Search results for: ultra high strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22447

Search results for: ultra high strength

17167 Study of Oxidative Stability, Cold Flow Properties and Iodine Value of Macauba Biodiesel Blends

Authors: Acacia A. Salomão, Willian L. Gomes da Silva, Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

Biodiesel physical and chemical properties depend on the raw material composition used in its synthesis. Saturated fatty acid esters confer high oxidative stability, while unsaturated fatty acid esters improve the cold flow properties. In this study, an alternative vegetal source - the macauba kernel oil - was used in the biodiesel synthesis instead of conventional sources. Macauba can be collected from native palm trees and is found in several regions in Brazil. Its oil is a promising source when compared to several other oils commonly obtained from food products, such as soybean, corn or canola oil, due to its specific characteristics. However, the usage of biodiesel made from macauba oil alone is not recommended due to the difficulty of producing macauba in large quantities. For this reason, this project proposes the usage of blends of the macauba oil with conventional oils. These blends were prepared by mixing the macauba biodiesel with biodiesels obtained from soybean, corn, and from residual frying oil, in the following proportions: 20:80, 50:50 e 80:20 (w/w). Three parameters were evaluated, using the standard methods, in order to check the quality of the produced biofuel and its blends: oxidative stability, cold filter plugging point (CFPP), and iodine value. The induction period (IP) expresses the oxidative stability of the biodiesel, the CFPP expresses the lowest temperature in which the biodiesel flows through a filter without plugging the system and the iodine value is a measure of the number of double bonds in a sample. The biodiesels obtained from soybean, residual frying oil and corn presented iodine values higher than 110 g/100 g, low oxidative stability and low CFPP. The IP values obtained from these biodiesels were lower than 8 h, which is below the recommended standard value. On the other hand, the CFPP value was found within the allowed limit (5 ºC is the maximum). Regarding the macauba biodiesel, a low iodine value was observed (31.6 g/100 g), which indicates the presence of high content of saturated fatty acid esters. The presence of saturated fatty acid esters should imply in a high oxidative stability (which was found accordingly, with IP = 64 h), and high CFPP, but curiously the latter was not observed (-3 ºC). This behavior can be explained by looking at the size of the carbon chains, as 65% of this biodiesel is composed by short chain saturated fatty acid esters (less than 14 carbons). The high oxidative stability and the low CFPP of macauba biodiesel are what make this biofuel a promising source. The soybean, corn and residual frying oil biodiesels also have low CFPP, but low oxidative stability. Therefore the blends proposed in this work, if compared to the common biodiesels, maintain the flow properties but present enhanced oxidative stability.

Keywords: biodiesel, blends, macauba kernel oil, stability oxidative

Procedia PDF Downloads 534
17166 Stress Analysis of the Ceramics Heads with Different Sizes under the Destruction Tests

Authors: V. Fuis, P. Janicek, T. Navrat

Abstract:

The global solved problem is the calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalized ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). A special destruction device for heads destruction was designed and the solved local problem is the modification of this destructive device based on the analysis of tensile stress in the head for two different values of the depth of the conical hole in the head. The goal of device modification is a shift of the location with extreme value of 1 max from the region of head’s hole bottom to its opening. This modification will increase the credibility of the obtained material properties of bio ceramics, which will be determined from a set of head destructions using the Weibull weakest link theory.

Keywords: ceramic heads, depth of the conical hole, destruction test, material parameters, principal stress, total hip joint endoprosthesis

Procedia PDF Downloads 415
17165 An excessive Screen Time of High School Students in Their Free Time Promotes Our Young People’s Risk of Obesity

Authors: Susana Aldaba Yaben, Marga Echauri Ozcoidi, Rosario Osinaga Cenoz

Abstract:

It was decided to make a diagnosis with students of Berriozar High School between 12 and 15 years (both included) for their lifestyles in relation to eating habits, BMI (Body Mass Index), physical activity, drugs, interpersonal relationships and screen time. The aim of this survey is identifying needs of this population and depending on the results, we could program socio-educational activities. This action is part of the Community Health Promotion Programme and healthy lifestyles in childhood and youth of Berriozar. The eating habits, a lack of physical activity and an excessive screen time are causes of 26,75% of obese or overweight young people. First of all, many of them have got a diet enriched in saturated fats and sugars. Secondly, most of them do not practise physical exercise daily and finally, their screen time are higher than the recommendation (until 2 hours a day).

