Search results for: health data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30695

Search results for: health data

25505 Efficient Antenna Array Beamforming with Robustness against Random Steering Mismatch

Authors: Ju-Hong Lee, Ching-Wei Liao, Kun-Che Lee

Abstract:

This paper deals with the problem of using antenna sensors for adaptive beamforming in the presence of random steering mismatch. We present an efficient adaptive array beamformer with robustness to deal with the considered problem. The robustness of the proposed beamformer comes from the efficient designation of the steering vector. Using the received array data vector, we construct an appropriate correlation matrix associated with the received array data vector and a correlation matrix associated with signal sources. Then, the eigenvector associated with the largest eigenvalue of the constructed signal correlation matrix is designated as an appropriate estimate of the steering vector. Finally, the adaptive weight vector required for adaptive beamforming is obtained by using the estimated steering vector and the constructed correlation matrix of the array data vector. Simulation results confirm the effectiveness of the proposed method.

Keywords: adaptive beamforming, antenna array, linearly constrained minimum variance, robustness, steering vector

Procedia PDF Downloads 203
25504 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 223
25503 Development of a Serial Signal Monitoring Program for Educational Purposes

Authors: Jungho Moon, Lae-Jeong Park

Abstract:

This paper introduces a signal monitoring program developed with a view to helping electrical engineering students get familiar with sensors with digital output. Because the output of digital sensors cannot be simply monitored by a measuring instrument such as an oscilloscope, students tend to have a hard time dealing with digital sensors. The monitoring program runs on a PC and communicates with an MCU that reads the output of digital sensors via an asynchronous communication interface. Receiving the sensor data from the MCU, the monitoring program shows time and/or frequency domain plots of the data in real time. In addition, the monitoring program provides a serial terminal that enables the user to exchange text information with the MCU while the received data is plotted. The user can easily observe the output of digital sensors and configure the digital sensors in real time, which helps students who do not have enough experiences with digital sensors. Though the monitoring program was programmed in the Matlab programming language, it runs without the Matlab since it was compiled as a standalone executable.

Keywords: digital sensor, MATLAB, MCU, signal monitoring program

Procedia PDF Downloads 499
25502 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering

Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda

Abstract:

The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.

Keywords: data-intensive science, image classification, content-based image retrieval, aurora

Procedia PDF Downloads 452
25501 Infant and Young Child-Feeding Practices in Mongolia

Authors: Otgonjargal Damdinbaljir

Abstract:

Background: Infant feeding practices have a major role in determining the nutritional status of children and are associated with household socioeconomic and demographic factors. In 2010, Mongolia used WHO 2008 edition of Indicators for assessing infant and young child feeding practices for the first time. Objective: To evaluate the feeding status of infants and young children under 2 years old in Mongolia. Materials and Methods: The study was conducted by cluster random sampling. The data on breastfeeding and complementary food supplement of the 350 infants and young children aged 0-23 months in 21 provinces of the 4 economic regions of the country and capital Ulaanbaatar city were collected through questionnaires. The feeding status was analyzed according to the WHO 2008 edition of Indicators for assessing infant and young child feeding practices. Analysis of data: Survey data was analysed using the PASW statistics 18.0 and EPI INFO 2000 software. For calculation of overall measures for the entire survey sample, analyses were stratified by region. Age-specific feeding patterns were described using frequencies, proportions and survival analysis. Logistic regression was done with feeding practice as dependent and socio demographic factors as independent variables. Simple proportions were calculated for each IYCF indicator. The differences in the feeding practices between sexes and age-groups, if any, were noted using chi-square test. Ethics: The Ethics Committee under the auspices of the Ministry of Health approved the study. Results: A total of 350 children aged 0-23 months were investigated. The rate of ever breastfeeding of children aged 0-23 months reached up to 98.2%, while the percentage of early initiation of breastfeeding was only 85.5%. The rates of exclusive breastfeeding under 6 months, continued breastfeeding for 1 year, and continued breastfeeding for 2 years were 71.3%, 74% and 54.6%, respectively. The median time of giving complementary food was the 6th month and the weaning time was the 9th month. The rate of complementary food supplemented from 6th-8th month in time was 80.3%. The rates of minimum dietary diversity, minimum meal frequency, and consumption of iron-rich or iron-fortified foods among children aged 6-23 months were 52.1%, 80.8% (663/813) and 30.1%, respectively. Conclusions: The main problems revealed from the study were inadequate category and frequency of complementary food, and the low rate of consumption of iron-rich or iron-fortified foods were the main issues to be concerned on infant feeding in Mongolia. Our findings have highlighted the need to encourage mothers to enrich their traditional wheat- based complementary foods add more animal source foods and vegetables.

