Search results for: soil contamination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3666

Search results for: soil contamination

3186 Significant Influence of Land Use Type on Earthworm Communities but Not on Soil Microbial Respiration in Selected Soils of Hungary

Authors: Tsedekech Gebremeskel Weldmichael, Tamas Szegi, Lubangakene Denish, Ravi Kumar Gangwar, Erika Micheli, Barbara Simon

Abstract:

Following the 1992 Earth Summit in Rio de Janeiro, soil biodiversity has been recognized globally as a crucial player in guaranteeing the functioning of soil and a provider of several ecosystem services essential for human well-being. The microbial fraction of the soil is a vital component of soil fertility as soil microbes play key roles in soil aggregate formation, nutrient cycling, humification, and degradation of pollutants. Soil fauna, such as earthworms, have huge impacts on soil organic matter dynamics, nutrient cycling, and infiltration and distribution of water in the soil. Currently, land-use change has been a global concern as evidence accumulates that it adversely affects soil biodiversity and the associated ecosystem goods and services. In this study, we examined the patterns of soil microbial respiration (SMR) and earthworm (abundance, biomass, and species richness) across three land-use types (grassland, arable land, and forest) in Hungary. The objectives were i) to investigate whether there is a significant difference in SMR and earthworm (abundance, biomass, and species richness) among land-use types. ii) to determine the key soil properties that best predict the variation in SMR and earthworm communities. Soil samples, to a depth of 25 cm, were collected from the surrounding areas of seven soil profiles. For physicochemical parameters, soil organic matter (SOM), pH, CaCO₃, E₄/E₆, available nitrogen (NH₄⁺-N and NO₃⁻-N), potassium (K₂O), phosphorus (P₂O₅), exchangeable Ca²⁺, Mg²⁺, soil moisture content (MC) and bulk density were measured. The analysis of SMR was determined by basal respiration method, and the extraction of earthworms was carried out by hand sorting method as described by ISO guideline. The results showed that there was no statistically significant difference among land-use types in SMR (p > 0.05). However, the highest SMR was observed in grassland soils (11.77 mgCO₂ 50g⁻¹ soil 10 days⁻¹) and lowest in forest soils (8.61 mgCO₂ 50g⁻¹ soil 10 days⁻¹). SMR had strong positive correlations with exchangeable Ca²⁺ (r = 0.80), MC (r = 0.72), and exchangeable Mg²⁺(r = 0.69). We found a pronounced variation in SMR among soil texture classes (p < 0.001), where the highest value in silty clay loam soils and the lowest in sandy soils. This study provides evidence that agricultural activities can negatively influence earthworm communities, in which the arable land had significantly lower earthworm communities compared to forest and grassland respectively. Overall, in our study, land use type had minimal effects on SMR whereas, earthworm communities were profoundly influenced by land-use type particularly agricultural activities related to tillage. Exchangeable Ca²⁺, MC, and texture were found to be the key drivers of the variation in SMR.

Keywords: earthworm community, land use, soil biodiversity, soil microbial respiration, soil property

Procedia PDF Downloads 141
3185 Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis

Authors: Sofia Barbosa, Mariana Pinto, José António Almeida, Edgar Carvalho, Catarina Diamantino

Abstract:

The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioural profiles and to generate synthetic evolutionary hydrochemical maps.

Keywords: Contamination plume migration, K-means of PCA scores, groundwater and mine water monitoring, spatial-temporal hydrochemical trends

Procedia PDF Downloads 235
3184 Improvement of Mechanical Properties of Saline Soils by Fly Ash: Effect of Freeze-Thaw Cycles

Authors: Zhuo Cheng, Gaohang Cui, Yang Zheng, Zhiqiang-Pan

Abstract:

To explore the effect of freeze-thaw cycles on saline soil mechanical properties of fly ash, this study examined the influence of different numbers of freezing and thawing cycles, fly ash content, and moisture content of saline soil in unconfined compression tests and triaxial shear tests. With increased fly ash content, the internal friction angle, cohesion, unconfined compressive strength, and shear strength of the improved soil increased at first and then decreased. Using the Desk-Expert 8.0 software and based on significance analysis theory, the number of freeze-thaw cycles, fly ash content, water content, and the interactions between various factors on the mechanical properties of saline soil were studied. The results showed that the number of freeze-thaw cycles had a significant effect on the mechanical properties of saline soil, while the fly ash content had a weakly significant effect. At the same time, interaction between the number of freeze-thaw cycles and the water content had a significant effect on the unconfined compressive strength and the cohesion of saline soil, and the interaction between fly ash content and the number of freeze-thaw cycles only had a significant effect on the unconfined compressive strength.

