Search results for: rat red blood cell haemoglobin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5620

Search results for: rat red blood cell haemoglobin

460 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216B-5p Expression Level

Authors: Ramin Mehdiabadi

Abstract:

Background: Breast cancer remains the most prevalent cancer diagnosis and the leading cause of cancer death among women globally, representing 11.7% of new cases and 6.9% of deaths. While the incidence and mortality of major cancers are declining in developed regions like the United States and Western Europe, underdeveloped and developing countries exhibit an increasing trend, attributed to lifestyle factors such as smoking, physical inactivity, and high-calorie diets. Objective: This study explores the intricate relationship between the mammalian transcription factor forkhead box (FoxM1) and the microRNA miR-216b-5p in various subtypes of breast cancer, aiming to deepen the understanding of their roles in tumorigenesis, metastasis, and drug resistance. Methods: Breast cancer subtypes were categorized based on key biomarkers: estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2. These include luminal A, luminal B, HER2 enriched, triple-negative, and normal-like subtypes. We focused on analyzing the expression levels of FoxM1 and miR-216b-5p, given the known role of FoxM1 in cell proliferation and its implications in cancer pathologies such as lung, gastric, and breast cancers. Concurrently, miR-216b-5p's function as a tumor suppressor was evaluated to ascertain its regulatory effects on FoxM1. Results: Preliminary data indicate a nuanced interplay between FoxM1 and miR-216b-5p, suggesting a potential inverse relationship that varies across breast cancer subtypes. This relationship underscores the dual role of these biomarkers in modulating cancer progression and response to treatments. Conclusion: The findings advocate for the potential of miR-216b-5p to serve as a prognostic biomarker and a therapeutic target, particularly in subtypes where FoxM1 is prominently expressed. Understanding these molecular interactions provides crucial insights into the personalized treatment strategies and could lead to more effective therapeutic interventions in breast cancer management. Implications: The study highlights the importance of molecular profiling in breast cancer treatment and emphasizes the need for targeted therapeutic approaches in managing diverse cancer subtypes, particularly in varying global contexts where lifestyle factors significantly impact cancer dynamics.

Keywords: breast cancer, gene expression, FoxM1, microRNA

Procedia PDF Downloads 31
459 Proteomic Analysis of Cytoplasmic Antigen from Brucella canis to Characterize Immunogenic Proteins Responded with Naturally Infected Dogs

Authors: J. J. Lee, S. R. Sung, E. J. Yum, S. C. Kim, B. H. Hyun, M. Her, H. S. Lee

Abstract:

Canine brucellosis is a critical problem in dogs leading to reproductive diseases which are mainly caused by Brucella canis. There are, nonetheless, not clear symptoms so that it may go unnoticed in most of the cases. Serodiagnosis for canine brucellosis has not been confirmed. Moreover, it has substantial difficulties due to broad cross-reactivity between the rough cell wall antigens of B. canis and heterospecific antibodies present in normal, uninfected dogs. Thus, this study was conducted to characterize the immunogenic proteins in cytoplasmic antigen (CPAg) of B. canis, which defined the antigenic sensitivity of the humoral antibody responses to B. canis-infected dogs. In analysis of B. canis CPAg, first, we extracted and purified the cytoplasmic proteins from cultured B. canis by hot-saline inactivation, ultrafiltration, sonication, and ultracentrifugation step by step according to the sonicated antigen extract method. For characterization of this antigen, we checked the sort and range of each protein on SDS-PAGE and verified the immunogenic proteins leading to reaction with antisera of B. canis-infected dogs. Selected immunodominant proteins were identified using MALDI-MS/MS. As a result, in an immunoproteomic assay, several polypeptides in CPAg on one or two-dimensional electrophoresis (DE) were specifically reacted to antisera from B. canis-infected dogs but not from non-infected dogs. The polypeptides with approximate 150, 80, 60, 52, 33, 26, 17, 15, 13, 11 kDa on 1-DE were dominantly recognized by antisera from B. canis-infected dogs. In the immunoblot profiles on 2-DE, ten immunodominant proteins in CPAg were detected with antisera of infected dogs between pI 3.5-6.5 at approximate 35 to 10 KDa, without any nonspecific reaction with sera in non-infected dogs. Ten immunodominant proteins identified by MALDI-MS/MS were identified as superoxide dismutase, bacteroferritin, amino acid ABC transporter substrate-binding protein, extracellular solute-binding protein family3, transaldolase, 26kDa periplasmic immunogenic protein, Rhizopine-binding protein, enoyl-CoA hydratase, arginase and type1 glyceraldehyde-3-phosphate dehydrogenase. Most of these proteins were determined by their cytoplasmic or periplasmic localization with metabolism and transporter functions. Consequently, this study discovered and identified the prominent immunogenic proteins in B. canis CPAg, highlighting that those antigenic proteins may accomplish a specific serodiagnosis for canine brucellosis. Furthermore, we will evaluate those immunodominant proteins for applying to the advanced diagnostic methods with high specificity and accuracy.

Keywords: Brucella canis, Canine brucellosis, cytoplasmic antigen, immunogenic proteins

Procedia PDF Downloads 130
458 Novel Adomet Analogs as Tools for Nucleic Acids Labeling

Authors: Milda Nainyte, Viktoras Masevicius

Abstract:

Biological methylation is a methyl group transfer from S-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases), which represent more than 3 % of the proteins in the cell. As a general mechanism, the methyl group from AdoMet replaces a hydrogen atom of nucleophilic center producing methylated DNA and S-adenosyl-L-homocysteine (AdoHcy). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. Two types of MTase catalyzed labeling of biopolymers are known, referred as two-step and one-step. During two-step labeling, an alkylating fragment is transferred onto DNA in a sequence-specific manner and then the reporter group, such as biotin, is attached for selective visualization using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at 100 %, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the one-step labeling, AdoMet analog is designed with the reporter group already attached to the functional group. Thus, the one-step labeling method would be more comfortable tool for labeling of biopolymers in order to prevent additional chemical reactions and selection of reaction conditions. Also, time costs would be reduced. However, effective AdoMet analog appropriate for one-step labeling of biopolymers and containing cleavable bond, required for reduction of PCR interferation, is still not known. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of Activated Groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Herein we describe synthetic procedures for the preparation of N-biotinoyl-N’-(pent-4-ynoyl)cystamine starting from the coupling of cystamine with pentynoic acid and finally attaching the biotin as a reporter group. The synthesis of the first AdoMet based cofactor containing a cleavable reporter group and appropriate for one-step labeling was developed.