Keywords: complementary feeding, early initiation of breastfeeding, exclusive breastfeeding, minimum meal frequency

Procedia PDF Downloads 486
25500 Effect of Diamagnetic Additives on Defects Level of Soft LiTiZn Ferrite Ceramics

Authors: Andrey V. Malyshev, Anna B. Petrova, Anatoly P. Surzhikov

Abstract:

The article presents the results of the influence of diamagnetic additives on the defects level of ferrite ceramics. For this purpose, we use a previously developed method based on the mathematical analysis of experimental temperature dependences of the initial permeability. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is the relation of two parameters correlating with elastic stress value in a material. Model samples containing a controlled number of intergranular phase inclusions served to prove the validity of the proposed method, as well as to assess its sensitivity in comparison with the traditional XRD (X-ray diffraction) analysis. The broadening data of diffraction reflexes of model samples have served for such comparison. The defects level data obtained by the proposed method are in good agreement with the X-ray data. The method showed high sensitivity. Therefore, the legitimacy of the selection relationship β/α parameters of phenomenological expression as a characteristic of the elastic state of the ferrite ceramics confirmed. In addition, the obtained data can be used in the detection of non-magnetic phases and testing the optimal sintering production technology of soft magnetic ferrites.

Keywords: cure point, initial permeability, integral defects level, homogeneity

Procedia PDF Downloads 137
25499 TAXAPRO, A Streamlined Pipeline to Analyze Shotgun Metagenomes

Authors: Sofia Sehli, Zainab El Ouafi, Casey Eddington, Soumaya Jbara, Kasambula Arthur Shem, Islam El Jaddaoui, Ayorinde Afolayan, Olaitan I. Awe, Allissa Dillman, Hassan Ghazal

Abstract:

The ability to promptly sequence whole genomes at a relatively low cost has revolutionized the way we study the microbiome. Microbiologists are no longer limited to studying what can be grown in a laboratory and instead are given the opportunity to rapidly identify the makeup of microbial communities in a wide variety of environments. Analyzing whole genome sequencing (WGS) data is a complex process that involves multiple moving parts and might be rather unintuitive for scientists that don’t typically work with this type of data. Thus, to help lower the barrier for less-computationally inclined individuals, TAXAPRO was developed at the first Omics Codeathon held virtually by the African Society for Bioinformatics and Computational Biology (ASBCB) in June 2021. TAXAPRO is an advanced metagenomics pipeline that accurately assembles organelle genomes from whole-genome sequencing data. TAXAPRO seamlessly combines WGS analysis tools to create a pipeline that automatically processes raw WGS data and presents organism abundance information in both a tabular and graphical format. TAXAPRO was evaluated using COVID-19 patient gut microbiome data. Analysis performed by TAXAPRO demonstrated a high abundance of Clostridia and Bacteroidia genera and a low abundance of Proteobacteria genera relative to others in the gut microbiome of patients hospitalized with COVID-19, consistent with the original findings derived using a different analysis methodology. This provides crucial evidence that the TAXAPRO workflow dispenses reliable organism abundance information overnight without the hassle of performing the analysis manually.

Keywords: metagenomics, shotgun metagenomic sequence analysis, COVID-19, pipeline, bioinformatics

Procedia PDF Downloads 228
25498 Investigation of External Pressure Coefficients on Large Antenna Parabolic Reflector Using Computational Fluid Dynamics

Authors: Varun K, Pramod B. Balareddy

Abstract:

Estimation of wind forces plays a significant role in the in the design of large antenna parabolic reflectors. Reflector surface accuracies are very sensitive to the gain of the antenna system at higher frequencies. Hence accurate estimation of wind forces becomes important, which is primary input for design and analysis of the reflector system. In the present work, numerical simulation of wind flow using Computational Fluid Dynamics (CFD) software is used to investigate the external pressure coefficients. An extensive comparative study has been made between the CFD results and the published wind tunnel data for different wind angle of attacks (α) acting over concave to convex surfaces respectively. Flow simulations using CFD are carried out to estimate the coefficients of Drag, Lift and Moment for the parabolic reflector. Coefficients of pressures (Cp) over the front and the rear face of the reflector are extracted over surface of the reflector to study the net pressure variations. These resultant pressure variations are compared with the published wind tunnel data for different angle of attacks. It was observed from the CFD simulations, both convex and concave face of reflector system experience a band of pressure variations for the positive and negative angle of attacks respectively. In the published wind tunnel data, Pressure variations over convex surfaces are assumed to be uniform and vice versa. Chordwise and spanwise pressure variations were calculated and compared with the published experimental data. In the present work, it was observed that the maximum pressure coefficients for α ranging from +30° to -90° and α=+90° was lower. For α ranging from +45° to +75°, maximum pressure coefficients were higher as compared to wind tunnel data. This variation is due to non-uniform pressure distribution observed over front and back faces of reflector. Variations in Cd, Cl and Cm over α=+90° to α=-90° was in close resemblance with the experimental data.