Keywords: lifestyle, diet, BMI, physical activity, screen time, education, youth

Procedia PDF Downloads 570
17164 Functional Ingredients from Potato By-Products: Innovative Biocatalytic Processes

Authors: Salwa Karboune, Amanda Waglay

Abstract:

Recent studies indicate that health-promoting functional ingredients and nutraceuticals can help support and improve the overall public health, which is timely given the aging of the population and the increasing cost of health care. The development of novel ‘natural’ functional ingredients is increasingly challenging. Biocatalysis offers powerful approaches to achieve this goal. Our recent research has been focusing on the development of innovative biocatalytic approaches towards the isolation of protein isolates from potato by-products and the generation of peptides. Potato is a vegetable whose high-quality proteins are underestimated. In addition to their high proportion in the essential amino acids, potato proteins possess angiotensin-converting enzyme-inhibitory potency, an ability to reduce plasma triglycerides associated with a reduced risk of atherosclerosis, and stimulate the release of the appetite regulating hormone CCK. Potato proteins have long been considered not economically feasible due to the low protein content (27% dry matter) found in tuber (Solanum tuberosum). However, potatoes rank the second largest protein supplying crop grown per hectare following wheat. Potato proteins include patatin (40-45 kDa), protease inhibitors (5-25 kDa), and various high MW proteins. Non-destructive techniques for the extraction of proteins from potato pulp and for the generation of peptides are needed in order to minimize functional losses and enhance quality. A promising approach for isolating the potato proteins was developed, which involves the use of multi-enzymatic systems containing selected glycosyl hydrolase enzymes that synergistically work to open the plant cell wall network. This enzymatic approach is advantageous due to: (1) the use of milder reaction conditions, (2) the high selectivity and specificity of enzymes, (3) the low cost and (4) the ability to market natural ingredients. Another major benefit to this enzymatic approach is the elimination of a costly purification step; indeed, these multi-enzymatic systems have the ability to isolate proteins, while fractionating them due to their specificity and selectivity with minimal proteolytic activities. The isolated proteins were used for the enzymatic generation of active peptides. In addition, they were applied into a reduced gluten cookie formulation as consumers are putting a high demand for easy ready to eat snack foods, with high nutritional quality and limited to no gluten incorporation. The addition of potato protein significantly improved the textural hardness of reduced gluten cookies, more comparable to wheat flour alone. The presentation will focus on our recent ‘proof-of principle’ results illustrating the feasibility and the efficiency of new biocatalytic processes for the production of innovative functional food ingredients, from potato by-products, whose potential health benefits are increasingly being recognized.

Keywords: biocatalytic approaches, functional ingredients, potato proteins, peptides

Procedia PDF Downloads 376
17163 Consumer Acceptability of Crackers Produced from Blend of Sprouted Pigeon Pea, Unripe Plantain and Brewers’ Spent Grain and Its Hypoglycemic Effect in Diabetic Rats

Authors: Nneka N. Uchegbu

Abstract:

Physical, sensory properties and hypoglycemic effect of crackers produced from sprouted pigeon pea, unripe plantain and brewers’ spent grain fed to diabetic rats were investigated. Different composite flours were used to produce crackers. Physical and sensory properties of the crackers, the blood serum of the rats and changes in the rat body weight were measured. Spread ratio and break strength of the crackers from different flour blends ranges from 7.01 g to 8.51 g and 1.87 g to 3.01 g respectively. The acceptability of the crackers revealed that Sample A (100% wheat crackers) was not significantly (p>0.05) different from Samples C and D. Feeding the rats with formulated crackers caused an increase in the body weight of the rats but a reduced body weight was observed in diabetic rats fed with normal rat feed. The result indicated that cracker produced from the formulated flour blends caused a significant hypoglycemic effect in diabetic rats and led to a reduction of measured biochemical indices. Therefore, this work showed that consumption of crackers from the above formulated flour blend was able to decrease hyperglycemia in diabetic rats.

Keywords: hypoglyceamia, hyperlipidimia, total lipid, triglyceride, total cholesterol

Procedia PDF Downloads 297
17162 Historical Geotechnical Study and Evaluation of Project Progress for the Tafila City Center Development Project

Authors: Mohmd Sarireh

Abstract:

The geotechnical study can be employed successfully to assess and follow the expected development or delay in the project construction. The development project of city center or downtown was taken as a case study for the investigation of the project conditions that might support progress or cause delay. The project was proposed to build 7447 m2 by reinforced concrete mainly to serve and support the services provided to people in Tafila. The project construction had faced challenges and obstacles such as soil collapse because of excavation of the weak soil that found in the project site. In addition, the topography of the project area showed a high slope from South-West to North. The slope through the project footprint reached to 83.3% which is considered very high slope. One year and a half proposed to finish the project construction since the 1st of March 2013 and it was planned to be finished by the 31th of August 2014, but the project needs more than one year and a half as extension according to the consultant engineer. The collecting of data was conducted through the interviews with the engineers and officials, and by analyzing the soil reports and samples taken during design and excavation. The major findings came out to weak and fractured soil and construction waste that were found at project site. Also, soil was considered very fine according to the plasticity index (PI) values, in addition to the high depths required for foundation that contribute to the collapse of soil and the increase of project cost. The current project aims to present how the unseen conditions can delay the project construction and increase the cost of the project that rises to JD8.305 Million.