Keywords: fly ash, saline soil, seasonally frozen area, significance analysis, qualitative analysis

Procedia PDF Downloads 147
3183 Infection Risk of Fecal Coliform Contamination in Drinking Water Sources of Urban Slum Dwellers: Application of Quantitative Microbiological Risk Assessment

Authors: Sri Yusnita Irda Sari, Deni Kurniadi Sunjaya, Ardini Saptaningsih Raksanagara

Abstract:

Water is one of the fundamental basic needs for human life, particularly drinking water sources. Although water quality is getting better, fecal-contamination of water is still found around the world, especially in the slum area of mid-low income countries. Drinking water source contamination in urban slum dwellers increases the risk of water borne diseases. Low level of sanitation and poor drinking water supply known as risk factors for diarrhea, moreover bacteria-contaminated drinking water source is the main cause of diarrhea in developing countries. This study aimed to assess risk infection due to Fecal Coliform contamination in various drinking water sources in urban area by applying Quantitative Microbiological Risk Assessment (QMRA). A Cross-sectional survey was conducted in a period of August to October 2015. Water samples were taken by simple random sampling from households in Cikapundung river basin which was one of urban slum area in the center of Bandung city, Indonesia. About 379 water samples from 199 households and 15 common wells were tested. Half of the households used treated drinking water from water gallon mostly refill water gallon which was produced in drinking water refill station. Others used raw water sources which need treatment before consume as drinking water such as tap water, borehole, dug well and spring water source. Annual risk to get infection due to Fecal Coliform contamination from highest to lowest risk was dug well (1127.9 x 10-5), spring water (49.7 x 10-5), borehole (1.383 x 10-5) and tap water (1.121 x 10-5). Annual risk infection of refill drinking water was 1.577 x 10-5 which is comparable to borehole and tap water. Household water treatment and storage to make raw water sources drinkable is essential to prevent risk of water borne diseases. Strong regulation and intense monitoring of refill water gallon quality should be prioritized by the government; moreover, distribution of tap water should be more accessible and affordable especially in urban slum area.

Keywords: drinking water, quantitative microbiological risk assessment, slum, urban

Procedia PDF Downloads 281
3182 The Effectiveness of Water Indices in Detecting Soil Moisture as an Indicator of Mudflow in Arid Regions

Authors: Zahraa Al Ali, Ammar Abulibdeh, Talal Al-Awadhi, Midhun Mohan, Mohammed Al-Barwani, Mohammed Al-Barwani, Sara Al Nabbi, Meshal Abdullah

Abstract:

This study aims to evaluate the performance and effectiveness of six spectral water indices - derived from Multispectral sentinel-2 data - to detect soil moisture and inundated area in arid regions to be used as an indicator of mudflow phenomena to predict high-risk areas. Herein, the validation of the performance of spectral indices was conducted using threshold method, spectral curve performance, and soil-line method. These indirect validation techniques play a key role in saving time, effort, and cost, particularly for large-scale and inaccessible areas. It was observed that the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (mNDWI), and RSWIR indices have the potential to detect soil moisture and inundated areas in arid regions. According to the temporal spectral curve performance, the spectral characteristics of water and soil moisture were distinct in the Near infrared (NIR), Short-wave Infrared (SWIR1,2) bands. However, the rate and degree differed between these bands, depending on the amount of water in the soil. Furthermore, the soil line method supported the appropriate selection of threshold values to detect soil moisture. However, the threshold values varied with location, time, season, and between indices. We concluded that considering the factors influencing the behavior of water and soil reflectivity could support decision-makers in identifying high-risk mudflow locations.

Keywords: spectral reflectance curve, soil-line method, spectral indices, Shaheen cyclone

Procedia PDF Downloads 73
3181 Measuring Impacts of Agroforestry on Soil Erosion with Field Devices: Quantifying Potential for Water Infiltration, Soil Conservation, and Payments for Ecosystems Services Schemes

Authors: Arthur Rouanet, Marina Gavaldao

Abstract:

Throughout the second half of the 20th Century, estimates indicate that soil losses due to erosion have impacted one-third of worldwide arable lands. As such, these losses are amongst the largest threats to agriculture sustainability and production potential. Increasing tree cover is considered one of the most efficient methods to mitigate this phenomenon. The present study describes soil erosion measurements in different land cover situations in Alto Huayabamba, Peru, using the experimental plot methodology. Three parcels were studied during a one-year period (starting September 2015) with 3 different land cover scenarii evaluated: 10-year-old secondary tropical forest (P1), 3-year-old native species reforestation (P2) and bare soil (P3). Information was collected systematically after each rain to assess the average rainfall, water runoff and soil eroded. The results indicate that variance in land cover has a strong impact on the level of soil erosion. In our study, it was found that P1, P2 and P3 had erosion rates of 92 kg/ha/yr, 11 tons/ha/yr and 59,7 tons/ha/year respectively. Using a replacement cost method, the potential of limiting erosion by reforesting bare soil was estimated to be 561 $/ha/yr after three years and 687 $/ha/yr after ten years. Finally, the results of the study allow us to assess the potential soil services provided by vegetation, which could be an important building block for a payment for ecosystems services (PES) scheme. The latter has been increasingly spread all over the world through Public-Private Partnerships (PPP).