Keywords: adoMet analogs, DNA alkylation, cofactor, methyltransferases

Procedia PDF Downloads 187
457 A Program of Data Analysis on the Possible State of the Antibiotic Resistance in Bangladesh Environment in 2019

Authors: S. D. Kadir

Abstract:

Background: Antibiotics have always been at the centrum of the revolution of modern microbiology. Micro-organisms and its pathogenicity, resistant organisms, inappropriate or over usage of various types of antibiotic agents are fuelled multidrug-resistant pathogenic organisms. Our present time review report mainly focuses on the therapeutic condition of antibiotic resistance and the possible roots behind the development of antibiotic resistance in Bangladesh in 2019. Methodology: The systemic review has progressed through a series of research analyses on various manuscripts published on Google Scholar, PubMed, Research Gate, and collected relevant information from established popular healthcare and diagnostic center and its subdivisions all over Bangladesh. Our research analysis on the possible assurance of antibiotic resistance been ensured by the selective medical reports and on random assay on the extent of individual antibiotic in 2019. Results: 5 research articles, 50 medical report summary, and around 5 patients have been interviewed while going through the estimation process. We have prioritized research articles where the research analysis been performed by the appropriate use of the Kirby-Bauer method. Kirby-Bauer technique is preferred as it provides greater efficiency, ensures lower performance expenditure, and supplies greater convenience and simplification in the application. In most of the reviews, clinical and laboratory standards institute guidelines were strictly followed. Most of our reports indicate significant resistance shown by the Beta-lactam drugs. Specifically by the derivatives of Penicillin's, Cephalosporin's (rare use of the first generation Cephalosporin and overuse of the second and third generation of Cephalosporin and misuse of the fourth generation of Cephalosporin), which are responsible for almost 67 percent of the bacterial resistance. Moreover, approximately 20 percent of the resistance was due to the fact of drug pumping from the bacterial cell by tetracycline and sulphonamides and their derivatives. Conclusion: 90 percent of the approximate antibiotic resistance is due to the usage of relative and true broad-spectrum antibiotics. The environment has been created by the following circumstances where; the excessive usage of broad-spectrum antibiotics had led to a condition where the disruption of native bacteria and a series of anti-microbial resistance causing a disturbance of the surrounding environments in medium, leading to a state of super-infection.

Keywords: antibiotics, antibiotic resistance, Kirby Bauer method, microbiology

Procedia PDF Downloads 113
456 Germline Mutations of Mitogen-Activated Protein Kinases Pathway Signaling Pathway Genes in Children

Authors: Nouha Bouayed Abdelmoula, Rim Louati, Nawel Abdellaoui, Balkiss Abdelmoula, Oldez Kaabi, Walid Smaoui, Samir Aloulou

Abstract:

Background and Aims: Cardiofaciocutaneous syndrome (CFC) is an autosomal dominant disorder with the vast majority of cases arising by a new mutation of BRAF, MEK1, MEK2, or rarely, KRAS genes. Here, we report a rare Tunisian case of CFC syndrome for whom we identify SOS1 mutation. Methods: Genomic DNA was obtained from peripheral blood collected in an EDTA tube and extracted from leukocytes using the phenol/chloroform method according to standard protocols. High resolution melting (HRM) analysis for screening of mutations in the entire coding sequence of PTPN11 was conducted first. Then, HRM assays to look for hot spot mutations coding regions of the other genes of the RAS-MAPK pathway (RAt Sarcoma viral oncogene homolog Mitogen-Activated Protein Kinases Pathway): SOS1, SHOC2, KRAS, RAF1, KRAS, NRAS, CBL, BRAF, MEK1, MEK2, HRAS, and RIT1, were applied. Results: Heterozygous SOS1 point mutation clustered in exon 10, which encodes for the PH domain of SOS1, was identified: c.1655 G > A. The patient was a 9-year-old female born from a consanguineous couple. She exhibited pulmonic valvular stenosis as congenital heart disease. She had facial features and other malformations of Noonan syndrome, including macrocephaly, hypertelorism, ptosis, downslanting palpebral fissures, sparse eyebrows, a short and broad nose with upturned tip, low-set ears, high forehead commonly associated with bitemporal narrowing and prominent supraorbital ridges, short and/or webbed neck and short stature. However, the phenotype is also suggestive of CFC syndrome with the presence of more severe ectodermal abnormalities, including curly hair, keloid scars, hyperkeratotic skin, deep plantar creases, and delayed permanent dentition with agenesis of the right maxillary first molar. Moreover, the familial history of the patient revealed recurrent brain malignancies in the paternal family and epileptic disease in the maternal family. Conclusions: This case report of an overlapping RASopathy associated with SOS1 mutation and familial history of brain tumorigenesis is exceptional. The evidence suggests that RASopathies are truly cancer-prone syndromes, but the magnitude of the cancer risk and the types of cancer partially overlap.

Keywords: cardiofaciocutaneous syndrome, CFC, SOS1, brain cancer, germline mutation

Procedia PDF Downloads 141
455 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry

Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya

Abstract:

This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.

Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry

Procedia PDF Downloads 75
454 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices

Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das

Abstract:

The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.

Keywords: terahertz, detector, responsivity, topological-semimetals

Procedia PDF Downloads 149
453 Tunable Crystallinity of Zinc Gallogermanate Nanoparticles via Organic Ligand-Assisted Biphasic Hydrothermal Synthesis

Authors: Sarai Guerrero, Lijia Liu

Abstract:

Zinc gallogermanate (ZGGO) is a persistent phosphor that can emit in the near infrared (NIR) range once dopped with Cr³⁺ enabling its use for in-vivo deep-tissue bio-imaging. Such a property also allows for its application in cancer diagnosis and therapy. Given this, work into developing a synthetic procedure that can be done using common laboratory instruments and equipment as well as understanding ZGGO overall, is in demand. However, the ZGGO nanoparticles must have a size compatible for cell intake to occur while still maintaining sufficient photoluminescence. The nanoparticle must also be made biocompatible by functionalizing the surface for hydrophilic solubility and for high particle uniformity in the final product. Additionally, most research is completed on doped ZGGO, leaving a gap in understanding the base form of ZGGO. It also leaves a gap in understanding how doping affects the synthesis of ZGGO. In this work, the first step of optimizing the particle size via the crystalline size of ZGGO was done with undoped ZGGO using the organic acid, oleic acid (OA) for organic ligand-assisted biphasic hydrothermal synthesis. The effects of this synthesis procedure on ZGGO’s crystallinity were evaluated using Powder X-Ray Diffraction (PXRD). OA was selected as the capping ligand as experiments have shown it beneficial in synthesizing sub-10 nm zinc gallate (ZGO) nanoparticles as well as palladium nanocrystals and magnetite (Fe₃O₄) nanoparticles. Later it is possible to substitute OA with a different ligand allowing for hydrophilic solubility. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) was used to investigate the surface of the nanoparticle to investigate and verify that OA had capped the nanoparticle. PXRD results showed that using this procedure led to improved crystallinity, comparable to the high-purity reagents used on the ZGGO nanoparticles. There was also a change in the crystalline size of the ZGGO nanoparticles. ATR-FTIR showed that once capped ZGGO cannot be annealed as doing so will affect the OA. These results point to this new procedure positively affecting the crystallinity of ZGGO nanoparticles. There are also repeatable implying the procedure is a reliable source of highly crystalline ZGGO nanoparticles. With this completed, the next step will be working on substituting the OA with a hydrophilic ligand. As these ligands effect the solubility of the nanoparticle as well as the pH that the nanoparticles can dissolve in, further research is needed to verify which ligand is best suited for preparing ZGGO for bio-imaging.

Keywords: biphasic hydrothermal synthesis, crystallinity, oleic acid, zinc gallogermanate

Procedia PDF Downloads 120
452 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation

Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang

Abstract:

The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.

Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics

Procedia PDF Downloads 124
451 Effects of Narghile Smoking in Tongue, Trachea and Lung

Authors: Sarah F. M. Pilati, Carolina S. Flausino, Guilherme F. Hoffmeister, Davi R. Tames, Telmo J. Mezadri

Abstract:

The effects that may be related to narghile smoking in the tissues of the oral cavity, trachea and lung and associated inflammation has been the question raised lately. The objective of this study was to identify histopathological changes and the presence of inflammation through the exposure of mice to narghile smoking through a whole-body study. The animals were divided in 4 groups with 5 animals in each group, being: one control group, one with 7 days of exposure, 15 days and the last one with 30 days. The animals were exposed to the conventional hookah smoke from Mizo brand with 0.5% percentage of unwashed tobacco and the EcOco brand coconut fiber having a dimension of 2cm × 2cm. The duration of the session was 30 minutes / day per 7, 15 and 30 days. The tobacco smoke concentration at which test animals were exposed was 35 ml every two seconds while the remaining 58 seconds were pure air. Afterward, the mice were sacrificed and submitted to histological evaluation through slices. It was found in the tongue of the 7-day group the presence in epithelium areas with acanthosis, hyperkeratosis and epithelial projections. In-depth, more intense inflammation was observed. All alteration processes increased significantly as the days of exposure increased. In trachea, with the 7-day group, there was a decrease in thickening of the pseudostratified epithelium and a slight decrease in lashes, giving rise to the metaplasia process, a process that was established in the 31-day sampling when the epithelium became stratified. In the conjunctive tissue, it was observed the presence of defense cells and formation of new vessels, evidencing the chronic inflammatory process, which decreased in the course of the samples due to the deposition of collagen fibers as seen in the 15 and 31 days groups. Among the structures of the lung, the study focused on the bronchioles and alveoli. From the 7-day group, intra-alveolar septum thickness increased, alveolar space decreased, inflammatory infiltrate with mononuclear and defense cells and new vessels formation were observed, increasing the number of red blood cells in the region. The results showed that with the passing of the days a progressive increase of the signs of changes in the region was observed, a factor that shows that narghile smoking stimulates alterations mainly in the alveoli (place where gas exchanges occur that should not present alterations) calling attention to the harmful and aggressive effect of narghile smoking. These data also highlighted the harmful effect of smoking, since the presence of acanthosis, hyperkeratosis, epithelial projections and inflammation evidences the cellular alteration process for the tongue tissue protection. Also, the narghile smoking stimulates both epithelial and inflammatory changes in the trachea, in addition to a process of metaplasia, a factor that reinforces the harmful effect and the carcinogenic potential of the narghile smoking.

Keywords: metaplasia, inflammation, pathological constriction, hyperkeratosis

Procedia PDF Downloads 154
450 Palladium/Platinum Complexes of Tridentate 4-Acylpyrazolone Thiosemicarbazone with Antioxidant Properties

Authors: Omoruyi G. Idemudia, Alexander P. Sadimenko

Abstract:

The need for the development of new sustainable bioactive compounds with unique properties that can become potential replacement for commonly used medicinal drugs has continued to gain tremendous research concerns because of the problems of disease resistant to these medicinal drugs and their toxicity effects. NOS-donor heterocycles are particularly of interest as they have showed good pharmacological activities in the midst of their interesting chelating properties towards metal ions, an important characteristic for transition metal based drugs design. These new compounds have also gained application as dye sensitizers in solar cell panels for the generation of renewable solar energy, as greener water purification polymer for supply and management of clean water and as catalysts which are used to reduce the amount of pollutants from industrial reaction processes amongst others, because of their versatile properties. Di-ketone acylpyrazolones and their azomethine schiff bases have been employed as pharmaceuticals as well as analytical reagents, and their application as transition metal complexes have being well established. In this research work, a new 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one-thiosemicarbazone was synthesized from the reaction of 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one and thiosemicarbazide in methanol. The pure isolate of the thiosemicarbazone was further reacted with aqueous solutions of palladium and platinum salts to obtain their metal complexes, in an effort towards the discovery of transition metal based synthetic drugs. These compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one thiosemicarbazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group according to x-ray crystallography. The tridentate NOS ligand formed a tetrahedral geometry on coordinating with metal ions. Reported compounds showed varying antioxidant free radical scavenging activities against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 100, 200, 300, 400 and 500 µg/ml concentrations. The platinum complex have shown a very good antioxidant property against DPPH with an IC50 of 76.03 µg/ml compared with standard ascorbic acid (IC50 of 74.66 µg/ml) and as such have been identified as a potential anticancer candidate.

Keywords: acylpyrazolone, free radical scavenging activities, tridentate ligand, x-ray crystallography

Procedia PDF Downloads 170
449 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials

Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó

Abstract:

Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.