Keywords: geotechnical, management, progress, risk, soil unseen conditions management

Procedia PDF Downloads 219
17161 The First Step to Standardization of Iranian Buffalo Milk: Physicochemical Characterization

Authors: Farnoosh Attar

Abstract:

Nowadays, buffalo’s milk due to has highly nutritional properties, has a special place among consumers and its application for the production of dairy products due to the high technological properties is increasing day by day. In the present study, the physicochemical characteristics of Iranian buffalo’s milk were compared with cow's milk. According to chemical analysis, the amount of fat, protein, and total solid was higher in buffalo milk than cow's milk (respectively, 8.2%, 4.73%, and 15.92% compared with 3.5%, 3.25%, and 12.5%). Also, the percentage of cholesterol buffalo’s milk was less than in cow's milk. In contrast, no significant difference between the pH, acidity, and specific gravity was observed. The size of buffalo milk fat globules was larger than cow's milk. In addition, the profile of buffalo free fatty acids milk showed the relatively high distribution of long chain saturated fatty acids. The presence of four major bands related to αs casein, β casein, β-lactoglobulin, and α-lactalbumin with quite higher intensity than cow’s milk was also observed. The results obtained will provide a reference investigation to improve the developing of buffalo milk standard.

Keywords: buffalo milk, physicochemical characterization, standardization, dairy products

Procedia PDF Downloads 442
17160 Narrative Psychology and Its Role in Illuminating the Experience of Suffering

Authors: Maureen Gibney

Abstract:

The examination of narrative in psychology has a long tradition, starting with psychoanalytic theory and embracing over time cognitive, social, and personality psychology, among others. Narrative use has been richly detailed as well in medicine, nursing, and social service. One aspect of narrative that has ready utility in higher education and in clinical work is the exploration of suffering and its meaning. Because it is such a densely examined topic, suffering provides a window into identity, sense of purpose, and views of humanity and of the divine. Storytelling analysis permits an exploration of a host of specific manifestations of suffering such as pain and illness, moral injury, and the impact of prolonged suffering on love and relationships. This presentation will review the origins and current understandings of narrative theory in general, and will draw from psychology, medicine, ethics, nursing, and social service in exploring the topic of suffering in particular. It is suggested that the use of narrative themes such as meaning making, agency and communion, generativity, and loss and redemption allows for a finely grained analysis of common and more atypical sources of suffering, their resolution, and the acceptance of their continuation when resolution is not possible. Such analysis, used in professional work and in higher education, can enrich one’s empathy and one’s sense of both the fragility and strength of everyday life.

Keywords: meaning making, narrative theory, suffering, teaching

Procedia PDF Downloads 262
17159 The Use of Biofeedback to Increase Resilience and Mental Health of Supersonic Pilots

Authors: G. Kloudova, S. Kozlova, M. Stehlik

Abstract:

Pilots are operating in a high-risk environment rich in potential stressors, which negatively affect aviation safety and the mental health of pilots. In the research conducted, the pilots were offered mental training biofeedback therapy. Biofeedback is an objective tool to measure physiological responses to stress. After only six sessions, all of the pilots tested showed significant differences between their initial condition and their condition after therapy. The biggest improvement was found in decreased heart rate (in 83.3% of tested pilots) and respiration rate (66.7%), which are the best indicators of anxiety states and panic attacks. To incorporate all of the variables, we correlated the measured physiological state of the pilots with their personality traits. Surprisingly, we found a high correlation with peripheral temperature and confidence (0.98) and with heart rate and aggressiveness (0.97). A retest made after a one-year interval showed that in majority of the subjects tested their acquired self-regulation ability had been internalized.

Keywords: aviation, biofeedback, mental workload, performance psychology

Procedia PDF Downloads 247
17158 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary

Abstract:

The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.

Keywords: chemical deposition, CdS, optical properties, surface, thin film

Procedia PDF Downloads 160
17157 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser

Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay

Abstract:

The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.

Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction

Procedia PDF Downloads 292
17156 Low-Temperature Silanization of Medical Vials: Chemical Bonding and Performance

Authors: Yuanping Yang, Ruolin Zhou, Xingyu Liu, Lianbin Wu

Abstract:

Based on the challenges of silanization of pharmaceutical glass packaging materials, the silicone oil high-temperature baking method consumes a lot of energy; silicone oil is generally physically adsorbed on the inner surface of the medical vials, leading to protein adsorption on the surface of the silicone oil and fall off, so that the number of particles in the drug solution increases, which brings potential risks to people. In this paper, a new silanizing method is proposed. High-efficiency silanization is achieved by grafting trimethylsilyl groups to the inner surface of medical vials by chemical bond at low temperatures. The inner wall of the vial successfully obtained stable hydrophobicity, and the water contact Angle of the surface reached 100°~110°. With the increase of silicified reagent concentration, the water resistance of corresponding treatment vials increased gradually. This treatment can effectively reduce the risk of pH value increase and sodium ion leaching.

Keywords: low-temperature silanization, medical vials, chemical bonding, hydrophobicity

Procedia PDF Downloads 76
17155 Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands

Authors: Hongtao Zhu, Dezhi Sun

Abstract:

Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal.

Keywords: ammonium nitrogen, constructed wetlands, steel slag, zeolite

Procedia PDF Downloads 247
17154 Analysis of Vibration of Thin-Walled Parts During Milling Made of EN AW-7075 Alloy

Authors: Jakub Czyżycki, Paweł Twardowski

Abstract:

Thin-walled components made of aluminum alloys are increasingly found in many fields of industry, and they dominate the aerospace industry. The machining of thinwalled structures encounters many difficulties related to the high susceptibility of the workpiece, which causes vibrations including the most unfavorable ones called chatter. The effect of these phenomena is the difficulty in obtaining the required geometric dimensions and surface quality. The purpose of this study is to analyze vibrations arising during machining of thin-walled workpieces made of aluminum alloy EN AW-7075. Samples representing actual thin-walled workpieces were examined in a different range of dimensions characterizing thin-walled workpieces. The tests were carried out in HSM high-speed machining (cutting speed vc = 1400 m/min) using a monolithic solid carbide endmill. Measurement of vibration was realized using a singlecomponent piezoelectric accelerometer 4508C from Brüel&Kjær which was mounted directly on the sample before machining, the measurement was made in the normal feed direction AfN. In addition, the natural frequency of the tested thin-walled components was investigated using a laser vibrometer for an broader analysis of the tested samples. The effect of vibrations on machining accuracy was presented in the form of surface images taken with an optical measuring device from Alicona. A classification of the vibrations produced during the test was carried out, and were analyzed in both the time and frequency domains. Observed significant influence of the thickness of the thin-walled component on the course of vibrations during machining.

Keywords: high-speed machining, thin-walled elements, thin-walled components, milling, vibrations

Procedia PDF Downloads 47
17153 Development of Electrospun Membranes with Defined Polyethylene Collagen and Oxide Architectures Reinforced with Medium and High Intensity Statins

Authors: S. Jaramillo, Y. Montoya, W. Agudelo, J. Bustamante

Abstract:

Cardiovascular diseases (CVD) are related to affectations of the heart and blood vessels, within these are pathologies such as coronary or peripheral heart disease, caused by the narrowing of the vessel wall (atherosclerosis), which is related to the accumulation of Low-Density Lipoproteins (LDL) in the arterial walls that leads to a progressive reduction of the lumen of the vessel and alterations in blood perfusion. Currently, the main therapeutic strategy for this type of alteration is drug treatment with statins, which inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), responsible for modulating the rate of cholesterol production and other isoprenoids in the mevalonate pathway. This enzyme induces the expression of LDL receptors in the liver, increasing their number on the surface of liver cells, reducing the plasma concentration of cholesterol. On the other hand, when the blood vessel presents stenosis, a surgical procedure with vascular implants is indicated, which are used to restore circulation in the arterial or venous bed. Among the materials used for the development of vascular implants are Dacron® and Teflon®, which perform the function of re-waterproofing the circulatory circuit, but due to their low biocompatibility, they do not have the ability to promote remodeling and tissue regeneration processes. Based on this, the present research proposes the development of a hydrolyzed collagen and polyethylene oxide electrospun membrane reinforced with medium and high-intensity statins, so that in future research it can favor tissue remodeling processes from its microarchitecture.

