, human and animal factors. Hay fever is one of the allergies, although the reasons of its prevalence are unknown yet. It is one of the most popular allergies in Iran and India because of geographical, human, animal and herbal factors. Hay fever is on top of the list in these two countries. Significant point about these two countries is that herbal factor is the most important factor in prevalence of hay fever. Variety of herbal coverage especially in spring during herbal pollination is the main reason of hay fever prevalence in these two countries. Based on the research result of Pharmacognosy and Phytochemistry, pollination of some plants in spring is major reason of hay fever prevalence in these countries. If airborne pollens in pollination season enter the human body through air, they will cause allergic reactions in eyes, nasal mucosa, lungs, and respiratory system, and if these particles enter the body of potential person through food, they will cause allergic reactions in mouth, stomach, and other digestive systems. Occasionally, chemical materials produced by human body such as Histamine cause problems like: developing of nasal polyps, nasal blockage, sleep disturbance, risk of asthma developing, blood vasodilation, sneezing, eye tears, itching and swelling of eyes and nasal mucosa, Urticaria, decrease in blood pressure, and rarely trauma, anesthesia, anaphylaxis and finally death. This article is going to study the reasons of hay fever prevalence in Iran and India and presents prevention and treatment Method from Phytochemistry and Pharmocognocy point of view by using local natural products in these two countries.Keywords: hay fever, India, Iran, natural treatment, phytochemistry
Procedia PDF Downloads 1641022 Phytosynthesized Iron Nanoparticles Elicited Growth and Biosynthesis of Steviol Glycosides in Invitro Stevia rebaudiana Plant Cultures
Authors: Amir Ali, Laura Yael Mendoza
Abstract:
The application of nanomaterials is becoming the most effective strategy of elicitation to produce a desirable level of plant biomass with complex medicinal compounds. This study was designed to check the influence of phytosynthesized iron nanoparticles (FeNPs) on physical growth characteristics, antioxidant status, and production of steviol glycosides of in vitro grown Stevia rebaudiana. Effect of different concentrations of iron nanoparticles replacement of iron sulfate in MS medium (stock solution) on invitro stevia plant growth following positive control (MS basal medium), negative control (iron sulfate devoid medium), iron sulfate devoid MS medium and supplemented with FeNPs at different concentrations (5.6 mg/L, 11.2 mg/L, 16.8 mg/L, 22.4 mg/L) was evaluated. The iron deficiency leads to a drastic reduction in plant growth. In contrast, applying FeNPs leads to improvement in plant height, leave diameter, improved leave morphology, etc., in a concentration-dependent manner. Furthermore, the stress caused by FeNPs at 16.8 mg/L in cultures produced higher levels of total phenolic content (3.7 ± 0.042 mg/g dry weight: DW) and total flavonoid content (1.9 ± 0.022 mg/g DW and antioxidant activity (78 ± 4.6%). In addition, plants grown in the presence of FeNPs at 22.4 mg/L resulted in higher enzymatic antioxidant activities (SOD = 3.5 ± 0.042 U/mg; POD = 2.6 ± 0.026 U/mg; CAT = 2.8 ± 0.034 U/mg and APx = 3.6 ± 0.043 U/ mg), respectively. Furthermore, exposure to a higher dose of FeNPs (22.4 mg/L) exhibited the maximum amount of stevioside (stevioside: 4.6 ± 0.058 mg/g (DW) and rebaudioside A: 4.9 ± 0.068 mg/g DW) as compared to other doses. The current investigation confirms the effectiveness of FeNPs in growth media. It offers a suitable prospect for commercially desirable production of S. rebaudiana biomass with higher sweet glycosides profiles in vitro.Keywords: cell culture, stevia, iron nanoparticles, antioxidants
Procedia PDF Downloads 951021 Adsorption Behavior and Mechanism of Illite Surface under the Action of Different Surfactants
Authors: Xiuxia Sun, Yan Jin, Zilong Liu, Shiming Wei
Abstract:
As a critical mineral component of shale, illite is essential in oil exploration and development due to its surface hydration characteristics and action mechanism. This paper, starting from the perspective of the molecular structure of organic matter, uses molecular dynamics simulation technology to deeply explore the interaction mechanism between organic molecules and the illite surface. In the study, we thoroughly considered the forces such as van der Waals force, electrostatic force, and steric hindrance and constructed an illite crystal model covering C8-C18 modifiers. Subsequently, we systematically analyzed surfactants' adsorption behavior and hydration characteristics with different alkyl chain numbers, lengths, and concentrations on the illite surface. The simulation results show that surfactant molecules with shorter alkyl chains present a lateral monolayer or inclined double-layer arrangement on the illite surface, and these two arrangements may coexist under different