Keywords: agroforestry, erosion, ecosystem services, payment for ecosystem services (PES), water conservation, public private partnership (PPP)

Procedia PDF Downloads 266
3180 Evaluation of Eco Cement as a Stabilizer of Clayey Sand

Authors: Jeeja Menon, M. S. Ravikumar

Abstract:

With the advent of green technology and the concept of zero energy buildings, there is an emerging trend in the utilization of indigenous materials like soil as a construction material. However, fine soils like clays and sand have undesirable properties and stabilization of these soils is essential before it is used to develop a building unit. Eco cement or Ground Granulated Blast Furnace Slag (GGBS), a waste byproduct formed during the manufacture of iron has cementitious properties and has the potential of replacing cement which is the most common stabilizer used for improving the geotechnical properties of soil. This paper highlights the salient observations obtained by the investigations into the effect of GGBS as a stabilizer for clayey sand. The index and engineering properties of the soil on the addition of different percentages (0%, 2%, 4%, 5% & 6% of the dry weight of the soil) of GGBS are tested to arrive at the optimum binder content. The criteria chosen for evaluation are the unconfined compressive strength values of different soil- binder composition. The test results indicate that there are significant strength improvements by the addition of GGBS in the soil, and the optimum GGBS content was determined as 5%. Moreover, utilizing waste binders for developing an ecofriendly, less energy induced building units as well as for stabilizing soil will also contribute to the solid waste management, which is the current environmental crisis of the world.

Keywords: eco cement, GGBS, index properties, stabilization, unconfined compressive strength

Procedia PDF Downloads 138
3179 A Review of Toxic and Non-Toxic Cyanobacteria Species Occurrence in Water Supplies Destined for Maize Meal Production Process: A Case Study of Vhembe District

Authors: M. Mutoti, J. Gumbo, A. Jideani

Abstract:

Cyanobacteria or blue green algae have been part of the human diet for thousands of years. Cyanobacteria can multiply quickly in surface waters and form blooms when favorable conditions prevail, such as high temperature, intense light, high pH, and increased availability of nutrients, especially phosphorous and nitrogen, artificially released by anthropogenic activities. Consumption of edible cyanotoxins such as Spirulina may reduce risks of cataracts and age related macular degeneration. Sulfate polysaccharides exhibit antitumor, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and even antiviral activity against HIV, herpes, and hepatitis. In humans, exposure to cyanotoxins can occur in various ways; however, the oral route is the most important. This is mainly through drinking water, or by eating contaminated foods; it may even involve ingesting water during recreational activities. This paper seeks to present a review on cyanobacteria/cyanotoxin contamination of water and food and implications for human health. In particular, examining the water quality used during maize seed that passes through mill grinding processes. In order to fulfil the objective, this paper starts with the theoretical framework on cyanobacteria contamination of food that will guide review of the present paper. A number of methods for decontaminating cyanotoxins in food is currently available. Therefore, physical, chemical, and biological methods for treating cyanotoxins are reviewed and compared. Furthermore, methods that are utilized for detecting and identifying cyanobacteria present in water and food were also informed in this review. This review has indicated various routes through which humans can be exposed to cyanotoxins. Accumulation of cyanotoxins, mainly microcystins, in food has raised an awareness of the importance of food as microcystins exposure route to human body. Therefore, this review demonstrates the importance of expanding research on cyanobacteria/cyanotoxin contamination of water and food for water treatment and water supply management, with focus on examining water for domestic use. This will help providing information regarding the prevention or minimization of contamination of water and food, and also reduction or removal of contamination through treatment processes and prevention of recontamination in the distribution system.

Keywords: biofilm, cyanobacteria, cyanotoxin, food contamination

Procedia PDF Downloads 160
3178 Study of Stability of a Slope by the Soil Nailed Technique

Authors: Abdelhak Soudani

Abstract:

Using the limit equilibrium method in geotechnical field is very important for large projects. This work contributes to the understanding and analysis of the building unstable slopes by the technique of soil nailed with the used of software called GEO-SLOPE calculation based on limit equilibrium method. To achieve our objective, we began a review of the literature on landslides, and techniques of slope stability. Then, we presented a real case slope likely to slip through the realization of the EastWest Highway (M5 stretch between Khemis Miliana and Hoceinia). We also process the application of reinforcement technique nailed soil. The analysis is followed by a parametric study, which shows the impact of parameters given or chosen on various outcomes. Another method of reinforcement (use of micro-piles) has been suggested for improving the stability of the slope

Keywords: slope stability, strengthening, slip, soil nail, GEO-SLOPE

Procedia PDF Downloads 466
3177 The Influence of Zinc Applications from Soil and Foliar at Different Levels on Some Quality Characteristics of Sultana Raisins

Authors: Harun Çoban, Aydın Akın

Abstract:

In this study, the effects of different dose zinc application from soil and foliar on drying yield and some quality characters of raisins ‘Sultana’ were investigated. The experiment was conducted in randomized blocks with four replications, zinc treatment was used at one time (before pre- bloom) and from foliar in three times (pre-bloom, fruit set, and veraison). At harvest, both soil and foliar zinc sulphate applications increased the amount of fresh grapes per vine. Fresh grapes were dried on the drying place. However, the most efficient applications for drying yield and quality of raisins were observed from foliar. Therefore, it was preferred that foliar application dosage level at 0.10 %.