Keywords: atherosclerosis, medium and high-intensity statins, microarchitecture, electrospun membrane

Procedia PDF Downloads 134
17152 Hydrodynamics Study on Planing Hull with and without Step Using Numerical Solution

Authors: Koe Han Beng, Khoo Boo Cheong

Abstract:

The rising interest of stepped hull design has been led by the demand of more efficient high-speed boat. At the same time, the need of accurate prediction method for stepped planing hull is getting more important. By understanding the flow at high Froude number is the key in designing a practical step hull, the study surrounding stepped hull has been done mainly in the towing tank which is time-consuming and costly for initial design phase. Here the feasibility of predicting hydrodynamics of high-speed planing hull both with and without step using computational fluid dynamics (CFD) with the volume of fluid (VOF) methodology is studied in this work. First the flow around the prismatic body is analyzed, the force generated and its center of pressure are compared with available experimental and empirical data from the literature. The wake behind the transom on the keel line as well as the quarter beam buttock line are then compared with the available data, this is important since the afterbody flow of stepped hull is subjected from the wake of the forebody. Finally the calm water performance prediction of a conventional planing hull and its stepped version is then analyzed. Overset mesh methodology is employed in solving the dynamic equilibrium of the hull. The resistance, trim, and heave are then compared with the experimental data. The resistance is found to be predicted well and the dynamic equilibrium solved by the numerical method is deemed to be acceptable. This means that computational fluid dynamics will be very useful in further study on the complex flow around stepped hull and its potential usage in the design phase.

Keywords: planing hulls, stepped hulls, wake shape, numerical simulation, hydrodynamics

Procedia PDF Downloads 279
17151 Fabrication of All-Cellulose Composites from End-of-Life Textiles

Authors: Behnaz Baghaei, Mikael Skrifvars

Abstract:

Sustainability is today a trend that is seen everywhere, with no exception for the textiles 31 industry. However, there is a rather significant downside regarding how the textile industry currently operates, namely the huge amount of end-of-life textiles coming along with it. Approximately 73% of the 53 million tonnes of fibres used annually for textile production is landfilled or incinerated, while only 12% is recycled as secondary products. Mechanical recycling of end-of-life textile fabrics into yarns and fabrics was before very common, but due to the low costs for virgin man-made fibres, the current textile material composition diversity, the fibre material quality variations and the high recycling costs this route is not feasible. Another way to decrease the ever-growing pile of textile waste is to repurpose the textile. If a feasible methodology can be found to reuse end-of life textiles as secondary market products including a manufacturing process that requires rather low investment costs, then this can be highly beneficial to counteract the increasing textile waste volumes. In structural composites, glass fibre textiles are used as reinforcements, but today there is a growing interest in biocomposites where the reinforcement and/or the resin are from a biomass resource. All-cellulose composites (ACCs) are monocomponent or single polymer composites, and they are entirely made from cellulose, ideally leading to a homogeneous biocomposite. Since the matrix and the reinforcement are both made from cellulose, and therefore chemically identical, they are fully compatible with each other which allow efficient stress transfer and adhesion at their interface. Apart from improving the mechanical performance of the final products, the recycling of the composites will be facilitated. This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Composite laminates were prepared by using an ionic liquid (IL) in a hot process, involving a partial dissolving of the cellulose fibres. Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton staple fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises the dissolving 6 wt.% cellulose solution in the ionic liquid 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were embedded in the cellulose/IL solution after which laminates were formed, which also involved removal of the IL by washing. The effect of reuse of the recovered IL was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Mechanical testing revealed that there are no clear differences between the values measured for mechanical strength and modulus of the manufactured ACCs from denim/cotton-fresh IL, denim/recovered cotton-fresh IL and denim/cotton-recycled IL. This could be due to the low weight fraction of the cellulose matrix in the final ACC laminates and presumably the denim as cellulose reinforcement strongly influences and dominates the mechanical properties. Fabricated ACC composite laminates were further characterized regarding scanning electron microscopy.

Keywords: all-cellulose composites, denim fabrics, ionic liquid, mechanical properties

Procedia PDF Downloads 112
17150 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform

Authors: Ashagrie Getnet Flattie

Abstract:

Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.

Keywords: LTE, MIMO, path loss, UAV

Procedia PDF Downloads 276
17149 Application of the MOOD Technique to the Steady-State Euler Equations

Authors: Gaspar J. Machado, Stéphane Clain, Raphael Loubère

Abstract:

The goal of the present work is to numerically study steady-state nonlinear hyperbolic equations in the context of the finite volume framework. We will consider the unidimensional Burgers' equation as the reference case for the scalar situation and the unidimensional Euler equations for the vectorial situation. We consider two approaches to solve the nonlinear equations: a time marching algorithm and a direct steady-state approach. We first develop the necessary and sufficient conditions to obtain the existence and unicity of the solution. We treat regular examples and solutions with a steady shock and to provide very-high-order finite volume approximations we implement a method based on the MOOD technology (Multi-dimensional Optimal Order Detection). The main ingredient consists in using an 'a posteriori' limiting strategy to eliminate non physical oscillations deriving from the Gibbs phenomenon while keeping a high accuracy for the smooth part.

Keywords: Euler equations, finite volume, MOOD, steady-state

Procedia PDF Downloads 273
17148 Sensor Data Analysis for a Large Mining Major

Authors: Sudipto Shanker Dasgupta

Abstract:

One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up.