Keywords: angle of attack, drag coefficient, lift coefficient, pressure coefficient

Procedia PDF Downloads 260
25497 COVID-19: The Dark Side of an Unprecedented Social Isolation in the Elderly

Authors: L. Paulino Ferreira, M. Gomes Neto, M. Duarte, S. Serra

Abstract:

Objectives: COVID-19 pandemic has caused older adults to experience a degree of social isolation and loneliness that is unprecedented. Our aim is to review state of the art regarding the consequences of social isolation due to COVID-19 in elderly people. Methods: The authors conducted a search on Medscape and PubMed with the keywords mentioned below, and the most relevant articles were selected. Results: Social isolation leads many elderlies to experience loneliness, anxiety, depression, alcohol abuse, and feelings of abandonment with a perception of being a burden on society. Thus, social isolation has increased the risk for suicide in older people. It is also noteworthy that the exacerbation of psychiatric disorders (such as depression, anxiety, and post-traumatic stress disorder) without correct treatment and follow-up also increases suicide risk. Loneliness is also associated with accelerated cognitive deterioration and dementia. Besides that, during social isolation, it could be more difficult for older people to get medication as well as proper health care. It is also noticed an increase in the risk of falls, poor nutrition, and lack of exercise. All this contributes to weakening elderlies’ immune systems leading to a higher risk of developing infections, cardiovascular events, and cancer, increasing hospitalization and morbimortality. Conclusion: Social isolation in the elderly has a significant impact on physical and mental health, as well as morbimortality and hospitalizations due to non-COVID causes. Nevertheless, further studies will be needed to assess the real dimension of the effects of social isolation due to COVID-19.

Keywords: social isolation, COVID-19, elderly, mental health

Procedia PDF Downloads 101
25496 Estimation of the Upper Tail Dependence Coefficient for Insurance Loss Data Using an Empirical Copula-Based Approach

Authors: Adrian O'Hagan, Robert McLoughlin

Abstract:

Considerable focus in the world of insurance risk quantification is placed on modeling loss values from lines of business (LOBs) that possess upper tail dependence. Copulas such as the Joe, Gumbel and Student-t copula may be used for this purpose. The copula structure imparts a desired level of tail dependence on the joint distribution of claims from the different LOBs. Alternatively, practitioners may possess historical or simulated data that already exhibit upper tail dependence, through the impact of catastrophe events such as hurricanes or earthquakes. In these circumstances, it is not desirable to induce additional upper tail dependence when modeling the joint distribution of the loss values from the individual LOBs. Instead, it is of interest to accurately assess the degree of tail dependence already present in the data. The empirical copula and its associated upper tail dependence coefficient are presented in this paper as robust, efficient means of achieving this goal.

Keywords: empirical copula, extreme events, insurance loss reserving, upper tail dependence coefficient

Procedia PDF Downloads 286
25495 Effects of Endurance Training and Thyme Consumption on Neuropeptide Y in Untrained Men

Authors: M. Ghasemi, S.Fazelifar

Abstract:

Abstract Aim: Over-weight is not desirable and has implications for health and in the case of athletes affects performance. Exercise is a strategy used to counteract overweight owing to create a negative energy balance by increasing energy expenditure and influencing appetite regulating hormones. Interestingly, recent studies have revealed inhibitory effects of exercise on the hunger associated with these hormones in healthy subjects Neuropeptide Y(NPY) is a 36 amino acid protein that is a powerful stimulant appetite. NPY is an important central orexigenic hormone predominantly produced by the hypothalamus, and recently found to be secreted in adipose tissue. This neurotransmitter is secreted in the brain and autonomic nervous system. On the other hand, research has shown that thyme in addition to various properties, also affects the appetite. The purpose of this study was to determine Effects of eight weeks endurance training and thyme consumption on neuropeptide Y in untrained men. Methodology: 36 Healthy untrained men (mean body weight 78.25±3.2 kg, height 176±6.8 cm, age 34.32±4.54 years and BMI 29.1±4.3 kg/m2) voluntarily participated in this study . Subjects were randomly divided into four groups: 1. control, 2. Endurance training, 3. Thyme 4. Endurance training + Thyme. Amount of 10cc Blood sampling were obtained pre-test and post-test (after 8 weeks). The taken blood samples were centrifuged at 1500 × g for 15 min then plasma was stored at -20 °C until analysis. Endurance training consisted three session per week with 60% -75% of reserve heart rate for eight weeks. Exclusion criteria were history of gastrointestinal, endocrine, cardiovascular or psychological disease, and consuming any supplementation, alcohol and tobacco products. Descriptive statistics including means, standard deviations, and ranges were calculated for all measures. K-S test to determine the normality of the data and analysis of variance for repeated measures was used to analyze the data. A significant difference in the p<0/05 accepted. Results: Results showed that aerobic training significantly reduced body weight, body mass index, percent body fat, but significant increase observed in maximal oxygen consumption level (p ≤ 0/05). The neuropeptide Y levels were significantly increased after exercise. Analysis of data determined that there was no significant difference between the four groups. Conclusion: Appetite control plays a critical role in the competition between energy consumption and energy expenditure. The results of this study showed that endurance training and thyme consumption can be cause improvement in physiological parameters such as increasing aerobic capacity, reduction of fat mass and improve body composition in untrained men.