Keywords: zinc, raisins, soil application, foliar application, sultana, expertise value

Procedia PDF Downloads 313
3176 Assessment of Soil Quality Indicators in Rice Soils Under Rainfed Ecosystem

Authors: R. Kaleeswari

Abstract:

An investigation was carried out to assess the soil biological quality parameters in rice soils under rainfed and to compare soil quality indexing methods viz., Principal component analysis, Minimum data set and Indicator scoring method and to develop soil quality indices for formulating soil and crop management strategies.Soil samples were collected and analyzed for soil biological properties by adopting standard procedure. Biological indicators were determined for soil quality assessment, viz., microbial biomass carbon and nitrogen (MBC and MBN), potentially mineralizable nitrogen (PMN) and soil respiration and dehydrogenease activity. Among the methods of rice cultivation, Organic nutrition, Integrated Nutrient Management (INM) and System of Rice Intensification (SRI ), rice cultivation registered higher values of MBC, MBN and PMN. Mechanical and conventional rice cultivation registered lower values of biological quality indicators. Organic nutrient management and INM enhanced the soil respiration rate. SRI and aerobic rice cultivation methods increased the rate of soil respiration, while conventional and mechanical rice farming lowered the soil respiration rate. Dehydrogenase activity (DHA) was registered to be higher in soils under organic nutrition and Integrated Nutrient Management INM. System of Rice Intensification SRI and aerobic rice cultivation enhanced the DHA; while conventional and mechanical rice cultivation methods reduced DHA. The microbial biomass carbon (MBC) of the rice soils varied from 65 to 244 mg kg-1. Among the nutrient management practices, INM registered the highest available microbial biomass carbon of 285 mg kg-1.Potentially mineralizable N content of the rice soils varied from 20.3 to 56.8 mg kg-1. Aerobic rice farming registered the highest potentially mineralizable N of 78.9 mg kg-1..The soil respiration rate of the rice soils varied from 60 to 125 µgCO2 g-1. Nutrient management practices ofINM practice registered the highest. soil respiration rate of 129 µgCO2 g-1.The dehydrogenase activity of the rice soils varied from 38.3 to 135.3µgTPFg-1 day-1. SRI method of rice cultivation registered the highest dehydrogenase activity of 160.2 µgTPFg-1 day-1. Soil variables from each PC were considered for minimum soil data set (MDS). Principal component analysis (PCA) was used to select the representative soil quality indicators. In intensive rice cultivating regions, soil quality indicators were selected based on factor loading value and contribution percentage value using principal component analysis (PCA).Variables having significant difference within production systems were used for the preparation of minimum data set (MDS).

Keywords: soil quality, rice, biological properties, PCA analysis

Procedia PDF Downloads 110
3175 Stabilization of Lateritic Soil Sample from Ijoko with Cement Kiln Dust and Lime

Authors: Akinbuluma Ayodeji Theophilus, Adewale Olutaiwo

Abstract:

When building roads and paved surfaces, a strong foundation is always essential. A durable material that can withstand years of traffic while staying trustworthy must be used to build the foundation. A frequent problem in the construction of roads and pavements is the lack of high-quality, long-lasting materials for the pavement structure (base, subbase, and subgrade). Hence, this study examined the stabilization of lateritic soil samples from Ijoko with cement kiln dust and lime. The study adopted the experimental design. Laboratory tests were conducted on classification, swelling potential, compaction, California bearing ratio (CBR), and unconfined compressive tests, among others, were conducted on the laterite sample treated with cement kiln dust (CKD) and lime in incremental order of 2% up to 10% of dry weight soft soil sample. The results of the test showed that the studied soil could be classified as an A-7-6 and CL soil using the American Association of State Highway and transport officials (AASHTO) and the unified soil classification system (USCS), respectively. The plasticity (PI) of the studied soil reduced from 30.5% to 29.9% at the application of CKD. The maximum dry density on the application of CKD reduced from 1.9.7 mg/m3 to 1.86mg/m3, and lime application yielded a reduction from 1.97mg/m3 to 1.88.mg/m3. The swell potential on CKD application was reduced from 0.05 to 0.039%. The study concluded that soil stabilizations are effective and economic way of improving road pavement for engineering benefit. The degree of effectiveness of stabilization in pavement construction was found to depend on the type of soil to be stabilized. The study therefore recommended that stabilized soil mixtures should be used to subbase material for flexible pavement since is a suitable.

Keywords: lateritic soils, sand, cement, stabilization, road pavement

Procedia PDF Downloads 90
3174 Field Tests and Numerical Simulation of Tunis Soft Soil Improvement Using Prefabricated Vertical Drains

Authors: Marwa Ben Khalifa, Zeineb Ben Salem, Wissem Frikha

Abstract:

This paper presents a case study of “Radès la Goulette” bridge project using the technique of prefabricated vertical drains (PVD) associated with step by step construction of preloading embankments with averaged height of about 6 m. These embankments are founded on a highly compressible layer of Tunis soft soil. The construction steps included extensive soil instrumentation such as piezometers and settlement plates for monitoring the dissipation of excess pore water pressures and settlement during the consolidation of Tunis soft soil. An axisymmetric numerical model using the 2D finite difference code FLAC was developed and calibrated using laboratory tests to predict the soil behavior and consolidation settlements. The constitutive model impact for simulating the soft soil behavior is investigated. The results of analyses show that numerical analysis provided satisfactory predictions for the field performance during the construction of Radès la Goulette embankment. The obtained results show the effectiveness of PVD in the acceleration of the consolidation time. A comparison of numerical results with theoretical analysis was presented.

