Search results for: waste-derived hydroxy sodalite catalyst
444 The Synthesis, Structure and Catalytic Activity of Iron(II) Complex with New N2O2 Donor Schiff Base Ligand
Authors: Neslihan Beyazit, Sahin Bayraktar, Cahit Demetgul
Abstract:
Transition metal ions have an important role in biochemistry and biomimetic systems and may provide the basis of models for active sites of biological targets. The presence of copper(II), iron(II) and zinc(II) is crucial in many biological processes. Tetradentate N2O2 donor Schiff base ligands are well known to form stable transition metal complexes and these complexes have also applications in clinical and analytical fields. In this study, we present salient structural features and the details of cathecholase activity of Fe(II) complex of a new Schiff Base ligand. A new asymmetrical N2O2 donor Schiff base ligand and its Fe(II) complex were synthesized by condensation of 4-nitro-1,2 phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Fe(II) salt, respectively. Schiff base ligand and its metal complex were characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and magnetic susceptibility. In order to determine the kinetics parameters of catechol oxidase-like activity of Schiff base Fe(II) complex, the oxidation of the 3,5-di-tert-butylcatechol (3,5-DTBC) was measured at 25°C by monitoring the increase of the absorption band at 390-400 nm of the product 3,5-di-tert-butylcatequinone (3,5-DTBQ). The compatibility of catalytic reaction with Michaelis-Menten kinetics also investigated by the method of initial rates by monitoring the growth of the 390–400 nm band of 3,5-DTBQ as a function of time. Kinetic studies showed that Fe(II) complex of the new N2O2 donor Schiff base ligand was capable of acting as a model compound for simulating the catecholase properties of type-3 copper proteins.Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals
Procedia PDF Downloads 395443 Re-Invent Corporate Governance - Ethical Way
Authors: Talha Sareshwala
Abstract:
The purpose of this research paper is to help entrepreneurs build an environment of trust, transparency and accountability necessary for fostering long term investment, financial stability and business integrity and to guide future Entrepreneurs into a promising future. The study presents a broader review on Corporate Governance, starting from its definition and antecedents. This is the most important aspect of ethical business. In fact, the 3 main pillars of corporate governance are: Transparency; Accountability; Security. The combination of these 3 pillars in running a company successfully and forming solid professional relationships among its stakeholders, which includes key managerial employees and, most important, the shareholders This paper is sharing an experience how an entrepreneur can act as a catalyst while ensuring them that ethics and transparency do pay in business when followed in true spirit and action.Keywords: business, entrepreneur, ethics, governance, transparency.
Procedia PDF Downloads 74442 Designing Metal Organic Frameworks for Sustainable CO₂ Utilization
Authors: Matthew E. Potter, Daniel J. Stewart, Lindsay M. Armstrong, Pier J. A. Sazio, Robert R. Raja
Abstract:
Rising CO₂ levels in the atmosphere means that CO₂ is a highly desirable feedstock. This requires specific catalysts to be designed to activate this inert molecule, combining a catalytic site tailored for CO₂ transformations with a support that can readily adsorb CO₂. Metal organic frameworks (MOFs) are regularly used as CO₂ sorbents. The organic nature of the linker molecules, connecting the metal nodes, offers many post-synthesis modifications to introduce catalytic active sites into the frameworks. However, the metal nodes may be coordinatively unsaturated, allowing them to bind to organic moieties. Imidazoles have shown promise catalyzing the formation of cyclic carbonates from epoxides with CO₂. Typically, this synthesis route employs toxic reagents such as phosgene, liberating HCl. Therefore an alternative route with CO₂ is highly appealing. In this work we design active sites for CO₂ activation, by tethering substituted-imidazole organocatalytic species to the available Cr3+ metal nodes of a Cr-MIL-101 MOF, for the first time, to create a tailored species for carbon capture utilization applications. Our tailored design strategy combining a CO₂ sorbent, Cr-MIL-101, with an anchored imidazole results in a highly active and selective multifunctional catalyst, achieving turnover frequencies of over 750 hr-1. These findings