Keywords: Endurance training, neuropeptide Y, thyme, untrained men

Procedia PDF Downloads 314
25494 Geovisualization of Human Mobility Patterns in Los Angeles Using Twitter Data

Authors: Linna Li

Abstract:

The capability to move around places is doubtless very important for individuals to maintain good health and social functions. People’s activities in space and time have long been a research topic in behavioral and socio-economic studies, particularly focusing on the highly dynamic urban environment. By analyzing groups of people who share similar activity patterns, many socio-economic and socio-demographic problems and their relationships with individual behavior preferences can be revealed. Los Angeles, known for its large population, ethnic diversity, cultural mixing, and entertainment industry, faces great transportation challenges such as traffic congestion, parking difficulties, and long commuting. Understanding people’s travel behavior and movement patterns in this metropolis sheds light on potential solutions to complex problems regarding urban mobility. This project visualizes people’s trajectories in Greater Los Angeles (L.A.) Area over a period of two months using Twitter data. A Python script was used to collect georeferenced tweets within the Greater L.A. Area including Ventura, San Bernardino, Riverside, Los Angeles, and Orange counties. Information associated with tweets includes text, time, location, and user ID. Information associated with users includes name, the number of followers, etc. Both aggregated and individual activity patterns are demonstrated using various geovisualization techniques. Locations of individual Twitter users were aggregated to create a surface of activity hot spots at different time instants using kernel density estimation, which shows the dynamic flow of people’s movement throughout the metropolis in a twenty-four-hour cycle. In the 3D geovisualization interface, the z-axis indicates time that covers 24 hours, and the x-y plane shows the geographic space of the city. Any two points on the z axis can be selected for displaying activity density surface within a particular time period. In addition, daily trajectories of Twitter users were created using space-time paths that show the continuous movement of individuals throughout the day. When a personal trajectory is overlaid on top of ancillary layers including land use and road networks in 3D visualization, the vivid representation of a realistic view of the urban environment boosts situational awareness of the map reader. A comparison of the same individual’s paths on different days shows some regular patterns on weekdays for some Twitter users, but for some other users, their daily trajectories are more irregular and sporadic. This research makes contributions in two major areas: geovisualization of spatial footprints to understand travel behavior using the big data approach and dynamic representation of activity space in the Greater Los Angeles Area. Unlike traditional travel surveys, social media (e.g., Twitter) provides an inexpensive way of data collection on spatio-temporal footprints. The visualization techniques used in this project are also valuable for analyzing other spatio-temporal data in the exploratory stage, thus leading to informed decisions about generating and testing hypotheses for further investigation. The next step of this research is to separate users into different groups based on gender/ethnic origin and compare their daily trajectory patterns.

Keywords: geovisualization, human mobility pattern, Los Angeles, social media

Procedia PDF Downloads 124
25493 'Disability' and Suffering: The Case of Workers Affected by Repetitive Strain Injury/Work Related Musculoskeletal Disorder in a Removal from Work Situation in Santos, São Paulo, Brazil

Authors: Maria Do Carmo Baracho De Alencar, Marciene Campos Fialho, Maria Do Carmo Vitório Ramos

Abstract:

The subjects affected by Repetitive Strain Injury/Work Related Musculoskeletal Disorder (RSI/WRMSD) face an everyday life marked by pain, feelings of worthlessness and incapacity caused by the disease, and aggravated often because of discrimination society. Aim: To investigate the experiences and feelings of workers affected by RSI/WRMSD in removal from work situations and to understand the repercussions on mental health. Methods: Clinical records of workers were consulted, opened from July 1, 2014, to July 1, 2015, at the Reference Center for Worker's Health, in Santos city-SP. Selection of workers affected by RSI /WRMSD and who had experienced the removal from work situation due to the disease, and invitation to participate in the study. Semi-structured and individual interviews were carried out based on a pre-elaborated script, and for thematic content analysis. Results: Of a total of 502 medical records, 157 were selected, and of these, 18 workers participated in the interviews, both gender, most of them with low education level, aged between 35 and 56 years, and from different professions. Diseases affected several physical body regions and some workers had more than one body region affected by chronic pain. In the testimonies emerged the psychic suffering by the process of illness at work, fear of dismissal, invisibility of pain, in medical expertise attendance, by the incapacity to perform tasks that were easily achievable, with feelings of uselessness, revolt, and injustice, among others. Conclusion: The workers need to be readapted to new life situations, and the study promotes reflections on the need for more interdisciplinary actions and of the Psychology to the workers affected by RSI/ WRMSD.