Keywords: tunis soft soil, radès bridge project, prefabricated vertical drains, FLAC, acceleration of consolidation

Procedia PDF Downloads 123
3173 Effect of Maize Straw-Derived Biochar on Imidacloprid Adsorption onto Soils Prior to No-Tillage and Rotary Tillage Practices

Authors: Jean Yves Uwamungu, Fiston Bizimana, Chunsheng Hu

Abstract:

Although pesticides are used in crop productivity, their use is highly harming the soil environment, and measures must be taken in the future to eradicate soil and groundwater pollution. The primary aim was to determine the effect of biochar addition on the imidacloprid adsorption on soil prior to no-tillage (NT) and rotational tillage (RT) conditions. In the laboratory, batch tests were conducted to determine the imidacloprid adsorption on soil using equilibrium and kinetic modelling with the addition of biochar. The clay level of the soil was found to be more significant when no-tillage was applied (22.42) than when rotational tillage was applied (14.27). The imidacloprid adsorption equilibrium was significantly shortened to 25 min after biochar addition. The isotherms and kinetic findings confirmed that the adsorption occurred according to Freundlich and pseudo-second-order kinetic models, respectively. The adsorption capacity of imidacloprid (40<35<25 °C) increased with decreasing temperature, indicating an exothermic adsorption behaviour, whereas negative Gibbs free energy (G) values of -6980.5 and 5983.93 Jmol-1, respectively, for soil prior to NT and RT at 25 °C, asserted spontaneous adsorption. The negative values of entropy (ΔS); -22.83 and -38.15 Jmol-1K-1, prior to NT and RT applications, respectively, described a lowered randomness process. The enthalpy was greater when RT was applied (-17533 J mol-1) than when NT was applied (-450 J mol-1). Lastly, it was shown that NTtreatment enhanced imidacloprid adsorption capacity more than RT treatment and that biochar addition enhanced pesticide adsorption in both treatments.

Keywords: adsorption, biochar, imidacloprid, soil, tillage

Procedia PDF Downloads 148
3172 Evaluation of Pile Performance in Different Layers of Soil

Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri

Abstract:

The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. Pile foundations during earthquake excitation indicate that piles are subject to damage by affecting the superstructure integrity and serviceability. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. However, the large cracks reason have been listed such as liquefaction, lateral spreading, and inertial load. In the field of designing, elastic response of piles is always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. In addition, emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.

Keywords: pile, earthquake, liquefaction, non-liquefiable, damage

Procedia PDF Downloads 301
3171 Soil-Cement Floor Produced with Alum Water Treatment Residues

Authors: Flavio Araujo, Paulo Scalize, Julio Lima, Natalia Vieira, Antonio Albuquerque, Isabela Santos

Abstract:

From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry.

Keywords: residue, soil-cement floor, sustainable, WTP

Procedia PDF Downloads 570
3170 Estimation of Soil Moisture at High Resolution through Integration of Optical and Microwave Remote Sensing and Applications in Drought Analyses

Authors: Donglian Sun, Yu Li, Paul Houser, Xiwu Zhan

Abstract:

California experienced severe drought conditions in the past years. In this study, the drought conditions in California are analyzed using soil moisture anomalies derived from integrated optical and microwave satellite observations along with auxiliary land surface data. Based on the U.S. Drought Monitor (USDM) classifications, three typical drought conditions were selected for the analysis: extreme drought conditions in 2007 and 2013, severe drought conditions in 2004 and 2009, and normal conditions in 2005 and 2006. Drought is defined as negative soil moisture anomaly. To estimate soil moisture at high spatial resolutions, three approaches are explored in this study: the universal triangle model that estimates soil moisture from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST); the basic model that estimates soil moisture under different conditions with auxiliary data like precipitation, soil texture, topography, and surface types; and the refined model that uses accumulated precipitation and its lagging effects. It is found that the basic model shows better agreements with the USDM classifications than the universal triangle model, while the refined model using precipitation accumulated from the previous summer to current time demonstrated the closest agreements with the USDM patterns.

