World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering Vol:19, No:02, 2025 ## Low Temperature Synthesis of Styrene via Catalytic Dehydrogenation of Ethylbenzene Using Vanadia Support SnO₂ Catalysts Authors: S. Said, Samira M. Abdel-Azim, Aya M. Matloob **Abstract :** Nowadays, one of the most important industries is how to prepare a starting material like (styrene) which is used for the preparation of many petrochemical products in simple and inexpensive ways. Oxidative dehydrogenation of ethylbenzene (using CO2 as a soft oxidant) can solve this issue when using highly effective catalysts like SnO_2 and its nanocomposites (V_2Ox/SnO_2 .) This study shows the effect of different synthesis methods of SnO_2 , either by ethylene glycol or MOF, and then uses the impregnation method for the preparation of its nanocomposite catalysts (V_2Ox/SnO_2 .). The prepared catalysts were characterized by using different analytical techniques like XRD, BET, FTIR, TGA, XPS, and H_2 -TPR. Oxidative dehydrogenation experimental results demonstrated that the composite V loading of 1 and 5 wt.% V_2Ox/SnO_2 (MOF &EG) catalyst exhibited extraordinarily high catalytic performance with selectivity toward styrene formation > 90% at 500oC, which can be attributed to the superior surface, textural, and structural properties of nanocomposites catalysts. Keywords: SnO₂, vanadium oxide, ethylbenzene dehydrogenation, styrene, CO₂ Conference Title: ICMSE 2025: International Conference on Materials Science and Engineering Conference Location: Jeddah, Saudi Arabia Conference Dates: February 17-18, 2025