demonstrate the synergy between the MOF framework and imidazoles for CO₂ utilization applications. Further, the effect of substrate variation has been explored yielding mechanistic insights into this process. Through characterization, we show that the structural and compositional integrity of the Cr-MIL-101 has been preserved on functionalizing the imidazoles. Further, we show the binding of the imidazoles to the Cr3+ metal nodes. This can be seen through our EPR study, where the distortion of the Cr3+ on binding to the imidazole shows the CO₂ binding site is close to the active imidazole. This has a synergistic effect, improving catalytic performance. We believe the combination of MOF support and organocatalyst allows many possibilities to generate new multifunctional catalysts for CO₂ utilisation. In conclusion, we have validated our design procedure, combining a known CO₂ sorbent, with an active imidazole species to create a unique tailored multifunctional catalyst for CO₂ utilization. This species achieves high activity and selectivity for the formation of cyclic carbonates and offers a sustainable alternative to traditional synthesis methods. This work represents a unique design strategy for CO₂ utilization while offering exciting possibilities for further work in characterization, computational modelling, and post-synthesis modification.Keywords: carbonate, catalysis, MOF, utilisation
Procedia PDF Downloads 180441 Renewable Natural Gas Production from Biomass and Applications in Industry
Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis
Abstract:
For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel
Procedia PDF Downloads 118440 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO₂ Nanoparticles
Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir
Abstract:
In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO₂ and Ag-TiO₂ in slurry form, the photocatalytic degradation was studied by measuring the COD parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO₂ nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.Keywords: photocatalyst, Ag-doped, TiO₂, produced water, nanoparticles
Procedia PDF Downloads 130439 Community Development and Preservation of Heritage in Igbo Area of Nigeria
Authors: Elochukwu A. Nwankwo, Matthias U. Agboeze
Abstract:
Many heritage sites abound in the shores of Nigeria with enormous tourism potentials. Heritage sites do not only depict the cultural and historical transmutation of people but also functions in the image design and promotion of a locality. This reveals the unique role of heritage sites to structural development of an area. Heritage sites have of recent been a victim of degradation and social abuse arising from seasonal ignorance; hence minimizing its potentials to the socio-economic development of an area. This paper is emphasizing on the adoption of community development approaches in heritage preservation in Igbo area. Its modalities, applications, challenges and prospect were discussed. Such understanding will serve as a catalyst in aiding general restoration and preservation of heritage sites in Nigeria and other African states.Keywords: heritage resources, community development, preservation, sustainable development, approaches
Procedia PDF Downloads 310438 Neuroprotective Effect of Germinated Dolichos lablab on 6-Hydroxy Dopamine (6-OHDA) Induced Toxicity in SH-SY5Y Neuroblastoma Cell
Authors: Taek Hwan Lee, Moon Ho Do, Lalita Subedi, Young Un Park, Sun Yeou Kim
Abstract:
Natural and artificial toxic substances namely neurotoxins induce the bitter effect in the nervous system termed as neurotoxicity. It can modulate the normal functioning of the nervous system either hyperactivate it or damage homeostasis of neuronal system. Neurotoxins induced toxicity ultimately kills the neuron. The present study investigated the neuroprotective effects of germinated Dolichos lablab on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using SH-SY5Y neuroblastoma cells. Germination is a process of plant growth from a seed. Sprouting of a seedling from a seed induced many molecular changes in the seed in order to prepare it for further growth. Because of these molecular and chemical changes, the neuroprotective effect of Dolichos lablab is higher in the germinated form than in the normal condition. SH-SY5Y cells were treated with Dolichos lablab extract (50, 100 g/ml) followed by 6-OHDA (25M) induced toxicity. Cell Viability was measured to check the cell survival against 6-OHDA induced toxicity using MTT assay. Dolichos lablab showed a