Keywords: morphology, PE, roughness, titanium

Procedia PDF Downloads 112
448 Activating Psychological Resources of DUI (Drivers under the Influence of Alcohol) Using the Traffic Psychology Intervention (IFT Course), Germany

Authors: Parichehr Sharifi, Konrad Reschke, Hans-Liudger Dienel

Abstract:

Psychological intervention generally targets changes in attitudes and behavior. Working with DUIs is part of traffic psychologists’ work. The primary goal of this field is to reduce the probability of re-conspicuous of the delinquent driver. One of these measurements in Germany is IFT courses for DUI s. The IFT course was designed by the Institute for Therapy Research. Participants are drivers who have fallen several times or once with a blood alcohol concentration of 1.6 per mill and who have completed a medical-psychological assessment (MPU) with the result of the course recommendation. The course covers four sessions of 3.5 hours each (1 hour / 60 m) and in a period of 3 to 4 weeks in the group discussion. This work analyzes interventions for the rehabilitation of DUI (Drunk Drivers offenders) offenders in groups under the aspect of activating psychological resources. From the aspect of sustainability, they should also have long-term consequences for the maintenance of unproblematic driving behavior in terms of the activation of resources. It is also addressing a selected consistency-theory-based intervention effect, activating psychological resources. So far, this has only been considered in the psychotherapeutic field but never in the field of traffic psychology. The methodology of this survey is one qualitative and three quantitative. In four sub-studies, it will be examined which measurements can determine the resources and how traffic psychological interventions can strengthen resources. The results of the studies have the following implications for traffic psychology research and practice: (1) In the field of traffic psychology intervention for the restoration of driving fitness, it can be stated that aspects of resource activation in this work have been investigated for the first time by qualitative and quantitative methods. (2) The resource activation could be confirmed based on the determined results as an effective factor of traffic psychological intervention. (3) Two sub-studies show a range of resources and resource activation options that must be given greater emphasis in traffic psychology interventions: - Social resource activation - improvement of the life skills of participants - Reactivation of existing social support options - Re-experiencing self-esteem, self-assurance, and acceptance of traffic-related behaviors. (4) In revising the IFT-§70 course, as well as other courses on recreating aptitude for DUI, new traffic-specific resource-enabling interventions against alcohol abuse should be developed to further enhance the courses through motivational, cognitive, and behavioral effects of resource activation, Resource-activating interventions can not only be integrated into behavioral group interventions but can also be applied in psychodynamic, psychodynamic (individual psychological) and other contexts of individual traffic psychology. The results are indicative but clearly show that personal resources can be strengthened through traffic psychology interventions. In the research, practice, training, and further education of traffic psychology, the aspect of primary resource activation (Grawe, 1999), therefore, always deserves the greatest attention for the rehabilitation of DUIs and Traffic safety.

Keywords: traffic safety, psychological resources, activating of resources, intervention programs for alcohol offenders, empowerment

Procedia PDF Downloads 67
447 Impact of Electric Vehicles on Energy Consumption and Environment

Authors: Amela Ajanovic, Reinhard Haas

Abstract:

Electric vehicles (EVs) are considered as an important means to cope with current environmental problems in transport. However, their high capital costs and limited driving ranges state major barriers to a broader market penetration. The core objective of this paper is to investigate the future market prospects of various types of EVs from an economic and ecological point of view. Our method of approach is based on the calculation of total cost of ownership of EVs in comparison to conventional cars and a life-cycle approach to assess the environmental benignity. The most crucial parameters in this context are km driven per year, depreciation time of the car and interest rate. The analysis of future prospects it is based on technological learning regarding investment costs of batteries. The major results are the major disadvantages of battery electric vehicles (BEVs) are the high capital costs, mainly due to the battery, and a low driving range in comparison to conventional vehicles. These problems could be reduced with plug-in hybrids (PHEV) and range extenders (REXs). However, these technologies have lower CO₂ emissions in the whole energy supply chain than conventional vehicles, but unlike BEV they are not zero-emission vehicles at the point of use. The number of km driven has a higher impact on total mobility costs than the learning rate. Hence, the use of EVs as taxis and in car-sharing leads to the best economic performance. The most popular EVs are currently full hybrid EVs. They have only slightly higher costs and similar operating ranges as conventional vehicles. But since they are dependent on fossil fuels, they can only be seen as energy efficiency measure. However, they can serve as a bridging technology, as long as BEVs and fuel cell vehicle do not gain high popularity, and together with PHEVs and REX contribute to faster technological learning and reduction in battery costs. Regarding the promotion of EVs, the best results could be reached with a combination of monetary and non-monetary incentives, as in Norway for example. The major conclusion is that to harvest the full environmental benefits of EVs a very important aspect is the introduction of CO₂-based fuel taxes. This should ensure that the electricity for EVs is generated from renewable energy sources; otherwise, total CO₂ emissions are likely higher than those of conventional cars.

Keywords: costs, mobility, policy, sustainability,

Procedia PDF Downloads 211
446 The Relationships between AntimüLlerian Hormone, Androgens and Ovarian Reserve in Non-Obese East Indian Women with and without Polycystic Ovary Syndrome

Authors: Dipanshu Sur, Ratnabali Chakravorty, Rimi Pal, Siddhartha Chatterjee, Joyshree Chaterjee, Amal Mallik

Abstract:

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disease in reproductive women with a complex hormonal disturbance that affects the menstrual cycle and leads to metabolic consequences in later life. Hyperandrogenaemia is noticeable features of PCOS and influence the process of folliculogenesis in women. The levels of Antimüllerian Hormone (AMH) reflect the number of pre-antral follicles and thus are a marker of oocyte pool – germinal reserve of the ovary for reproduction. Besides its utilization in IVF (In-vitro fertilization), determination of AMH may serve as an additional marker in the diagnostics of PCOS, where increased AMH levels reflect the severity of the disease. The positive correlation of serum AMH with the number of antral follicles was found also in patients with PCOS. Objective: The objective of this study was to investigate the relationship between AMH androgens and whether AMH contributes to altered folliculogenesis in non-obese women with PCOS. Methods: We designed a prospective study which included a total of 65 IVF individuals. It enrolled 26 cases of PCOS based on 2003 Rotterdam criteria and 39 ovulatory normal- non PCOS, healthy, age-matched controls. AMH levels and ovarian morphology were assessed. The relationships between AMH and androgenaemia in patients with and without PCOS were studied. Results: Mean age of PCOS patients were slightly higher than controls (32±4 and 28±3 years, respectively). AMH generally increased with antral follicle count (AFC) [P=0.001], testosterone, and luteinising hormone, and decreased with age, and serum sex hormone binding globulin (SHBG). No significant relationships were found between circulating AMH levels and BMI between PCOS and non-PCOS patients. The calculation of AMH production per antral follicle (AMH/AF) showed that there was a significant difference in median AMH/AF between PCOS and non-PCOS (P =0.001). Both PCOS and non-PCOS groups showed a very similar increase in AMH with increases in AFC, but the PCOS patients had consistently higher AMH across all AFC levels. Conclusions: These observations indicate that there is a connection between AMH and androgens levels between PCOS and non-PCOS East Indian women. Excessive granulosa cell activity may be implicated in the abnormal follicular dynamic of the syndrome. They are higher in women with PCOS and, on the other hand, very low in women with an ovarian failure.