Keywords: soil moisture, high resolution, regional drought, analysis and monitoring

Procedia PDF Downloads 136
3169 Illumina MiSeq Sequencing for Bacteria Identification on Audio-Visual Materials

Authors: Tereza Branyšová, Martina Kračmarová, Kateřina Demnerová, Michal Ďurovič, Hana Stiborová

Abstract:

Microbial deterioration threatens all objects of cultural heritage, including audio-visual materials. Fungi are commonly known to be the main factor in audio-visual material deterioration. However, although being neglected, bacteria also play a significant role. In addition to microbial contamination of materials, it is also essential to analyse air as a possible contamination source. This work aims to identify bacterial species in the archives of the Czech Republic that occur on audio-visual materials as well as in the air in the archives. For sampling purposes, the smears from the materials were taken by sterile polyurethane sponges, and the air was collected using a MAS-100 aeroscope. Metagenomic DNA from all collected samples was immediately isolated and stored at -20 °C. DNA library for the 16S rRNA gene was prepared using two-step PCR and specific primers and the concentration step was included due to meagre yields of the DNA. After that, the samples were sent to the University of Fairbanks, Alaska, for Illumina MiSeq sequencing. Subsequently, the analysis of the sequences was conducted in R software. The obtained sequences were assigned to the corresponding bacterial species using the DADA2 package. The impact of air contamination and the impact of different photosensitive layers that audio-visual materials were made of, such as gelatine, albumen, and collodion, were evaluated. As a next step, we will take a deeper focus on air contamination. We will select an appropriate culture-dependent approach along with a culture-independent approach to observe a metabolically active species in the air. Acknowledgment: This project is supported by grant no. DG18P02OVV062 of the Ministry of Culture of the Czech Republic.

Keywords: cultural heritage, Illumina MiSeq, metagenomics, microbial identification

Procedia PDF Downloads 156
3168 Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction

Authors: Mohamed M. El Gendy, Ibrahim A. El Arabi, Rafeek W. Abdel-Missih, Omar A. Kandil

Abstract:

Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches.

Keywords: nonlinear analysis, reinforced concrete arched structure, soil-structure interaction, geotechnical engineering

Procedia PDF Downloads 438
3167 The Determination of Contamination Rate of Traditional White Cheese in Behbahan Markets to Coliforms and Pathogenic Escherichia Coli

Authors: Sana Mohammad Jafar, Hossaini Seyahi Zohreh

Abstract:

Infections and food intoxication caused by microbial contamination of food is of major issues in different countries, and diseases caused by the consumption of contaminated food included a large percentage of the country's health problems. Since traditional cheese for cultural reasons, good taste and smell in many parts of the area still has the important place in people's food basket, transmission of pathogenic bacteria could be at risk human health through the consumption of this food. In this study selected randomly 100 samples of 250 grams of traditional cheeses supplied in the city Behbahan market and adjacent to the ice was transferred to the laboratory and microbiological tests were performed immediately. According to the results, from 100 samples tested traditional cheese, 94 samples (94% of samples) were contaminated with coliforms, which of this number 75 samples (75% of samples) the contamination rate was higher than the limit (more than 100 cfu/g). Of the total samples, 36 samples (36% of samples) were contaminated with fecal coliform which of this number 30 samples (30% of samples) were contaminated with Escherichia.coli bacteria. Based on the results of agglutination test,no samples was found positive as pathogenic Escherichia.coli.

Keywords: determination, traditional cheese, Behbahan, Escherichia coli

Procedia PDF Downloads 503
3166 Effect of Nano-SiO2 Solution on the Strength Characteristics of Kaolinite

Authors: Reza Ziaie Moayed, Hamidreza Rahmani

Abstract:

Today, with developments in science and technology, there is an excessive potential for the use of nanomaterials in various fields of geotechnical project such as soil stabilization. This study investigates the effect of Nano-SiO2 solution on the unconfined compression strength and Young's elastic modulus of Kaolinite. For this purpose, nano-SiO2 was mixed with kaolinite in five different contents: 1, 2, 3, 4 and 5% by weight of the dry soil and a series of the unconfined compression test with curing time of one-day was selected as laboratory test. Analyses of the tests results show that stabilization of kaolinite with Nano-SiO2 solution can improve effectively the unconfined compression strength of modified soil up to 1.43 times compared to  the pure soil.

Keywords: kaolinite, Nano-SiO2, stabilization, unconfined compression test, Young's modulus

Procedia PDF Downloads 391
3165 Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity

Authors: Muhammad Tariq A. Chaudhary

Abstract:

Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study.

Keywords: bridge, FEM model, reinforced concrete pier, pile foundation, seismic loading, soil-structure interaction

Procedia PDF Downloads 232
3164 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks

Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev

Abstract:

One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.

Keywords: channel estimation, inter-cell interference, pilot contamination attacks, wireless communications

Procedia PDF Downloads 217
3163 Applicability of Soybean as Bio-Catalyst in Calcite Precipitated Method for Soil Improvement

Authors: Heriansyah Putra, Erizal Erizal, Sutoyo Sutoyo, Hideaki Yasuhara

Abstract:

This paper discusses the possibility of organic waste material, i.e., soybean, as the bio-catalyst agent on the calcite precipitation method. Several combinations of soybean powder and jack bean extract are used as the bio-catalyst and mixed with the reagent composed of calcium chloride and urea. Its productivity in promoting calcite crystal is evaluated through a transparent test-tube experiment. The morphological and mineralogical aspects of precipitated calcite are also investigated using scanning electromagnetic (SEM) and X-ray diffraction (XRD), respectively. The applicability of this material to improve the engineering properties of soil are examined using the direct shear and unconfined compressive test. The result of this study shows that the utilization of soybean powder brings about a significant effect on soil strength. In addition, the use of soybean powder as a substitution material of urease enzyme also increases the efficacy of calcite crystal as the binder materials. The low calcite content promotes the high strength of the soil. The strength of 300 kPa is obtained in the presence of 2% of calcite content within the soil. The result of this study elucidated that substitution of soybean to jack bean extract is the potential and valuable alternative to improve the applicability of calcite precipitation method as soil improvement technique.