neuroprotective effect against 6-OHDA induced neuronal cell death in neuroblastoma cell at a higher concentration of 100g/ml however the effect is much better even at the lower concentration after germination 50g/ml. Cell survival was increased dramatically after 15 h of germination and increased with time of germination in concentration dependent manner. Trigonelline as a representative compound was validated in germinated Dolichos lablab by HPLC analysis that might enhance the neuroprotective effect of Dolichos lablab. This result suggests that Dolichos lablab possess neuroprotective effect in neuroblastoma cells against 6-OHDA however its activity was more potent in the germinated form.Keywords: dolichos lablab, germination, neuroprotection, trigonelline
Procedia PDF Downloads 323437 Synthesis of Crosslinked Konjac Glucomannan and Kappa Carrageenan Film with Glutaraldehyde
Authors: Sperisa Distantina, Fadilah, Mujtahid Kaavessina
Abstract:
Crosslinked konjac glucomannan and kappa carrageenan film were prepared by chemical crosslinking using glutaraldehyde (GA) as the crosslinking agent. The effect crosslinking on the swelling degree was investigated. Konjac glucomanan and its mixture with kappa carragenan film was immersed in GA solution and then thermally cured. The obtained crosslinked film was washed and soaked in the ethanol to remove the unreacted GA. The obtained film was air dried at room temperature to a constant weight. The infrared spectra and the value of swelling degree of obtained crosslinked film showed that glucomannan and kappa carrageenan was able to be crosslinked using glutaraldehyde by film immersion and curing method without catalyst. The crosslinked films were found to be pH sensitive, indicating a potential to be used in drug delivery polymer system.Keywords: crosslinking, glucomannan, carrageenan, swelling
Procedia PDF Downloads 279436 Photocatalytic Activity of Pure and Doped CeO2 Nanoparticles
Authors: Mohamed Khedr, Ahmed Farghali, Waleed El Rouby, Abdelrhman Hamdeldeen
Abstract:
Pure CeO2, Sm and Gd doped CeO2 were successfully prepared via hydrothermal method. The effect of hydrothermal temperature, reaction time and precursors were investigated. The prepared nanoparticles were characterized using X-ray diffraction (XRD), FT-Raman Spectroscopy, transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM). The prepared pure and doped CeO2 nanoparticles were used as photo-catalyst for the degradation of Methylene blue (MB) dye under UV light irradiation. The results showed that Gd doped CeO2 nano-particles have the best catalytic degradation effect for MB under UV irradiation. The degradation pathways of MB were followed using liquid chromatography (LC/MS) and it was found that Gd doped CeO2 was able to oxidize MB dye with a complete mineralization of carbon, nitrogen and sulfur heteroatoms into CO2, NH4+, NO3- and SO42-.Keywords: CeO2, doped CeO2, photocatalysis, methylene blue
Procedia PDF Downloads 328435 Origin of the Eocene Volcanic Rocks in Muradlu Village, Azerbaijan Province, Northwest of Iran
Authors: A. Shahriari, M. Khalatbari Jafari, M. Faridi
Abstract:
Abstract The Muradlu volcanic area is located in Azerbaijan province, NW Iran. The studied area exposed in a vast region includes lesser Caucasus, Southeastern Turkey, and northwestern Iran, comprising Cenozoic volcanic and plutonic massifs. The geology of this extended region was under the influence of the Alpine-Himalayan orogeny. Cenozoic magmatic activities in this vast region evolved through the northward subduction of the Neotethyan subducted slab and subsequence collision of the Arabian and Eurasian plates. Based on stratigraphy and paleontology data, most of the volcanic activities in the Muradlu area occurred in the Eocene period. The Studied volcanic rocks overly late Cretaceous limestone with disconformity. The volcanic sequence includes thick epiclastic and hyaloclastite breccia at the base, laterally changed to pillow lava and continued by hyaloclastite and lave flows at the top of the series. The lava flows display different textures from megaporphyric-phyric to fluidal and microlithic textures. The studied samples comprise picrobasalt basalt, tephrite basanite, trachybasalt, basaltic trachyandesite, phonotephrite, tephrophonolite, trachyandesite, and trachyte in compositions. Some xenoliths with lherzolitic composition are found in picrobasalt. These xenoliths are made of olivine, cpx (diopside), and opx (enstatite), probably the remain of mantle origin. Some feldspathoid minerals such as