Keywords: repetitive strain injury, cumulative trauma disorder, absence from work, mental health, occupational health

Procedia PDF Downloads 161
25492 Understanding Racial Disparate Treatment of Juvenile Interpersonal Violent Offenders in the Juvenile Justice System Using Focal Concerns Theory

Authors: Suzanne Overstreet-Juenke

Abstract:

Disproportionate minority contact (DMC) is a salient issue that has been found at every stage of the decision-making process in the juvenile justice system. Existing research indicates that DMC influences adjudication for drug, property, and personal crimes. Because intimate partner violence (IPV) is a major public health problem and global concern, the current study examines DMC at adjudication among youth charged for crimes of interpersonal violence. This research uses administrative, Court Designated Worker (CDW) data collected from 2014 to 2016. The results are contextualized using Steffensmeier’s version of focal concerns theory of judicial decision-making. This study assesses race and two seriousness of offense measures to establish whether a link exists between race and adjudication. The results of the study is similar to prior research on the topic. These results are discussed in terms of policy implications, limitations, and future research.

Keywords: race, disproportionate minority contact, focal concerns theory, juvenile

Procedia PDF Downloads 82
25491 Risk Management in Healthcare Sector in Turkey: A Dental Hospital Case Study

Authors: Pırıl Tekin, Rızvan Erol

Abstract:

Risk management has become very important and popular in developing countries in recent years. Especially making patient and employee health and safety issues compulsory in the hospitals, raised the number of studies in Turkey. Also risk management become more important for hospital senior management from clinics to the laboratories. Because quality is really important to be chosen for both patients to consult and employees to prefer to work. And also risk management studies can lead to hospital management team about future works and methods. By this point of view, this study is the risk assessment carried out in the biggest dental hospital in the south part of Turkey. This study was conducted as a research case study, covering two different health care place; A Clinic and A Laboratory. It shows that the problems in this dental hospital and how it can solve all.

Keywords: risk management, healthcare, dental hospital, quality management

Procedia PDF Downloads 383
25490 Blockchain in Saudi E-Government: A Systematic Literature Review

Authors: Haitham Assiri, Priyadarsi Nanda

Abstract:

The world is gradually entering the fourth industrial revolution. E-Government services are scaling government operations across the globe. However, as promising as an e-Government system would be, it is also susceptible to malicious attacks if not properly secured. This study found out that, in Saudi Arabia, the e-Government website, Yesser is vulnerable to external attacks. Obviously, this can lead to a breach of data integrity and privacy. In this paper, a Systematic Literature Review was conducted to explore possible ways the Kingdom of Saudi Arabia can take necessary measures to strengthen its e-Government system using Blockchain. Blockchain is one of the emerging technologies shaping the world through its applications in finance, elections, healthcare, etc. It secures systems and brings more transparency. A total of 28 papers were selected for this SLR, and 19 of the papers significantly showed that blockchain could enhance the security and privacy of Saudi’s e-government system. Other papers also concluded that blockchain is effective, albeit with the integration of other technologies like IoT, AI and big data. These papers have been analysed to sieve out the findings and set the stage for future research into the subject.

Keywords: blockchain, data integrity, e-government, security threats

Procedia PDF Downloads 253
25489 Geospatial Information for Smart City Development

Authors: Simangele Dlamini

Abstract:

Smart city development is seen as a way of facing the challenges brought about by the growing urban population the world over. Research indicates that cities have a role to play in combating urban challenges like crime, waste disposal, greenhouse gas emissions, and resource efficiency. These solutions should be such that they do not make city management less sustainable but should be solutions-driven, cost and resource-efficient, and smart. This study explores opportunities on how the City of Johannesburg, South Africa, can use Geographic Information Systems, Big Data and the Internet of Things (IoT) in identifying opportune areas to initiate smart city initiatives such as smart safety, smart utilities, smart mobility, and smart infrastructure in an integrated manner. The study will combine Big Data, using real-time data sources to identify hotspot areas that will benefit from ICT interventions. The GIS intervention will assist the city in avoiding a silo approach in its smart city development initiatives, an approach that has led to the failure of smart city development in other countries.