Keywords: streaming analytics, data science, big data, Hadoop, high throughput, sensor data

Procedia PDF Downloads 401
17147 Factors Associated with Condom Breakage among Female Sex Workers: Evidence from Behavioral Tracking Survey in Thane District of Maharashtra, India

Authors: Sukhvinder Kaur, Jayanta Bora, Ashok Agarwal, Sangeeta Kaul

Abstract:

Background: HIV and STI transmission can be prevented if condoms are used properly, but condom tear may lead to infections even if are used consistently. Studies reveal high rates of condom breakage among Female Sex Workers (FSWs). USAID PHFI-PIPPSE is piloting a prevention model among high risk groups at Thane district of Maharashtra, India by implementing prevention and advocacy efforts for such risk behaviors. The current analysis highlights the correlates of condom breakage among FSWs from Thane. Method: A Behavioral Tracking Survey was conducted in 2014-15 among 503 FSWs through probability-based two stage random sampling from 3,660 FSWs at 100 hotspots, to understand levels of high risk behaviors, awareness and exposure to prevention programs. Bi-variate and multivariate-logistic regression methods used to assess the association of condom breakage while having sex with age, STI occurrence, anal sex with clients and alcohol consumption. Only self-reported STIs (Genital sore/ulcer, yellowish/ greenish discharge from vagina with/without foul smell, lower abdominal pain without diarrhea/dysentery or menses) were considered. Major Findings: Results depicted FSWs who reported condom breakage while having sex with any type of partner (paying clients, non-paying partners and other than main partner husband/boyfriend) had significantly high number of STIs (42.3% vs 16.9 %, P, 0.000) and had started sexual relationship in <16 years of age (31.0% vs 16.4 %, P, 0.000). Multivariate analysis after controlling the age at sex, knowledge about HIV and literacy, highlighted significantly higher odds of condom breakage among FSWs who have reported currently suffering with STI [AOR 2.91, 95% CI 1.75 - 4.83; P, 0.000]; who had anal sex with their paying client [AOR 2.59, 95% CI 1.59 - 4.19; P, 0.000]; and who consumed alcohol in the last 12 months [AOR 1.89, 95% CI 1.01 - 3.53; P, 0.047]. Conclusion: Risky behavior like anal sex with paying clients and impact of alcohol while having sex are main factors for condom breakage among young sex workers; and condom breakage leads to STIs. Hence, program interventions should address measures for prevention of condom breakage for HIV/STI prevention.

Keywords: female sex workers, condom breakage, anal sex, young sex workers

Procedia PDF Downloads 257
17146 Analysis of Potential Flow around Two-Dimensional Body by Surface Panel Method and Vortex Lattice Method

Authors: M. Abir Hossain, M. Shahjada Tarafder

Abstract:

This paper deals with the analysis of potential flow past two-dimensional body by discretizing the body into panels where the Laplace equation was applied to each panel. The Laplace equation was solved at each panel by applying the boundary conditions. The boundary condition was applied at each panel to mathematically formulate the problem and then convert the problem into a computer-solvable problem. Kutta condition was applied at both the leading and trailing edges to see whether the condition is satisfied or not. Another approach that is applied for the analysis is Vortex Lattice Method (VLM). A vortex ring is considered at each control point. Using the Biot-Savart Law the strength at each control point is calculated and hence the pressure differentials are measured. For the comparison of the analytic result with the experimental result, different NACA section hydrofoil is used. The analytic result of NACA 0012 and NACA 0015 are compared with the experimental result of Abbott and Doenhoff and found significant conformity with the achieved result.

Keywords: Kutta condition, Law of Biot-Savart, pressure differentials, potential flow, vortex lattice method

Procedia PDF Downloads 188
17145 An Approach to Determine Proper Daylighting Design Solution Considering Visual Comfort and Lighting Energy Efficiency in High-Rise Residential Building

Authors: Zehra Aybike Kılıç, Alpin Köknel Yener

Abstract:

Daylight is a powerful driver in terms of improving human health, enhancing productivity and creating sustainable solutions by minimizing energy demand. A proper daylighting system allows not only a pleasant and attractive visual and thermal environment, but also reduces lighting energy consumption and heating/cooling energy load with the optimization of aperture size, glazing type and solar control strategy, which are the major design parameters of daylighting system design. Particularly, in high-rise buildings where large openings that allow maximum daylight and view out are preferred, evaluation of daylight performance by considering the major parameters of the building envelope design becomes crucial in terms of ensuring occupants’ comfort and improving energy efficiency. Moreover, it is increasingly necessary to examine the daylighting design of high-rise residential buildings, considering the share of residential buildings in the construction sector, the duration of occupation and the changing space requirements. This study aims to identify a proper daylighting design solution considering window area, glazing type and solar control strategy for a high-residential building in terms of visual comfort and lighting energy efficiency. The dynamic simulations are carried out/conducted by DIVA for Rhino version 4.1.0.12. The results are evaluated with Daylight Autonomy (DA) to demonstrate daylight availability in the space and Daylight Glare Probability (DGP) to describe the visual comfort conditions related to glare. Furthermore, it is also analyzed that the lighting energy consumption occurred in each scenario to determine the optimum solution reducing lighting energy consumption by optimizing daylight performance. The results revealed that it is only possible that reduction in lighting energy consumption as well as providing visual comfort conditions in buildings with the proper daylighting design decision regarding glazing type, transparency ratio and solar control device.