sodalite presence in the phonotephrite confirm an alkaline trend. Two types of augite phenocrysts are found in picrobasalt, basalt and trachybasalt. The first types are shapeless, with disharmony zoning and sponge texture with reaction edges probably resulted from sodic magma, which is affected by a potassic magma. The second shows a glomerocryst shape. In discriminative diagrams, the volcanic rocks show alkaline-shoshonitic trends. They contain (0.5-7.7) k2O values and plot in the shoshonitic field. Most of the samples display transitional to potassic alkaline trends, and some samples reveal sodic alkaline trends. The transitional trend probably results from the mixing of the sodic alkaline and potassic magmas. The Rare Earth Elements (REE) patterns and spider diagrams indicate enrichment of Large-Ione Lithophile Element (LILE) and depletion of High Field Strength Elements (HFSE) relative to Heavy Rare Earth Elements (HREE). Enrichment of K, Rb, Sr, Ba, Zr, Th, and U and the enrichment of Light Rare Earth Elements (LREE) relative to Heavy Rare Earth Elements (HREE) indicate the effect of subduction-related fluids over the mantle source, which has been reported in the arc and continental collision zones. The studied samples show low Nb/La ratios. Our studied samples plot in the lithosphere and lithosphere-asthenosphere fields in the Nb/La versus La/Yb ratios diagram. These geochemical characters allow us to conclude that a lithospheric mantle source previously metasomatized by subduction components was the origin of the Muradlu volcanic rocks.Keywords: alkaline, asthenosphere, lherzolite, lithosphere, Muradlu, potassic, shoshonitic, sodic, volcanism
Procedia PDF Downloads 170434 Experimental Assessment of Artificial Flavors Production
Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi
Abstract:
The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.Keywords: artificial flavors, esterification, chemical equilibria, isothermal
Procedia PDF Downloads 334433 Nanohybride Porphyrin and Silver as an Efficient Catalyst for Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate
Authors: Atena Naeimi, Asghar Amiri, Zahra Ghasemi
Abstract:
A stable suspension of nanocomposite simple manganese(III) meso-tetraphenylporphyrin nanoaggregates and Ag was prepared by a host–guest procedure, in which ethanol and water are used as ‘green’ solvents. The oxidation of alcohols by tetrabutylammonium Peroxomonosulfate(TP) were efficiently enhanced with excellent selectivity under the influence of simple Mn(TPP)OAc (TPP = meso-tetraphenylporphyrin) nanoparticles. Enhanced stabilities and activities were achieved with nanostructured Mn catalysts compared to those of the individual counterparts in solution according to turnover numbers and UV/Vis studies. The title nanocatalyst facilitates a greener reaction because the reaction solvent is water and TP is safe to use. The efficiency of the oxidation system depends critically upon the steric hindrances and electronic structures of both nitrogen donor ligand sand porphyrin nanoparticles.Keywords: oxidation, nanoaggregates, porphyrinoids, silver
Procedia PDF Downloads 295432 Usy-Cui Zeolite: An Efficient and Reusable Catalyst for Derivatives Indole Synthesis
Authors: Hassina Harkat, Samiha Taybe, Salima Loucif, Valérie Beneteau, Patrick Pale
Abstract:
Indole and its derivatives have attracted great interest because of their importance in the synthetic organic and medicinal chemistry. They are widely used as anti hypertension, anti tubercular, anticancer activity, antiviral, Alzheimer's disease, antioxidant properties, and free radical induced lipid peroxidation. Many drugs and natural products contain indole moiety, such as the vinca alkaloids, fungal metabolites and marine natural products. Generally applicable synthetic methods for indole moiety involve ring closure to form the pyrrole. Indole derivatives can also be accessed by further functionalization of the indole nucleus. Therefore we report a mild and efficient protocol for the synthesis of analogues of indole catalyzed via zeolithe USY doped with CuI under solvent-free conditions.Keywords: indole, zeolithe, USY-CuI, heterogeneous catalysis
Procedia PDF Downloads 584431 Inhibitory Activity of Podospermum canum and Its Active Components on Collagenase, Elastase and Hyaluronidase Enzymes
Authors: Ozlem Bahadir Acikara, Mert Ilhan, Ekin Kurtul, Karel Smejkal, Esra Kupeli Akkol
Abstract:
Present study is aimed to investigate in vitro inhibitory effects of the extracts prepared from the aerial parts of Podospermum canum (Asteraceae) on hyaluronidase, collagenase, and elastase enzymes using a bioassay-guided fractionation. Inhibitory effects of the extract, sub-extracts, fractions obtained by column chromatography, and isolated compounds on collagenase, elastase, and hyaluronidase were performed by using in vitro enzyme inhibitory assays based on spectrophotometric evaluation. The ethyl acetate and remaining water extracts prepared from the plant displayed significant inhibitory activities on collagenase and elastase, while petroleum ether and chloroform extracts did not show any inhibitory activity. Eleven known compounds: arbutin, 6'-O-caffeoylarbutin, cichoriin, 3,5-dicaffeoylquinic acid methyl ester, apigenin-7-O-β-glucoside, luteolin-7-O-β-glucoside, apigenin-7-O-β-rutinoside, isoorientin, orientin, vitexin, procatechuic acid, and compound 4-hydroxy-benzoic acid 4-(6-O-α-rhamnopyranosyl-β-glucopyranosyl) benzyl ester have been obtained from ethyl acetate sub-extract of the plant through bioassay-guided fractionation and isolation. Results of the present study have revealed that among the isolated compounds, apigenin-7-O-β-glucoside, luteolin-7-O-β-glucoside, apigenin-7-O-β-rutinoside and isoorientin showed potent enzyme inhibitory activities. However, methanolic extract of P. canum displayed a greater inhibitory activity than fractions and isolated compounds both on collagenase and elastase.Keywords: Asteraceae, collagenase, elastase, hyaluronidase, Podospermum canum
Procedia PDF Downloads 131430 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media
Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani
Abstract:
The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction
Procedia PDF Downloads 147429 Antifungal Susceptibility of Saprolegnia parasitica Isolated from Rainbow Trout and Its Host Pathogen Interaction in Zebrafish Disease Model
Authors: Sangyeop Shin, D. C. M. Kulatunga, S. H. S. Dananjaya, Chamilani Nikapitiya, Jehee Lee, Mahanama De Zoysa
Abstract:
Saprolegniasis is one of the most devastating fungal diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated fungi belong to the member of S. parasitica, supported by its typical fungal features including cotton-like whitish mycelium, zoospores (primary and secondary) and phylogenetic analysis with internal transcribed spacer (ITS) region. Pathogenicity of isolated S. parasitica was developed in embryo, larvae, juvenile and adult zebrafish as a disease model. Up regulation of host genes encoding ZfTnf-α, Zfc-Rel, ZfIl-12, ZfLyz-c, Zfβ-def, and ZfHsp-70 was identified in zebrafish larvae after experimental challenge of S. parasitica showing the host immune responses against the S. parasitica. Survival of the juveniles upon fungal infection might be due to the increased immune protection in the host. Investigation of antifungal susceptibility of S. parasitica with natural lawsone (2-hydroxy-1,4-naphthoquinone) revealed the minimum inhibitory concentration (MIC) and percentage inhibition of radial growth (PIRG %) as 200 µg/mL and 31.8%, respectively. Lawsone was able to change the membrane permeability, and cause irreversible damage and disintegration to the cellular membranes of S. parasitica which might have effect on fungi growth inhibition. Moreover, the mycelium exposed to lawsone (MIC level) changed the transcriptional responses of S. parasitica genes. Overall results indicate that lawsone could be a potential and novel anti-S. parasitica agent for controlling S. parasitica infection.Keywords: host-pathogen interactions, lawsone, rainbow trout, Saprolegnia parasitica, Saprolegniasis, zebrafish
Procedia PDF Downloads 248428 Synthesis and Anticancer Evaluation of Substituted 2-(3,4-Dimethoxyphenyl) Benzazoles
Authors: Cigdem Karaaslan, Yalcin Duydu, Aylin Ustundag, Can Ozgur Yalcın, Hakan Goker
Abstract:
Benzazole nucleus is found in the structure of many compounds as anticancer agents. Bendamustine (Alkylating agent), Nocodazole (Mitotic inhibitor), Veliparib (PARP inhibitor), Glasdegib (SMO inhibitor) are clinically used as anticancer therapeutics which bearing benzimidazole moiety. Based on the principle of bioisosterism in the present work, 23 compounds belonging to 2-(3,4-dimethoxy-phenyl) benzazoles and imidazopyridine series were synthesized and evaluated for their anticancer activities. N-(5-Chloro-2-hydroxyphenyl)-3,4-dimethoxybenzamide, was obtained by the amidation of 2-hydroxy-5-chloroaniline with 3,4-dimethoxybenzoic acid by using 1,1'-carbonyldiimidazole. Cyclization of benzamide derivative to benzoxazole, was achieved