Keywords: calcite precipitation, jack bean, soil improvement, soybean

Procedia PDF Downloads 127
3162 Influence of Environment-Friendly Organic Wastes on the Properties of Sandy Soil under Growing Zea mays L. in Arid Regions

Authors: Mohamed Rashad, Mohamed Hafez, Mohamed Emran, Emad Aboukila, Ibrahim Nassar

Abstract:

Environment-friendly organic wastes of Brewers' spent grain, a byproduct of the brewing process, have recently used as soil amendment to improve soil fertility and plant production. In this work, treatments of 1% (T1) and 2% (T2) of spent grains, 1% (C1) and 2% (C2) of compost and mix of both sources (C1T1) were used and compared to the control for growing Zea mays L. on sandy soil under arid Mediterranean climate. Soils were previously incubated at 65% saturation capacity for a month. The most relevant soil physical and chemical parameters were analysed. Water holding capacity and soil organic matter (OM) increased significantly along the treatments with the highest values in T2. Soil pH decreased along the treatments and the lowest pH was in C1T1. Bicarbonate decreased by 69% in C1T1 comparing to control. Total nitrogen (TN) and available P varied significantly among all treatments and T2, C1T1 and C2 treatments increased 25, 17 and 11 folds in TN and 1.2, 0.6 and 0.3 folds in P, respectively related to control. Available K showed the highest values in C1T1. Soil micronutrients increased significantly along all treatments with the highest values in T2. After corn germination, significant variation was observed in the velocity of germination coefficients (VGC) among all treatments in the order of C1T1>T2>T1>C2>C1>control. The highest records of final germination and germination index were in C1T1 and T2. The spent grains may compensate deficiencies of macro and micronutrients in newly reclaimed sandy soils without adverse effects to sustain crop production with a rider that excessive or continuous use need to be circumvented.

Keywords: corn and squash germination, environmentally friendly organic wastes, soil carbon sequestration, spent grains as soil amendment, water holding capacity

Procedia PDF Downloads 508
3161 Contribution of Different Farming Systems to Soil and Ecological Health in Trans Nzoia County, Kenya

Authors: Janeth Chepkemoi, Richard Onwonga, Noel Templer, Elkana Kipkoech, Angela Gitau

Abstract:

Conventional agriculture is one of the leading causes of land degradation, threatening the sustainability of food production. Organic farming promotes practices that have the potential of feeding the world while also promoting ecological health. A study was therefore carried out with the aim of conceptualizing how such farming systems are contributing to ecological health in Trans Nzoia County. 71 farmers were interviewed and data was collected on parameters such as land preparation, agroforestry, soil fertility management, soil and water conservation, and pests and diseases. A soil sample was also collected from each farm for laboratory analysis. Data collected were analyzed using Microsoft Excel and SPSS version 21. Results showed that 66% of the respondents practiced organic farming whereas 34% practiced conventional farming. Intercropping and crop rotations were the most common cropping systems and the most preferred land preparation tools among both organic and conventional farmers were tractors and hand hoes. Organic farms fared better in agroforestry, organic soil amendments, land and water conservation, and soil chemical properties. Pests and disease, however, affected organic farms more than conventional. The average nitrogen (%), K (Cmol/ kg and P (ppm) of organic soils were 0.26, 0.7 and 26.18 respectively, conventional soils were 0.21, 0.66 and 22.85. Soil organic carbon content of organic farms averaged a higher percentage of 2.07% as compared to 1.91 for the conventional. In conclusion, most farmers in Trans Nzoia County had transitioned into ecologically friendly farming practices that improved the quality and health of the soil and therefore promoted its sustainability.

Keywords: organic farming, conventional farming, ecological health, soil health

Procedia PDF Downloads 124
3160 A Review on New Additives in Deep Soil Mixing Method

Authors: Meysam Mousakhani, Reza Ziaie Moayed

Abstract:

Considering the population growth and the needs of society, the improvement of problematic soils and the study of the application of different improvement methods have been considered. One of these methods is deep soil mixing, which has been developed in the past decade, especially in soft soils due to economic efficiency, simple implementation, and other benefits. The use of cement is criticized for its cost and the damaging environmental effects, so these factors lead us to use other additives along with cement in the deep soil mixing. Additives that are used today include fly ash, blast-furnace slag, glass powder, and potassium hydroxide. The present study provides a literature review on the application of different additives in deep soil mixing so that the best additives can be introduced from strength, economic, environmental and other perspectives. The results show that by replacing fly ash and slag with about 40 to 50% of cement, not only economic and environmental benefits but also a long-term strength comparable to cement would be achieved. The use of glass powder, especially in 3% mixing, results in desirable strength. In addition to the other benefits of these additives, potassium hydroxide can also be transported over longer distances, leading to wider soil improvement. Finally, this paper suggests further studies in terms of using other additives such as nanomaterials and zeolite, with different ratios, in different conditions and soils (silty sand, clayey sand, carbonate sand, sandy clay and etc.) in the deep mixing method.