Keywords: daylighting , glazing type, lighting energy efficiency, residential building, solar control strategy, visual comfort

Procedia PDF Downloads 172
17144 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings

Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch

Abstract:

It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.

Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry

Procedia PDF Downloads 165
17143 Electronic Device Robustness against Electrostatic Discharges

Authors: Clara Oliver, Oibar Martinez

Abstract:

This paper is intended to reveal the severity of electrostatic discharge (ESD) effects in electronic and optoelectronic devices by performing sensitivity tests based on Human Body Model (HBM) standard. We explain here the HBM standard in detail together with the typical failure modes associated with electrostatic discharges. In addition, a prototype of electrostatic charge generator has been designed, fabricated, and verified to stress electronic devices, which features a compact high voltage source. This prototype is inexpensive and enables one to do a battery of pre-compliance tests aimed at detecting unexpected weaknesses to static discharges at the component level. Some tests with different devices were performed to illustrate the behavior of the proposed generator. A set of discharges was applied according to the HBM standard to commercially available bipolar transistors, complementary metal-oxide-semiconductor transistors and light emitting diodes. It is observed that high current and voltage ratings in electronic devices not necessarily provide a guarantee that the device will withstand high levels of electrostatic discharges. We have also compared the result obtained by performing the sensitivity tests based on HBM with a real discharge generated by a human. For this purpose, the charge accumulated in the person is monitored, and a direct discharge against the devices is generated by touching them. Every test has been performed under controlled relative humidity conditions. It is believed that this paper can be of interest for research teams involved in the development of electronic and optoelectronic devices which need to verify the reliability of their devices in terms of robustness to electrostatic discharges.

Keywords: human body model, electrostatic discharge, sensitivity tests, static charge monitoring

Procedia PDF Downloads 145
17142 Interactive Effects of Organizational Learning and Market Orientation on New Product Performance

Authors: Qura-tul-aain Khair

Abstract:

Purpose- The purpose of this paper is to empirically examining the strength of association of responsive market orientation and proactive market orientation with new product performance and exploring the possible moderating role of organizational learning based on contingency theory. Design/methodology/approach- Data for this study was collected from FMCG manufacturing industry and services industry, where customers are in contact frequently and responses are recorded on continuous basis. Sample was collected through convenience sampling. The data collected from different marketing department and sales personnel were analysed using SPSS 16 version. Findings- The paper finds that responsive market orientation is more strongly associated with new product performance. The moderator, organizational learning, plays it significant role on the relationship between responsive market orientation and new product performance. Research limitations/implications- this paper has taken sample from just FMCG industry and service industry, more work can be done regarding how different-markets require different market orientation behaviours. Originality/value- This paper will be useful for foreign business looking for investing and expanding in Pakistan, they can find opportunity to get sustained competitive advantage through exploring the proactive side of market orientation and importance of organizational learning.

Keywords: organizational learning, proactive market orientation, responsive market orientation, new product performance

Procedia PDF Downloads 378
17141 Sliding Mode MRAS Observer for Optimized Backstepping Control of Induction Motor

Authors: Chaouch Souad, Abdou Latifa, Larbi Chrifi Alaoui

Abstract:

This paper deals with sensorless backstepping control of induction motor using MRAS technique associated to sliding mode approach. A high order genetic algorithm structure is used to approximate a control law designed by the Backstepping technique, and to find the best parameters globally optimized. However, the Backstepping control approach is unsuitable for high performance applications because the need of a speed sensor for increased accuracy and the absence of any error decay mechanism. In this paper a nonlinear observer, obtained by combining sliding mode structure and model reference adaptive system (MRAS), is designed for the rotor flux and rotor speed estimations. To validate the proposed method, the results are presented for showing the improved drive characteristics and performances.