Keywords: smart cities, internet of things, geographic information systems, johannesburg

Procedia PDF Downloads 154
25488 Language Errors Used in “The Space between Us” Movie and Their Effects on Translation Quality: Translation Study toward Discourse Analysis Approach

Authors: Mochamad Nuruz Zaman, Mangatur Rudolf Nababan, M. A. Djatmika

Abstract:

Both society and education areas teach to have good communication for building the interpersonal skills up. Everyone has the capacity to understand something new, either well comprehension or worst understanding. Worst understanding makes the language errors when the interactions are done by someone in the first meeting, and they do not know before it because of distance area. “The Space between Us” movie delivers the love-adventure story between Mars Boy and Earth Girl. They are so many missing conversations because of the different climate and environment. As the moviegoer also must be focused on the subtitle in order to enjoy well the movie. Furthermore, Indonesia subtitle and English conversation on the movie still have overlapping understanding in the translation. Translation hereby consists of source language -SL- (English conversation) and target language -TL- (Indonesia subtitle). These research gap above is formulated in research question by how the language errors happened in that movie and their effects on translation quality which is deepest analyzed by translation study toward discourse analysis approach. The research goal is to expand the language errors and their translation qualities in order to create a good atmosphere in movie media. The research is studied by embedded research in qualitative design. The research locations consist of setting, participant, and event as focused determined boundary. Sources of datum are “The Space between Us” movie and informant (translation quality rater). The sampling is criterion-based sampling (purposive sampling). Data collection techniques use content analysis and questioner. Data validation applies data source and method triangulation. Data analysis delivers domain, taxonomy, componential, and cultural theme analysis. Data findings on the language errors happened in the movie are referential, register, society, textual, receptive, expressive, individual, group, analogical, transfer, local, and global errors. Data discussions on their effects to translation quality are concentrated by translation techniques on their data findings; they are amplification, borrowing, description, discursive creation, established equivalent, generalization, literal, modulation, particularization, reduction, substitution, and transposition.

Keywords: discourse analysis, language errors, The Space between Us movie, translation techniques, translation quality instruments

Procedia PDF Downloads 221
25487 A Coupling Study of Public Service Facilities and Land Price Based on Big Data Perspective in Wuxi City

Authors: Sisi Xia, Dezhuan Tao, Junyan Yang, Weiting Xiong

Abstract:

Under the background of Chinese urbanization changing from incremental development to stock development, the completion of urban public service facilities is essential to urban spatial quality. As public services facilities is a huge and complicated system, clarifying the various types of internal rules associated with the land market price is key to optimizing spatial layout. This paper takes Wuxi City as a representative sample location and establishes the digital analysis platform using urban price and several high-precision big data acquisition methods. On this basis, it analyzes the coupling relationship between different public service categories and land price, summarizing the coupling patterns of urban public facilities distribution and urban land price fluctuations. Finally, the internal mechanism within each of the two elements is explored, providing the reference of the optimum layout of urban planning and public service facilities.

Keywords: public service facilities, land price, urban spatial morphology, big data

Procedia PDF Downloads 221
25486 Clinical Empathy: The Opportunity to Offer Optimal Treatment to People with Serious Illness

Authors: Leonore Robieux, Franck Zenasni, Marc Pocard, Clarisse Eveno

Abstract:

Empirical data in health psychology studies show the necessity to consider the doctor-patient communication and its positive impact on outcomes such as patients’ satisfaction, treatment adherence, physical and psychological wellbeing. In this line, the present research aims to define the role and determinants of an effective doctor–patient communication during the treatment of patients with serious illness (peritoneal carcinomatosis). We carried out a prospective longitudinal study including patients treated for peritoneal carcinomatosis of various origins. From November 2016, to date, data were collected using validated questionnaires at two times of evaluation: one month before the surgery (T0) and one month after (T1). Thus, patients reported their (a) anxiety and depression levels, (b) standardized and individualized quality of life and (c) how they perceived communication, attitude and empathy of the surgeon. 105 volunteer patients (Mean age = 58.18 years, SD = 10.24, 62.2% female) participated to the study. PC arose from rare diseases (14%), colorectal (38%), eso-gastric (24%) and ovarian (8%) cancer. Three groups are defined according to the severity of their pathology and the treatment offered to them: (1) important surgical treatment with the goal of healing (53%), (2) repeated palliative surgical treatment (17%), and (3) the patients recused for surgical treatment, only palliative approach (30%). Results are presented according to Baron and Kenny recommendations. The regressions analyses show that only depression and anxiety are sensitive to the communication and empathy of surgeon. The main results show that a good communication and high level of empathy at T0 and T1 limit depression and anxiety of the patients in T1. Results also indicate that the severity of the disease modulates this positive impact of communication: better is the communication the less are the level of depression and anxiety of the patients. This effect is higher for patients treated for the more severe disease. These results confirm that, even in the case severe disease a good communication between patient and physician remains a significant factor in promoting the well-being of patients. More specific training need to be developed to promote empathic care.