Keywords: anti-Mullerian hormone, polycystic ovary syndrome, antral follicle count, androgens

Procedia PDF Downloads 198
445 Optimization of Maintenance of PV Module Arrays Based on Asset Management Strategies: Case of Study

Authors: L. Alejandro Cárdenas, Fernando Herrera, David Nova, Juan Ballesteros

Abstract:

This paper presents a methodology to optimize the maintenance of grid-connected photovoltaic systems, considering the cleaning and module replacement periods based on an asset management strategy. The methodology is based on the analysis of the energy production of the PV plant, the energy feed-in tariff, and the cost of cleaning and replacement of the PV modules, with the overall revenue received being the optimization variable. The methodology is evaluated as a case study of a 5.6 kWp solar PV plant located on the Bogotá campus of the Universidad Nacional de Colombia. The asset management strategy implemented consists of assessing the PV modules through visual inspection, energy performance analysis, pollution, and degradation. Within the visual inspection of the plant, the general condition of the modules and the structure is assessed, identifying dust deposition, visible fractures, and water accumulation on the bottom. The energy performance analysis is performed with the energy production reported by the monitoring systems and compared with the values estimated in the simulation. The pollution analysis is performed using the soiling rate due to dust accumulation, which can be modelled by a black box with an exponential function dependent on historical pollution values. The pollution rate is calculated with data collected from the energy generated during two years in a photovoltaic plant on the campus of the National University of Colombia. Additionally, the alternative of assessing the temperature degradation of the PV modules is evaluated by estimating the cell temperature with parameters such as ambient temperature and wind speed. The medium-term energy decrease of the PV modules is assessed with the asset management strategy by calculating the health index to determine the replacement period of the modules due to degradation. This study proposes a tool for decision making related to the maintenance of photovoltaic systems. The above, projecting the increase in the installation of solar photovoltaic systems in power systems associated with the commitments made in the Paris Agreement for the reduction of CO2 emissions. In the Colombian context, it is estimated that by 2030, 12% of the installed power capacity will be solar PV.

Keywords: asset management, PV module, optimization, maintenance

Procedia PDF Downloads 22
444 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing

Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila

Abstract:

Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.

Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing

Procedia PDF Downloads 166
443 A Unified Approach for Digital Forensics Analysis

Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles

Abstract:

Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.

Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool

Procedia PDF Downloads 177
442 Microalgae Hydrothermal Liquefaction Process Optimization and Comprehension to Produce High Quality Biofuel

Authors: Lucie Matricon, Anne Roubaud, Geert Haarlemmer, Christophe Geantet

Abstract:

Introduction: This case discusses the management of two floor of mouth (FOM) Squamous Cell Carcinomas (SCC) not identified upon initial biopsy. Case Report: A 51 year-old male presented with right FOM erythroleukoplakia. Relevant medical history included alcoholic dependence syndrome and alcoholic liver disease. Relevant drug therapy encompassed acamprosate, folic acid, hydroxocobalamin and thiamine. The patient had a 55.5 pack-year smoking history and alcohol dependence from age 14, drinking 16 units/day. FOM incisional biopsy and histopathological analysis diagnosed Carcinoma in situ. Treatment involved wide local excision. Specimen analysis revealed two separate foci of pT1 moderately differentiated SCCs. Carcinoma staging scans revealed no pathological lymphadenopathy, no local invasion or metastasis. SCCs had been excised in completion with narrow margins. MDT discussion concluded that in view of the field changes it would be difficult to identify specific areas needing further excision, although techniques such as Lugol’s Iodine were considered. Further surgical resection, surgical neck management and sentinel lymph node biopsy was offered. The patient declined intervention, primary management involved close monitoring alongside alcohol and smoking cessation referral. Discussion: Narrow excisional margins can increase carcinoma recurrence risk. Biopsy failed to identify SCCs, despite sampling an area of clinical concern. For gross field change multiple incisional biopsies should be considered to increase chance of accurate diagnosis and appropriate treatment. Coupling of tobacco and alcohol has a synergistic effect, exponentially increasing the relative risk of oral carcinoma development. Tobacco and alcoholic control is fundamental in reducing treatment‑related side effects, recurrence risk, and second primary cancer development.

Keywords: microalgae, biofuels, hydrothermal liquefaction, biomass

Procedia PDF Downloads 119
441 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent

Authors: Faidon Kyriakou, William Dempster, David Nash

Abstract:

Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.

Keywords: AAA, efficiency, finite element analysis, stent deployment

Procedia PDF Downloads 181
440 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero

Abstract:

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries

Procedia PDF Downloads 600
439 Role of Lipid-Lowering Treatment in the Monocyte Phenotype and Chemokine Receptor Levels after Acute Myocardial Infarction

Authors: Carolina N. França, Jônatas B. do Amaral, Maria C.O. Izar, Ighor L. Teixeira, Francisco A. Fonseca

Abstract:

Introduction: Atherosclerosis is a progressive disease, characterized by lipid and fibrotic element deposition in large-caliber arteries. Conditions related to the development of atherosclerosis, as dyslipidemia, hypertension, diabetes, and smoking are associated with endothelial dysfunction. There is a frequent recurrence of cardiovascular outcomes after acute myocardial infarction and, at this sense, cycles of mobilization of monocyte subtypes (classical, intermediate and nonclassical) secondary to myocardial infarction may determine the colonization of atherosclerotic plaques in different stages of the development, contributing to early recurrence of ischemic events. The recruitment of different monocyte subsets during inflammatory process requires the expression of chemokine receptors CCR2, CCR5, and CX3CR1, to promote the migration of monocytes to the inflammatory site. The aim of this study was to evaluate the effect of lipid-lowering treatment by six months in the monocyte phenotype and chemokine receptor levels of patients after Acute Myocardial Infarction (AMI). Methods: This is a PROBE (prospective, randomized, open-label trial with blinded endpoints) study (ClinicalTrials.gov Identifier: NCT02428374). Adult patients (n=147) of both genders, ageing 18-75 years, were randomized in a 2x2 factorial design for treatment with rosuvastatin 20 mg/day or simvastatin 40 mg/day plus ezetimibe 10 mg/day as well as ticagrelor 90 mg 2x/day and clopidogrel 75 mg, in addition to conventional AMI therapy. Blood samples were collected at baseline, after one month and six months of treatment. Monocyte subtypes (classical - inflammatory, intermediate - phagocytic and nonclassical – anti-inflammatory) were identified, quantified and characterized by flow cytometry, as well as the expressions of the chemokine receptors (CCR2, CCR5 and CX3CR1) were also evaluated in the mononuclear cells. Results: After six months of treatment, there was an increase in the percentage of classical monocytes and reduction in the nonclassical monocytes (p=0.038 and p < 0.0001 Friedman Test), without differences for intermediate monocytes. Besides, classical monocytes had higher expressions of CCR5 and CX3CR1 after treatment, without differences related to CCR2 (p < 0.0001 for CCR5 and CX3CR1; p=0.175 for CCR2). Intermediate monocytes had higher expressions of CCR5 and CX3CR1 and lower expression of CCR2 (p = 0.003; p < 0.0001 and p = 0.011, respectively). Nonclassical monocytes had lower expressions of CCR2 and CCR5, without differences for CX3CR1 (p < 0.0001; p = 0.009 and p = 0.138, respectively). There were no differences after the comparison between the four treatment arms. Conclusion: The data suggest a time-dependent modulation of classical and nonclassical monocytes and chemokine receptor levels. The higher percentage of classical monocytes (inflammatory cells) suggest a residual inflammatory risk, even under preconized treatments to AMI. Indeed, these changes do not seem to be affected by choice of the lipid-lowering strategy.

Keywords: acute myocardial infarction, chemokine receptors, lipid-lowering treatment, monocyte subtypes

Procedia PDF Downloads 102
438 Over Expression of Mapk8ip3 Patient Variants in Zebrafish to Establish a Spectrum of Phenotypes in a Rare-Neurodevelopmental Disorder

Authors: Kinnsley Travis, Camerron M. Crowder

Abstract:

Mapk8ip3 (Mitogen-Activated Protein Kinase 8 Interacting Protein 3) is a gene that codes for the JIP3 protein, which is a part of the JIP scaffolding protein family. This protein is involved in axonal vesicle transport, elongation and regeneration. Variants in the Mapk8ip3 gene are associated with a rare-genetic condition that results in a neurodevelopmental disorder that can cause a range of phenotypes including global developmental delay and intellectual disability. Currently, there are 18 known individuals diagnosed to have sequenced confirmed Mapk8ip3 genetic disorders. This project focuses on examining the impact of a subset of missense patient variants on the Jip3 protein function by overexpressing the mRNA of these variants in a zebrafish knockout model for Jip3. Plasmids containing cDNA with individual missense variants were reverse transcribed, purified, and injected into single-cell zebrafish embryos (Wild Type, Jip3 -/+, and Jip3 -/-). At 6-days post mRNA microinjection, morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Morphologically, we compared the size and shape of the zebrafish during their development over a 5-day period. Total locomotive activity was assessed using the Microtracker assay and patterns of movement over time were examined using the DanioVision assay. Lastly, we used confocal microscopy to examine sensory axons for swelling and shortened length, which are phenotypes observed in the loss-of-function knockout Jip3 zebrafish model. Using these assays during embryonic development, we determined the impact of various missense variants on Jip3 protein function, compared to knockout and wild-type zebrafish embryo models. Variants in the gene Mapk8ip3 cause rare-neurodevelopmental disorders due to an essential role in axonal vesicle transport, elongation and regeneration. A subset of missense variants was examined by overexpressing the mRNA of these variants in a Jip3 knock-out zebrafish. Morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Using these assays, the spectrum of disorders can be phenotypically determined and the impact of variant location can be compared to knockout and wild-type zebrafish embryo models.

Keywords: rare disease, neurodevelopmental disorders, mrna overexpression, zebrafish research

Procedia PDF Downloads 104
437 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma

Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira

Abstract:

Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.

Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy

Procedia PDF Downloads 101
436 Clinical Manifestations, Pathogenesis and Medical Treatment of Stroke Caused by Basic Mitochondrial Abnormalities (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes, MELAS)

Authors: Wu Liching

Abstract:

Aim This case aims to discuss the pathogenesis, clinical manifestations and medical treatment of strokes caused by mitochondrial gene mutations. Methods Diagnosis of ischemic stroke caused by mitochondrial gene defect by means of "next-generation sequencing mitochondrial DNA gene variation detection", imaging examination, neurological examination, and medical history; this study took samples from the neurology ward of a medical center in northern Taiwan cases diagnosed with acute cerebral infarction as the research objects. Result This case is a 49-year-old married woman with a rare disease, mitochondrial gene mutation inducing ischemic stroke. She has severe hearing impairment and needs to use hearing aids, and has a history of diabetes. During the patient’s hospitalization, the blood test showed that serum Lactate: 7.72 mmol/L, Lactate (CSF) 5.9 mmol/L. Through the collection of relevant medical history, neurological evaluation showed changes in consciousness and cognition, slow response in language expression, and brain magnetic resonance imaging examination showed subacute bilateral temporal lobe infarction, which was an atypical type of stroke. The lineage DNA gene has m.3243A>G known pathogenic mutation point, and its heteroplasmic level is 24.6%. This pathogenic point is located in MITOMAP and recorded as Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) , Leigh Syndrome and other disease-related pathogenic loci, this mutation is located in ClinVar and recorded as Pathogenic (dbSNP: rs199474657), so it is diagnosed as a case of stroke caused by a rare disease mitochondrial gene mutation. After medical treatment, there was no more seizure during hospitalization. After interventional rehabilitation, the patient's limb weakness, poor language function, and cognitive impairment have all improved significantly. Conclusion Mitochondrial disorders can also be associated with abnormalities in psychological, neurological, cerebral cortical function, and autonomic functions, as well as problems with internal medical diseases. Therefore, the differential diagnoses cover a wide range and are not easy to be diagnosed. After neurological evaluation, medical history collection, imaging and rare disease serological examination, atypical ischemic stroke caused by rare mitochondrial gene mutation was diagnosed. We hope that through this case, the diagnosis of rare disease mitochondrial gene variation leading to cerebral infarction will be more familiar to clinical medical staff, and this case report may help to improve the clinical diagnosis and treatment for patients with similar clinical symptoms in the future.