Keywords: Backstepping Control, Induction Motor, Genetic Algorithm, Sliding Mode observer

Procedia PDF Downloads 727
17140 Empirical Examination of High Performance Work System, Organizational Commitment and Organizational Citizen Behavior: A Mediation of Model of Vietnam Organizations

Authors: Giang Vu, Duong Nguyen, Yuan-Ling Chen

Abstract:

Vietnam is a fast developing country with highly economic growth, and Vietnam organizations strive to utilize high performance work system (HPWS) in reinforcing employee in-role performance. HPWS, a bundle of human resource (HR) practices, are composed of eight sets of HR practices, namely selective staffing, extensive training, internal mobility, employment security, clear job description, result-oriented appraisal, incentive reward, and participation. However, whether HPWS stimulate employee extra-role behaviors remains understudied in a booming economic context. In this study, we aim to investigate organizational citizenship behavior (OCB) in a Vietnam context and, as a central issue, disentangle how HPWS elicits in employee OCB. On the other hand, recently, a deliberation of so-called 'black-box' HPWS issue has explored the role of employee commitment, suggesting that organizational commitment is a compelling source of employee OCB. We draw upon social exchange theory to predict that when employees perceive the organizational investment, like HPWS, in heightening their abilities, knowledge, and motivation, they are more likely to pay back with commitment; consequently, they will take initiatives in OCB. Hence, we hypothesize an individual level framework, in which organizational commitment mediates the positive relationship between HPWS and OCB. We collected data on HPWS, organizational commitment, OCB, and demographic variables, all at line managers of Vietnamese firms in Hanoi and Hochiminh. We conclude with research findings, implications, and future research suggestions.

Keywords: high performance work system, organizational citizenship behavior, organizational commitment, Vietnam

Procedia PDF Downloads 307
17139 Development of Nanocomposite from Poly (Lactic Acid) Plasticised Epoxidised Jatropha Oil and Nanocrystalline Cellulose

Authors: Siti Hasnah Kamarudin, Luqman Chuah Abdullah, Min Min Aung, Chantara Thevy Ratnam

Abstract:

The primary objective of this work was to develop fully nanocomposite material based on poly(lactic acid), epoxidized jatropha oil (EJO) and nanocrystalline cellulose. EJO was investigated as a sustainable alternative to petrochemical-based plasticizers to reinforce the ductility and toughness of plastics, in this case, nanocellulose/poly(lactic acid) (PLA). The EJO was melt blended into nanocellulose/PLA at concentrations from 1 wt% to 5 wt%. The blends were then hot-pressed into sheets to characterize their mechanical and physical properties. Microcrystalline cellulose had been converted to nanocrystalline cellulose by acid mercerisation technique and the effects thereof on the composites’ tensile, flexural, and impact properties, as well as their water absorption and density, were studied. The impact strengths of the nanocomposites were improved with the addition of NCC up to 0.5 wt%, with a maximum over 10 times that of the neat PLA. The flexural strength and modulus increased 4% and 50%, respectively, for NCC/PLA plasticized with EJO. This increase demonstrated the nanocrystalline cellulose addition gave notable improvements to the composites’ properties. Furthermore, analysis by scanning electron microscopy (SEM) of the nanocomposites’ tensile fracture surfaces indicated better interaction adhesion of the NCC/PLA plasticized with EJO compared with the PLA/EJO composites.

Keywords: nanocrystalline cellulose, nanocomposite, poly (lactic acid), epoxidised jatropha oil

Procedia PDF Downloads 144
17138 Effect of Asymmetric Amphiphilic Dicationic Ionic Liquids as Oil Spill Dispersants in Red Sea

Authors: Raghda El-Nagara, Maher I. Nessim, Carmen E. Elshafee, Renee I. Abdallah, Yasser M. Moustafa

Abstract:

Three asymmetric dicationic ionic liquids (ADILs), 1-(2-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)ethyl)-3-methyl pyridinium bromide (IL₁), 1-(6-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)hexyl)-3-methyl pyridinium bromide (IL₂) and 1-(10-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)decyl)-3-methyl pyridinium bromide (IL₃) were synthesized with yield of 83.54, 84.12 & 83.05% respectively. They were elucidated via conventional tools of analysis (elemental analysis, FT-IR, and 1H-NMR). The thermogravimetric analysis confirmed that the three ADILs possessed high thermal stability (up to 500ᵒC). Their critical micelle concentration (CMC) was investigated and exhibited values of 5.5-1*10⁻³ Mol./L. They were evaluated as oil spill dispersants were at different temperatures (10, 30 & 50ᵒC) with different concentrations (750, 1500, 2000, 3000 ppm). Data reveals that the efficiency is ranked as follows: IL₂ > IL₁ > IL₃, which showed high dispersion efficiency reached to 63% with the concentration of 1500 ppm.

Keywords: ionic liquids, amphiphilic, oil spill dispersants, dicationic, efficiency test

Procedia PDF Downloads 148