by p-toluenesulfonic acid. Other 1H-benz (or pyrido) azoles were prepared by the reaction between 2-aminothiophenol, o-phenylenediamine, o-pyridinediamine with sodium metabisulfite adduct of 3,4-dimethoxybenzaldehyde. The NMR assignments of the dimethoxy groups were established by the Nuclear Overhauser Effect Spectroscopy. A compound named, 5(4),7(6)-Dichloro-2-(3,4-dimethoxy) phenyl-1H-benzimidazole, bearing two chlorine atoms at the 5(4) and 7(6) positions of the benzene moiety of benzimidazole was found the most potent analogue, against A549 cells with the GI50 value of 1.5 µg/mL. In addition, 2-(3,4-Dimethoxyphenyl)-5,6-dimethyl-1H-benzimi-dazole showed remarkable cell growth inhibition against MCF-7 and HeLa cells with the GI₅₀ values of 7 and 5.5 µg/mL, respectively. It could be concluded that introduction of di-chloro atoms at the phenyl ring of 2-(3,4-dimethoxyphenyl)-1H-benzimidazoles increase significant cytotoxicity to selected human tumor cell lines in comparison to other all benzazoles synthesized in this study. Unsubstituted 2-(3,4-dimethoxyphenyl) imidazopyridines also gave the good inhibitory profile against A549 and HeLa cells.Keywords: 3, 4-Dimethoxyphenyl, 1H-benzimidazole, benzazole, imidazopyridine
Procedia PDF Downloads 122427 Developments in Corporate Governance: The Case of Vietnam
Authors: Lien T. H. Tran, David A. Holloway
Abstract:
Corporate governance practices have changed significantly across the world in the past three decades. Spectacular corporate failures during this period have acted as a catalyst for the development of codes and guidelines that have resulted in the global acceptance of a ‘best practice’ model. This study assesses the relevance of such a ‘one size fits all model’ for the developing nation state of Vietnam. The findings of this analytical paper is that there are three key elements (government, international institutions and the nature of business) that are pertinent and central to corporate governance developments in the country. We also find that the quality of corporate governance in Vietnam is at a medium level when compared to international practices. Vietnam still has a long way to go to construct and embed effective corporate governance policies and practices and promote ethical business behaviours and sound decision making at board level.Keywords: corporate governance, government, international institutions, public companies, Vietnam
Procedia PDF Downloads 357426 Graphene-Oxide-Supported Coal-Layered Double Hydroxides: Synthesis and Characterizations
Authors: Shaeel A. Al Thabaiti, Sulaiman N. Basahel, Salem M. Bawaked, Mohamed Mokhtar
Abstract:
Nanosheets for cobalt-layered double hydroxide (Co-Al-LDH)/GO were successfully synthesized with different Co:M g:Al ratios (0:3:1, 1.5:1.5:1, and 3:0:1). The layered double hydroxide structure and morphology were determined using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Temperature prgrammed reduction (TPR) of Co-Al-LDH showed reduction peaks at lower temperature which indicates the ease reducibility of this particular sample. The thermal behaviour was studied using thermal graviemetric technique (TG), and the BET-surface area was determined using N2 physisorption at -196°C. The C-C coupling reaction was carried out over all the investigated catalysts. The Mg–Al LDH catalyst without Co ions is inactive, but the isomorphic substitution of Mg by Co ions (Co:Mg:Al = 1.5:1.5:1) in the cationic sheet resulted in 88% conversion of iodobenzene under reflux. LDH/GO hybrid is up to 2 times higher activity than for the unsupported LDH.Keywords: adsorption, co-precipitation, graphene oxide, layer double hydroxide
Procedia PDF Downloads 301425 Graphitic Carbon Nitride-CeO₂ Nanocomposite for Photocatalytic Degradation of Methyl Red
Authors: Khansaa Al-Essa
Abstract:
Nanosized ceria (CeO₂) and graphitic carbon nitride-loaded ceria (CeO₂/GCN) nanocomposite have been synthesized by the coprecipitation method and studied its photocatalytic activity for methyl red degradation under Visible type radiation. A phase formation study was carried out by using an x-ray diffraction technique, and it revealed that ceria (CeO₂) is properly supported on the surface of GCN. Ceria nanoparticles and CeO₂/GCN nanocomposite were confirmed by transmission electron microscopy technique. The particle size of the CeO₂, CeO₂/GCN nanocomposite is in the range of 10-15 nm. Photocatalytic activity of the CeO₂/g-C3N4 composite was improved as compared to CeO₂. The enhanced photocatalytic activity is attributed to the increased visible light absorption and improved adsorption of the dye on the surface of the composite catalyst.Keywords: photodegradation, dye, nanocomposite, graphitic carbon nitride-CeO₂