Keywords: acute stroke, MELAS, lactic acidosis, mitochondrial disorders

Procedia PDF Downloads 57
435 Children Asthma; The Role of Molecular Pathways and Novel Saliva Biomarkers Assay

Authors: Seyedahmad Hosseini, Mohammadjavad Sotoudeheian

Abstract:

Introduction: Allergic asthma is a heterogeneous immuno-inflammatory disease based on Th-2-mediated inflammation. Histopathologic abnormalities of the airways characteristic of asthma include epithelial damage and subepithelial collagen deposition. Objectives: Human bronchial epithelial cell genome expression of TNF‑α, IL‑6, ICAM‑1, VCAM‑1, nuclear factor (NF)‑κB signaling pathways up-regulate during inflammatory cascades. Moreover, immunofluorescence assays confirmed the nuclear translocation of NF‑κB p65 during inflammatory responses. An absolute LDH leakage assays suggestedLPS-inducedcells injury, and the associated mechanisms are co-incident events. LPS-induced phosphorylation of ERKand JNK causes inflammation in epithelial cells through inhibition of ERK and JNK activation and NF-κB signaling pathway. Furthermore, the inhibition of NF-κB mRNA expression and the nuclear translocation of NF-κB lead to anti-inflammatory events. Likewise, activation of SUMF2 which inhibits IL-13 and reduces Th2-cytokines, NF-κB, and IgE levels to ameliorate asthma. On the other hand, TNFα-induced mucus production reduced NF-κB activation through inhibition of the activation status of Rac1 and IκBα phosphorylation. In addition, bradykinin B2 receptor (B2R), which mediates airway remodeling, regulates through NF-κB. Bronchial B2R expression is constitutively elevated in allergic asthma. In addition, certain NF-κB -dependent chemokines function to recruit eosinophils in the airway. Besides, bromodomain containing 4 (BRD4) plays a significant role in mediating innate immune response in human small airway epithelial cells as well as transglutaminase 2 (TG2), which is detectable in saliva. So, the guanine nucleotide-binding regulatory protein α-subunit, Gα16, expresses a κB-driven luciferase reporter. This response was accompanied by phosphorylation of IκBα. Furthermore, expression of Gα16 in saliva markedly enhanced TNF-α-induced κB reporter activity. Methods: The applied method to form NF-κB activation is the electromobility shift assay (EMSA). Also, B2R-BRD4-TG2 complex detection by immunoassay method within saliva with EMSA of NF-κB activation may be a novel biomarker for asthma diagnosis and follow up. Conclusion: This concept introduces NF-κB signaling pathway as potential asthma biomarkers and promising targets for the development of new therapeutic strategies against asthma.

Keywords: NF-κB, asthma, saliva, T-helper

Procedia PDF Downloads 84
434 Electroactivity of Clostridium saccharoperbutylacetonicum 1-4N during Carbon Dioxide Reduction in a Bioelectrosynthesis System

Authors: Carlos A. Garcia-Mogollon, Juan C. Quintero-Diaz, Claudio Avignone-Rossa

Abstract:

Clostridium saccharoperbutylacetonicum 1-4N (Csb 1-4N) is an industrial reference strain for Acetone-Butanol-Ethanol (ABE) fermentation. Csb 1-4N is a solventogenic clostridium and H₂ producer with a metabolic profile that makes it a good candidate for Bioelectrosynthesis System (BES). The aim of this study was to evaluate the electroactivity of Csb 1-4N by cyclic voltammetry technique (CV). The Bioelectrosynthesis fermentation (BES) started in a Triptone-Yeast extract (TY) medium with trace elements and vitamins, Complex Nitrogen Source (CNS), and bicarbonate (NaHCO₃, 4g/L) as a carbon source, run at -600mVAg/AgCl and adding 200uM NADH. The six BES batches were performed with different media composition with and without NADH, CNS, HCO₃⁻ , and applied potential. The CV was performed as three-electrode system: platinum slice working electrode (WE), nickel contra electrode (CE) and reference electrode Ag/AgCl (ER). CVs were run in a potential range of -0.7V to 0.7V vs. VAg/AgCl at a scan rate 10mV/s. A CV recorded using different NaHCO₃ concentrations (0.25; 0.5; 1.0; 4g/L) were obtained. BES fermentation samples were centrifuged (3000 rpm, 5min, 4C), and supernatant (7mL) was used. CVs were obtained for Csb1-4N BES culture cell-free supernatant at 0h, 24h, and 48h. The electrochemical analysis was carried out with a PalmSens 4.0 potentiostat/galvanostat controlled with the PStrace 5.7 software, and CVs curves were characterized by reduction and oxidation currents and reduction and oxidation peaks. The CVs obtained for NaHCO₃ solutions showed that the reduction current and oxidation current decreased as the NaHCO₃ concentration was decreased. All reduction and oxidation currents decreased until exponential growth stop (24h), independence of initial cathodic current, except in medium with trace elements, vitamins, and NaHCO3, in which reduction current was around half at 24h and followed decreasing at 48. In this medium, Csb1-4N did not grow, but pH was increased, indicating that NaHCO₃ was reduced as the reduction current decreased. In general, at 48h reduction currents did not present important changes between different mediums in BES cultures. In terms of intensities in the peaks (Ip) did not present important variations; except with Ipa and Ipc in BES culture with NaHCO₃ and NADH added are higher than peaks in other cultures. Based on results, cathodic and anodic currents changes were induced by NaHCO₃ reduction reactions during Csb1-4N metabolic activity in different BES experiments.