concentration conditions. In addition, with the increase in the number of alkyl chains, the interlayer spacing of illite increases significantly. In contrast, the change in alkyl chain length has a limited effect on surface properties. It is worth noting that the change in functional group structure has a particularly significant effect on the wettability of the illite surface, and its influence even exceeds the change in the alkyl chain structure. This discovery gives us a new perspective on understanding and regulating the wetting properties. The results obtained are consistent with the XRD analysis and wettability experimental data in this paper, further confirming the reliability of the research conclusions. This study deepened our understanding of illite's hydration characteristics and mechanism. We provided new ideas and directions for the molecular design and application development of oilfield chemicals.Keywords: illite, surfactant, hydration, wettability, adsorption
Procedia PDF Downloads 411020 Plant Growth, Symbiotic Performance and Grain Yield of 63 Common Bean Genotypes Grown Under Field Conditions at Malkerns Eswatini
Authors: Rotondwa P. Gunununu, Mustapha Mohammed, Felix D. Dakora
Abstract:
Common bean is the most importantly high protein grain legume grown in Southern Africa for human consumption and income generation. Although common bean can associate with rhizobia to fix N₂ for bacterial use and plant growth, it is reported to be a poor nitrogen fixer when compared to other legumes. N₂ fixation can vary with legume species, genotype and rhizobial strain. Therefore, screening legume germplasm can reveal rhizobia/genotype combinations with high N₂-fixing efficiency for use by farmers. This study assessed symbiotic performance and N₂ fixation in 63 common bean genotypes under field conditions at Malkerns Station in Eswatini, using the ¹⁵N natural abundance technique. The shoots of common bean genotypes were sampled at a pod-filling stage, oven-dried (65oC for 72h), weighed, ground into a fine powder (0.50 mm sieve), and subjected to ¹⁵N/¹⁴N isotopic analysis using mass spectrometry. At maturity, plants from the inner rows were harvested for the determination of grain yield. The results revealed significantly higher modulation (p≤0.05) in genotypes MCA98 and CIM-RM01-97-8 relative to the other genotypes. Shoot N concentration was highest in genotype MCA 98, followed by KAB 10 F2.8-84, with most genotypes showing shoot N concentrations below 2%. Percent N derived from atmospheric N₂ fixation (%Ndfa) differed markedly among genotypes, with CIM-RM01-92-3 and DAB 174, respectively, recording the highest values of 66.65% and 66.22 % N derived from fixation. There were also significant differences in grain yield, with CIM-RM02-79-1 producing the highest yield (3618.75 kg/ha). These results represent an important contribution in the profiling of symbiotic functioning of common bean germplasm for improved N₂ fixation.Keywords: nitrogen fixation, %Ndfa, ¹⁵N natural abundance, grain yield
Procedia PDF Downloads 2161019 Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for Treatment of Real Textile Effluent: An in situ Treatment, Anatomical Studies and Toxicity Evaluation
Authors: Suhas Kadam, Vishal Chandanshive, Niraj Rane, Sanjay Govindwar
Abstract:
Fimbristylis dichotoma, Ammannia baccifera, and their co-plantation consortium FA were found to degrade methyl orange, simulated dye mixture, and real textile effluent. Wild plants of Fimbristylis dichotoma and Ammannia baccifera with equal biomass showed 91 and 89% decolorization of methyl orange within 60 h at a concentration of 50 ppm, while 95% dye removal was achieved by consortium FA within 48 h. Floating phyto-beds with co-plantation (Fimbristylis dichotoma and Ammannia baccifera) for the treatment of real textile effluent in a constructed wetland was observed to be more efficient and achieved 79, 72, 77, 66 and 56% reductions in ADMI color value, chemical oxygen demand, biological oxygen demand, total dissolve solid and total suspended solid of textile effluent, respectively. High performance thin layer chromatography, gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, Ultra violet-Visible spectroscopy and enzymatic assays confirmed the phytotransformation of parent dye in the new metabolites. T-RFLP analysis of rhizospheric bacteria of Fimbristylis dichotoma, Ammannia baccifera, and consortium FA revealed the presence of 88, 98 and 223 genera which could have been involved in dye removal. Toxicity evaluation of products formed after phytotransformation of methyl orange by consortium FA on bivalves Lamellidens marginalis revealed less damage in the gills architecture when analyzed histologically. Toxicity measurement by Random Amplification of Polymorphic DNA (RAPD) technique revealed normal banding pattern in treated methyl orange sample suggesting less toxic nature of phytotransformed dye products.Keywords: constructed wetland, phyto-bed, textile effluent, phytoremediation
Procedia PDF Downloads 481