Procedia PDF Downloads 20424 Ultraviolet Lasing from Vertically-Aligned ZnO Nanowall Array
Authors: Masahiro Takahashi, Kosuke Harada, Shihomi Nakao, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada
Abstract:
Zinc oxide (ZnO) is one of the light emitting materials in ultraviolet (UV) region. In addition, ZnO nanostructures are also attracting increasing research interest as building blocks for UV optoelectronic applications. We have succeeded in synthesizing vertically-aligned ZnO nanostructures by laser interference patterning, which is catalyst-free and non-contact technique. In this study, vertically-aligned ZnO nanowall arrays were synthesized using two-beam interference. The maximum height and average thickness of the ZnO nanowalls were about 4.5 µm and 200 nm, respectively. UV lasing from a piece of the ZnO nanowall was obtained under the third harmonic of a Q-switched Nd:YAG laser excitation, and the estimated threshold power density for lasing was about 150 kW/cm2. Furthermore, UV lasing from the vertically-aligned ZnO nanowall was also achieved. The results indicate that ZnO nanowalls can be applied to random laser.Keywords: zinc oxide, nanowall, interference laser, UV lasing
Procedia PDF Downloads 504423 Polyacrylate Modified Copper Nanoparticles with Controlled Size
Authors: Robert Prucek, Aleš Panáček, Jan Filip, Libor Kvítek, Radek Zbořil
Abstract:
The preparation of Cu nanoparticles (NPs) through the reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate with a molecular weight of 1200 is reported. Cu NPs were synthesized at a concentration of copper salt equal to 2.5, 5, and 10 mM, and at a molar ratio of copper ions and monomeric unit of polyacrylate equal to 1:2. The as-prepared Cu NPs have diameters of about 2.5–3 nm for copper concentrations of 2.5 and 5 mM, and 6 nm for copper concentration of 10 mM. Depending on the copper salt concentration and concentration of additionally added polyacrylate to Cu particle dispersion, primarily formed NPs grow through the process of aggregation and/or coalescence into clusters and/or particles with a diameter between 20–100 nm. The amount of additionally added sodium polyacrylate influences the stability of Cu particles against air oxidation. The catalytic efficiency of the prepared Cu particles for the reduction of 4-nitrophenol is discussed.Keywords: copper, nanoparticles, sodium polyacrylate, catalyst, 4-nitrophenol
Procedia PDF Downloads 277422 Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources
Authors: Annisa Ulfah Pristya, Andi Setiawan
Abstract:
Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public.Keywords: CNT, efficiency, electric, microorganisms, sediment
Procedia PDF Downloads 407421 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach
Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal
Abstract:
Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol
Procedia PDF Downloads 108420 Study the Efficiency of Some Homopolymers as Lube Oil Additives
Authors: Amal M. Nassar, Nehal S. Ahmed, Rasha S. Kamal
Abstract:
Some lube oil additives improve the base oil performance such as viscosity index improvers and pour point depressants which are the most important type of additives. In the present work, some homopolymeric additives were prepared by esterification of acrylic acid with different alcohols (1-dodecyl, 1-hexadecyl, and 1-octadecyl )and then homopolymerization of the prepared esters with different ratio of benzoyl peroxide catalyst (0.25%& 0.5 % and 1%). Structure of the prepared esters was confirmed by Infra-Red Spectroscopy. The molecular weights of the prepared homopolymers were determined by using Gel Permeation Chromatograph. The efficiency of the prepared homopolymers as viscosity index improvers and pour point depressants for lube oil was the investigation. It was found that all the prepared homopolymers are effective as viscosity index improvers and pour point depressants.Keywords: lube oil additives, homopolymerization, viscosity index improver, pour point depressant
Procedia PDF Downloads 231419 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts
Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan
Abstract:
Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly
Procedia PDF Downloads 136418 Synthesis of Biolubricant Base Stock from Palm Methyl Ester