Keywords: deep soil mix, soil stabilization, fly ash, ground improvement

Procedia PDF Downloads 148
3159 Soil-Vegetation Relationship in the Watersheds of the Tonga and OubeïRa Lakes, Algeria

Authors: Nafaa Zaafour

Abstract:

Located at the north eastern of Algeria, the National Park of El-Kala (PNEK) is a set of landscapes whose bioclimatic stages of vegetation extend from sub-humid to humid. In order to know the soil occupation in this complex, an initiated ecological soil cartography using a stratified sampling plan of vegetation had made, the study area occupies two-thirds of the northern National Park of El Kala, it has been divided into 380 plots of 1km2 of which, 76 were the subject of a detailed floristic inventory and sampling of soils. The inventory of vegetation carried out on different sites has allowed identifying several plant groups that share the soil cover with the following distribution: The group of cork oak, this formation occupies the biggest part of the area, it develops mainly on Incepttisols, Alfisols and Mollisols; The group of kermes oak, occupies a large area, it grows on Mollisols and Alfisols; The group of maritime pine, it occupies the same soils as the Kermes Oak; The group of Mirbeck oak, installed on Regosols, it is located in the Eastern part, on the Algerian-Tunisian border; The group of eucalyptus, it grows mainly on Inceptisols, Mollisols of, and Vertisols; The group of wetland, it grows along the banks of lakes and rivers, which primarily develops on Histosols soil Mollisols and Vertisols; The cultures, distributed mainly around the lakes occupy several soil types on Histosols, the Inceptisols, Mollisols of, and Vertisols. This great diversity of vegetation is linked not only to the soil variability but also to climate, hydrological and geological variability.

Keywords: Algeria, cartography, soil, vegetation

Procedia PDF Downloads 382
3158 Quantification of Polychlorinated Biphenyls (PCBs) in Soil Samples of Electrical Power Substations from Different Cities in Nigeria

Authors: Omasan Urhie Urhie, Adenipekun C. O, Eke W., Ogwu K., Erinle K. O

Abstract:

Polychlorinated Biphenyls (PCBs) are Persistent organic pollutants (POPs) that are very toxic; they possess ability to accumulate in soil and in human tissues hence resulting in health issues like birth defect, reproductive disorder and cancer. The air is polluted by PCBs through volatilization and dispersion; they also contaminate soil and sediments and are not easily degraded. Soil samples were collected from a depth of 0-15 cm from three substations (Warri, Ughelli and Ibadan) of Power Holding Company of Nigeria (PHCN) where old transformers were dumped in Nigeria. Extraction and cleanup of soil samples were conducted using Accelerated Solvent Extraction (ASE) with Pressurized Liquid extraction (PLE). The concentration of PCBs was determined using gsas chromatography/mass spectrometry (GC/MS). Mean total PCB concentrations in the soil samples increased in the order Ughelli ˂ Ibadan˂ Warri, 2.457757ppm Ughelli substation 4.198926ppm, for Ibadan substation and 14.05065ppm at Warri substation. In the Warri samples, PCB-167 was the most abundant at about 30% (4.28086ppm) followed by PCB-157 at about 20% (2.77871), of the total PCB concentrations (14.05065ppm). Of the total PCBs in the Ughelli and Ibadan samples, PCB-156 was the most abundant at about 44% and 40%, respectively. This study provides a baseline report on the presence of PCBs in the vicinity of abandoned electrical power facilities in different cities in Nigeria.

Keywords: polychlorintated biphenyls, persistent organic pollutants, soil, transformer

Procedia PDF Downloads 139
3157 Experimental Investigation on Utility and Suitability of Lateritic Soil as a Pavement Material

Authors: J. Hemanth, B. G. Shivaprakash, S. V. Dinesh

Abstract:

The locally available Lateritic soil in Dakshina Kanadda and Udupi districts are traditionally being used as building blocks for construction purpose but they do not meet the conventional requirements (L L ≤ 25% & P I ≤6%) and desired four days soaked CBR value to be used as a sub-base course material in pavements. In order to improve its properties to satisfy the Atterberg’s Limits, the soil is blended with sand, cement and quarry dust at various percentages and also to meet the CBR strength requirements, individual and combined gradation of various sized aggregates along with Laterite soil and other filler materials has been done for coarse graded granular sub-base materials (Grading II and Grading III). The effect of additives blended with lateritic soil and aggregates are studied in terms of Atterberg’s limits, compaction, California Bearing Ratio (CBR), and permeability. It has been observed that the addition of sand, cement and quarry dust are found to be effective in improving Atterberg’s limits, CBR values, and permeability values. The obtained CBR and permeability values of Grading III, and Grading II materials found to be sufficient to be used as sub-base course for low volume roads and high volume roads respectively.

Keywords: lateritic soil, sand, quarry dust, gradation, sub-base course, permeability

Procedia PDF Downloads 318