Keywords: clinical empathy, determinants, healthcare, psychological wellbeing

Procedia PDF Downloads 126
25485 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 282
25484 Adjusting Mind and Heart to Ovarian Cancer: Correlational Study on Italian Women

Authors: Chiara Cosentino, Carlo Pruneti, Carla Merisio, Domenico Sgromo

Abstract:

Introduction – Psychoneuroimmunology as approach clearly showed how psychological features can influence health through specific physiological pathways linked to the stress reaction. This can be true also in cancer, in its latter conceptualization seen as a chronic disease. Therefore, it is still not clear how the psychological features can combine with a physiological specific path, for a better adjustment to cancer. The aim of this study is identifying how in Italian survivors, perceived social support, body image, coping and quality of life correlate with or influence Heart Rate Variability (HRV), the physiological parameter that can mirror a condition of chronic stress or a good relaxing capability. Method - The study had an exploratory transversal design. The final sample was made of 38 ovarian cancer survivors aged from 29 to 80 (M= 56,08; SD=12,76) following a program for Ovarian Cancer at the Oncological Clinic, University Hospital of Parma, Italy. Participants were asked to fill: Multidimensional Scale of Perceived Social Support (MSPSS); Derridford Appearance Scale-59 (DAS-59); Mental Adjustment to Cancer (MAC); Quality of Life Questionnaire (EORTC). For each participant was recorded Short-Term HRV (5 minutes) using emWavePro. Results– Data showed many interesting correlations within the psychological features. EORTC scores have a significant correlation with DAS-59 (r =-.327 p <.05), MSPSS (r =.411 p<.05), and MAC scores, in particular with the strategy Fatalism (r =.364 p<.05). A good social support improves HRV (F(1,33)= 4.27 p<.05). Perceiving themselves as effective in their environment, preserving a good role functioning (EORTC), positively affects HRV (F(1,33)=9.810 p<.001). Women admitting concerns towards body image seem prone to emotive disclosure, reducing emotional distress and improving HRV (β=.453); emotional avoidance worsens HRV (β=-.391). Discussion and conclusion - Results showed a strong relationship between body image and Quality of Life. These data suggest that higher concerns on body image, in particular, the negative self-concept linked to appearance, was linked to the worst functioning in everyday life. The relation between the negative self-concept and a reduction in emotional functioning is understandable in terms of possible distress deriving from the perception of body appearance. The relationship between a high perceived social support and a better functioning in everyday life was also confirmed. In this sample fatalism, was associated with a better physical, role and emotional functioning. In these women, the presence of a good support may activate the physiological Social Engagement System improving their HRV. Perceiving themselves effective in their environment, preserving a good role functioning, also positively affects HRV, probably following the same physiological pathway. A higher presence of concerns about appearance contributes to a higher HRV. Probably women admitting more body concerns are prone to a better emotive disclosure. This could reduce emotional distress improving HRV and global health. This study reached preliminary demonstration of an ‘Integrated Model of Defense’ in these cancer survivors. In these model, psychological features interact building a better quality of life and a condition of psychological well-being that is associated and influence HRV, then the physiological condition.

Keywords: cancer survivors, heart rate variability, ovarian cancer, psychophysiological adjustment

Procedia PDF Downloads 192
25483 Deployed Confidence: The Testing in Production

Authors: Shreya Asthana

Abstract:

Testers know that the feature they tested on stage is working perfectly in production only after release went live. Sometimes something breaks in production and testers get to know through the end user’s bug raised. The panic mode starts when your staging test results do not reflect current production behavior. And you started doubting your testing skills when finally the user reported a bug to you. Testers can deploy their confidence on release day by testing on production. Once you start doing testing in production, you will see test result accuracy because it will be running on real time data and execution will be a little faster as compared to staging one due to elimination of bad data. Feature flagging, canary releases, and data cleanup can help to achieve this technique of testing. By this paper it will be easier to understand the steps to achieve production testing before making your feature live, and to modify IT company’s testing procedure, so testers can provide the bug free experience to the end users. This study is beneficial because too many people think that testing should be done in staging but not in production and now this is high time to pull out people from their old mindset of testing into a new testing world. At the end of the day, it all just matters if the features are working in production or not.