Authors: Nur Sulihatimarsyila Abd Wafti, Harrison Lik Nang Lau, Nabilah Kamaliah Mustaffa, Nur Azreena Idris
Abstract:
The use of biolubricant has gained its popularity over the last decade. Base stock produced using methyl ester and trimethylolethane (TME) can be potentially used for biolubricant production due to its biodegradability, non-toxicity and good thermal stability. The synthesis of biolubricant base stock e.g. triester (TE) via transesterification of palm methyl ester and TME in the presence of sodium methoxide as the catalyst was conducted. Factors influencing the reaction conditions were investigated including reaction time, temperature and pressure. The palm-based biolubricant base stock produced was analysed for its monoester (ME), diester (DE) and TE contents using gas chromatography as well as its lubricating properties such as viscosity, viscosity index, oxidation stability, and density. The resulting base stock containing 90 wt% TE was successfully synthesized.Keywords: biolubricant, methyl ester, triester transesterification, lubricating properties
Procedia PDF Downloads 445417 Branding a Powerful Catalyst for Rural Economic Development
Authors: Mojtaba Borhani
Abstract:
By employing the unique characteristics of a region, its economy, climate, geography, and culture, rural communities can create distinctive products. This approach not only boosts economic opportunities but also promotes sustainable growth and preserves cultural heritage. A strategic focus on branding and intellectual property (IP) is essential. By developing strong brands, rural areas can differentiate their products, increase their market value, and build consumer loyalty. Moreover, IP protection safeguards the creative and innovative output of rural communities, incentivizing further development. Rural branding can serve as a cornerstone for community empowerment. It can help to prevent rural exodus by providing economic incentives and a strong sense of place. Additionally, by protecting traditional knowledge and cultural expressions, branding contributes to the long-term sustainability of rural livelihoods.Keywords: intellectual property, regional branding, sustainable development, rural economy
Procedia PDF Downloads 23416 Study of Dispersion of Silica and Chitosan Nanoparticles into Gelatin Film
Authors: Mohit Batra, Noel Sarkar, Jayeeta Mitra
Abstract:
In this study silica nanoparticles were synthesized using different methods and different silica sources namely Tetraethyl ortho silicate (TEOS), Sodium Silicate, Rice husk while chitosan nanoparticles were prepared with ionic gelation method using Sodium tripolyphosphate (TPP). Size and texture of silica nanoparticles were studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) along with the effect of change in concentration of various reagents in different synthesis processes. Size and dispersion of Silica nanoparticles prepared from TEOS using stobber’s method were found better than other methods while nanoparticles prepared using rice husk were cheaper than other ones. Catalyst found to play a very significant role in controlling the size of nanoparticles in all methods.Keywords: silica nanoparticles, gelatin, bio-nanocomposites, SEM, TEM, chitosan
Procedia PDF Downloads 315415 Low Temperature Synthesis of Styrene via Catalytic Dehydrogenation of Ethylbenzene Using Vanadia Support SnO₂ Catalysts
Authors: S. Said, Samira M. Abdel-Azim, Aya M. Matloob
Abstract:
Nowadays, one of the most important industries is how to prepare a starting material like (styrene) which is used for the preparation of many petrochemical products in simple and inexpensive ways. Oxidative dehydrogenation of ethylbenzene (using CO2 as a soft oxidant) can solve this issue when using highly effective catalysts like SnO₂ and its nanocomposites (V₂Ox/SnO₂.) This study shows the effect of different synthesis methods of SnO₂ either by ethylene glycol or MOF then, uses the impregnation method for the preparation of its nanocomposite catalysts (V₂Ox/SnO₂.). The prepared catalysts were characterized by using different analytical techniques like XRD, BET, FTIR, TGA, XPS, and H₂-TPR. Oxidative dehydrogenation experimental results demonstrated that the composite V loading of 1 and 5 wt.% V₂Ox/SnO₂ (MOF &EG) catalyst exhibited extraordinarily high catalytic performance with selectivity toward styrene formation > 90% at 500oC, which can be attributed to the superior surface, textural, and structural properties of nanocomposites catalysts.Keywords: SnO₂, vanadium oxide, ethylbenzene dehydrogenation, styrene, CO₂
Procedia PDF Downloads 23