Keywords: clostridium saccharoperbutylacetonicum 1-4N, bioelectrosynthesis, carbon dioxide fixation, cyclic voltammetry

Procedia PDF Downloads 123
433 Syntheses in Polyol Medium of Inorganic Oxides with Various Smart Optical Properties

Authors: Shian Guan, Marie Bourdin, Isabelle Trenque, Younes Messaddeq, Thierry Cardinal, Nicolas Penin, Issam Mjejri, Aline Rougier, Etienne Duguet, Stephane Mornet, Manuel Gaudon

Abstract:

At the interface of the studies performed by 3 Ph.D. students: Shian Guan (2017-2020), Marie Bourdin (2016-2019) and Isabelle Trenque (2012-2015), a single synthesis route: polyol-mediated process, was used with success for the preparation of different inorganic oxides. Both of these inorganic oxides were elaborated for their potential application as smart optical compounds. This synthesis route has allowed us to develop nanoparticles of zinc oxide, vanadium oxide or tungsten oxide. This route is with easy implementation, inexpensive and with large-scale production potentialities and leads to materials of high purity. The obtaining by this route of nanometric particles, however perfectly crystalline, has notably led to the possibility of doping these matrix materials with high doping ion concentrations (high solubility limits). Thus, Al3+ or Ga3+ doped-ZnO powder, with high doping rate in comparison with the literature, exhibits remarkable infrared absorption properties thanks to their high free carrier density. Note also that due to the narrow particle size distribution of the as-prepared nanometric doped-ZnO powder, the original correlation between crystallite size and unit-cell parameters have been established. Also, depending on the annealing atmosphere use to treat vanadium precursors, VO2, V2O3 or V2O5 oxides with thermochromic or electrochromic properties can be obtained without any impurity, despite the versatility of the oxidation state of vanadium. This is of more particular interest on vanadium dioxide, a relatively difficult-to-prepare oxide, whose first-order metal-insulator phase transition is widely explored in the literature for its thermochromic behavior (in smart windows with optimal thermal insulation). Finally, the reducing nature of the polyol solvents ensures the production of oxygen-deficient tungsten oxide, thus conferring to the nano-powders exotic colorimetric properties, as well as optimized photochromic and electrochromic behaviors.

Keywords: inorganic oxides, electrochromic, photochromic, thermochromic

Procedia PDF Downloads 206
432 Implementation of Active Recovery at Immediate, 12 and 24 Hours Post-Training in Young Soccer Players

Authors: C. Villamizar, M. Serrato

Abstract:

In the pursuit of athletic performance, the role of physical training which is determined by a number of charges or taxes on physiological stress and musculoskeletal systems of the human body generated by the intensity and duration is fundamental. Given the physical demands of these activities both training and competitive must take into account the optimal relationship with a straining process recovery post favoring the process of overcompensation which aims to facilitate the return and rising energy potential and protein synthesis also of different tissues. Allowing muscle function returns to baseline or pre-exercise states. If this recovery process is not performed or is not allowed in a proper way, will result in an increased state of fatigue. Active recovery, is one of the strategies implemented in the sport for a return to pre-exercise physiological states. However, there are some adverse assumptions regarding the negative effects, as is the possibility of increasing the degradation of muscle glycogen and thus delaying the synthesis thereof. For them, it is necessary to investigate what would be the effects generated application made at different times after the effort. The aim of this study was to determine the effects of active recovery post effort made at three different times: immediately, at 12 and 24 hours on biochemical markers creatine kinase in youth soccer player’s categories. A randomized controlled trial with allocation to three groups was performed: A. active recovery immediately after the effort; B. active recovery performed at 12 hours after the effort; C. active recovery made at 24 hours after the effort. This study included 27 subjects belonging to a Colombian soccer team of the second division. Vital signs, weight, height, BMI, the percentage of muscle mass, fat mass percentage, personal medical history, and family were valued. The velocity, explosive force and Creatin Kinase (CK) in blood were tested before and after interventions. SAFT 90 protocol (Soccer Field specific Aerobic Test) was applied to participants for generating fatigue. CK samples were taken one hour before the application of the fatigue test, one hour after the fatigue protocol and 48 of the initial CK sample. Mean age was 18.5 ± 1.1 years old. Improvements in jumping and speed recovery the 3 groups (p < 0.05), but no statistically significant differences between groups was observed after recuperation. In all participants, there was a significant increment of CK when applied SAFT 90 in all the groups (median 103.1-111.1). The CK measurement after 48 hours reflects a recovery in all groups, however the group C, a decline below baseline levels of -55.5 (-96.3 /-20.4) which is a significant find. Other research has shown that CK does not return quickly to their baseline, but our study shows that active recovery favors the clearance of CK and also to perform recovery 24 hours after the effort generates higher clearance of this biomarker.

Keywords: active recuperation, creatine phosphokinase, post training, young soccer players

Procedia PDF Downloads 150
431 Evaluating the Potential of a Fast Growing Indian Marine Cyanobacterium by Reconstructing and Analysis of a Genome Scale Metabolic Model

Authors: Ruchi Pathania, Ahmad Ahmad, Shireesh Srivastava

Abstract:

Cyanobacteria is a promising microbe that can capture and convert atmospheric CO₂ and light into valuable industrial bio-products like biofuels, biodegradable plastics, etc. Among their most attractive traits are faster autotrophic growth, whole year cultivation using non-arable land, high photosynthetic activity, much greater biomass and productivity and easy for genetic manipulations. Cyanobacteria store carbon in the form of glycogen which can be hydrolyzed to release glucose and fermented to form bioethanol or other valuable products. Marine cyanobacterial species are especially attractive for countries with scarcity of freshwater. We recently identified a marine native cyanobacterium Synechococcus sp. BDU 130192 which has good growth rate and high level of polyglucans accumulation compared to Synechococcus PCC 7002. In this study, firstly we sequenced the whole genome and the sequences were annotated using the RAST server. Genome scale metabolic model (GSMM) was reconstructed through COBRA toolbox. GSMM is a computational representation of the metabolic reactions and metabolites of the target strain. GSMMs construction through the application of Flux Balance Analysis (FBA), which uses external nutrient uptake rates and estimate steady state intracellular and extracellular reaction fluxes, including maximization of cell growth. The model, which we have named isyn942, includes 942 reactions and 913 metabolites having 831 metabolic, 78 transport and 33 exchange reactions. The phylogenetic tree obtained by BLAST search revealed that the strain was a close relative of Synechococcus PCC 7002. The flux balance analysis (FBA) was applied on the model iSyn942 to predict the theoretical yields (mol product produced/mol CO₂ consumed) for native and non-native products like acetone, butanol, etc. under phototrophic condition by applying metabolic engineering strategies. The reported strain can be a viable strain for biotechnological applications, and the model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for enhanced production of various bioproducts.

Keywords: cyanobacteria, flux balance analysis, genome scale metabolic model, metabolic engineering

Procedia PDF Downloads 143