Keywords: bug free production, new testing mindset, testing strategy, testing approach

Procedia PDF Downloads 83
25482 The Views of Health Care Professionals outside of the General Practice Setting on the Provision of Oral Contraception in Comparison to Long-Acting Reversible Contraception

Authors: Carri Welsby, Jessie Gunson, Pen Roe

Abstract:

Currently, there is limited research examining health care professionals (HCPs) views on long-acting reversible contraception (LARC) advice and prescription, particularly outside of the general practice (GP) setting. The aim of this study is to systematically review existing evidence around the barriers and enablers of oral contraception (OC) in comparison to LARC, as perceived by HCPs in non-GP settings. Five electronic databases were searched in April 2018 using terms related to LARC, OC, HCPs, and views, but not terms related to GPs. Studies were excluded if they concerned emergency oral contraception, male contraceptives, contraceptive use in conjunction with a health condition(s), developing countries, GPs and GP settings, were non-English or was not published before 2013. A total of six studies were included for systematic reviewing. Five key areas emerged, under which themes were categorised, including (1) understanding HCP attitudes and counselling practices towards contraceptive methods; (2) assessment of HCP attitudes and beliefs about contraceptive methods; (3) misconceptions and concerns towards contraceptive methods; and (4) influences on views, attitudes, and beliefs of contraceptive methods. Limited education and training of HCPs exists around LARC provision, particularly compared to OC. The most common misconception inhibiting HCPs contraceptive information delivery to women was the belief that LARC was inappropriate for nulliparous women. In turn, by not providing the correct information on a variety of contraceptive methods, HCP counselling practices were disempowering for women and restricted them from accessing reproductive justice. Educating HCPs to be able to provide accurate and factual information to women on all contraception is vital to encourage a woman-centered approach during contraceptive counselling and promote informed choices by women.

Keywords: advice, contraceptives, health care professionals, long acting reversible contraception, oral contraception, reproductive justice

Procedia PDF Downloads 163
25481 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 143
25480 Evaluation of Hydrocarbon Prospects of 'ADE' Field, Niger Delta

Authors: Oluseun A. Sanuade, Sanlinn I. Kaka, Adesoji O. Akanji, Olukole A. Akinbiyi

Abstract:

Prospect evaluation of ‘the ‘ADE’ field was done using 3D seismic data and well log data. The field is located in the offshore Niger Delta where water depth ranges from 450 to 800 m. The objectives of this study are to explore deeper prospects and to ascertain the kind of traps that are favorable for the accumulation of hydrocarbon in the field. Six horizons with major and minor faults were identified and mapped in the field. Time structure maps of these horizons were generated and using the available check-shot data the maps were converted to top structure maps which were used to calculate the hydrocarbon volume. The results show that regional structural highs that are trending in northeast-southwest (NE-SW) characterized a large portion of the field. These highs were observed across all horizons revealing a regional post-depositional deformation. Three prospects were identified and evaluated to understand the different opportunities in the field. These include stratigraphic pinch out and bi-directional downlap. The results of this study show that the field has potentials for new opportunities that could be explored for further studies.

Keywords: hydrocarbon, play, prospect, stratigraphy

Procedia PDF Downloads 276
25479 Reliability Estimation of Bridge Structures with Updated Finite Element Models

Authors: Ekin Ozer

Abstract:

Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.

Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring

Procedia PDF Downloads 227
25478 Capacity Building and Training of Health Personals for Disaster Preparedness in North East India

Authors: U. K. Tamuli

Abstract:

Introduction: North East India is graced with natural beauty and hazards. This area is prone to major earthquakes, floods, landslides, accidents, terrorist activities etc. Academy of Trauma (AOT), an NGO of Doctors, conducts training programs, mock drills, field trials amongst the doctors and paramedics in North East India. The present study is to evaluate the efficacy of such training in terms of sensitivity, awareness, and delivery systems of the products. Here the health care delivery system for disaster management is inadequate. Clear guideline of mass casualty management is unavailable. AOT has initiated steps to increase the awareness and handling of mass casualty management to improve the emergency health care delivery system. Method: AOT has conducted training programmes on emergency health management, mass casualty management and hospital preparedness amongst 800 doctors and 1200 paramedics in twenty-two districts of Assam in Northeast India. The training module consists of lectures, hands-on workshop using manikins, mock drills, distribution of manuals, emergency management exercises, periodic exchange of experience and debriefings. AOT evaluates the impact of these trainings by conducting pre and post tests of delegates, trainer’s evaluation, delegate’s satisfaction and confidence level and their suggestions. Results: The module, training, hands-on workshops, mock drills were highly appreciated. There is significant improvement in scores on the post-training tests. The confidence level of the participants has risen to deal with emergency medical situation Conclusion: These kinds of trainings increase the awareness of the medical members to handle mass casualties in different situations. One such training actually sensitises the delegates. Repetition of such training, TOT (Training-of-Trainers) programs, and individual efforts of delegates are extremely important for sustenance and success of health care delivery service during disasters in the developing countries. Further collaboration, assistance, networking, suggestions from established global agencies in this field will be highly appreciated.

Keywords: capacity building, North East India, non-governmental organization, trauma

Procedia PDF Downloads 299
25477 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation

Authors: Abdal-Hafeez Alhussein

Abstract:

Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.

Keywords: artificial intelligence, information technology, automation, scalability

Procedia PDF Downloads 22
25476 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network

Authors: Sandesh Achar

Abstract:

Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.

Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.

Procedia PDF Downloads 48