Search results for: polyaspartic coating (DTM)
296 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane
Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Godson Osueke, Edward Gobina
Abstract:
A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery.Keywords: gas permeation, silica membrane, separation factor, membrane layer thickness
Procedia PDF Downloads 360295 Edible Active Antimicrobial Coatings onto Plastic-Based Laminates and Its Performance Assessment on the Shelf Life of Vacuum Packaged Beef Steaks
Authors: Andrey A. Tyuftin, David Clarke, Malco C. Cruz-Romero, Declan Bolton, Seamus Fanning, Shashi K. Pankaj, Carmen Bueno-Ferrer, Patrick J. Cullen, Joe P. Kerry
Abstract:
Prolonging of shelf-life is essential in order to address issues such as; supplier demands across continents, economical profit, customer satisfaction, and reduction of food wastage. Smart packaging solutions presented in the form of naturally occurred antimicrobially-active packaging may be a solution to these and other issues. Gelatin film forming solution with adding of natural sourced antimicrobials is a promising tool for the active smart packaging. The objective of this study was to coat conventional plastic hydrophobic packaging material with hydrophilic antimicrobial active beef gelatin coating and conduct shelf life trials on beef sub-primal cuts. Minimal inhibition concentration (MIC) of Caprylic acid sodium salt (SO) and commercially available Auranta FV (AFV) (bitter oranges extract with mixture of nutritive organic acids) were found of 1 and 1.5 % respectively against bacterial strains Bacillus cereus, Pseudomonas fluorescens, Escherichia coli, Staphylococcus aureus and aerobic and anaerobic beef microflora. Therefore SO or AFV were incorporated in beef gelatin film forming solution in concentration of two times of MIC which was coated on a conventional plastic LDPE/PA film on the inner cold plasma treated polyethylene surface. Beef samples were vacuum packed in this material and stored under chilling conditions, sampled at weekly intervals during 42 days shelf life study. No significant differences (p < 0.05) in the cook loss was observed among the different treatments compared to control samples until the day 29. Only for AFV coated beef sample it was 3% higher (37.3%) than the control (34.4 %) on the day 36. It was found antimicrobial films did not protect beef against discoloration. SO containing packages significantly (p < 0.05) reduced Total viable bacterial counts (TVC) compared to the control and AFV samples until the day 35. No significant reduction in TVC was observed between SO and AFV films on the day 42 but a significant difference was observed compared to control samples with a 1.40 log of bacteria reduction on the day 42. AFV films significantly (p < 0.05) reduced TVC compared to control samples from the day 14 until the day 42. Control samples reached the set value of 7 log CFU/g on day 27 of testing, AFV films did not reach this set limit until day 35 and SO films until day 42 of testing. The antimicrobial AFV and SO coated films significantly prolonged the shelf-life of beef steaks by 33 or 55% (on 7 and 14 days respectively) compared to control film samples. It is concluded antimicrobial coated films were successfully developed by coating the inner polyethylene layer of conventional LDPE/PA laminated films after plasma surface treatment. The results indicated that the use of antimicrobial active packaging coated with SO or AFV increased significantly (p < 0.05) the shelf life of the beef sub-primal. Overall, AFV or SO containing gelatin coatings have the potential of being used as effective antimicrobials for active packaging applications for muscle-based food products.Keywords: active packaging, antimicrobials, edible coatings, food packaging, gelatin films, meat science
Procedia PDF Downloads 304294 Air-Purifying Properties of Cement Mortars Intermixed with TiO₂-SiO₂ Composites
Authors: A.M. Kaja, Q. Yu, H.J.H Brouwers
Abstract:
An increased functionality of concrete towards higher eco-efficiency is nowadays of great importance due to the decreasing air quality in urban areas. Surface modifications of concrete walls and roads, as a coating or an intermixing of the surface layer with TiO₂, provide an opportunity to improve the air quality by reducing NOx via photocatalytic phenomena. Nevertheless, there are still concerns regarding the cost-efficiency as well as the toxicity of intermediate products which can be produced during the photocatalysis, limiting a widespread adoption of these materials. This study addresses the problem of the selectivity of cement mortars towards nitrate in terms of microstructural characteristics and hydration products. The ability of cement mortars matrix intermixed with commercial TiO₂ and TiO₂-SiO₂ composite to abate NO₂ is investigated. The influence of hydration products formed under the carbonation facilitating conditions is discussed and solutions how to optimize the mix design are proposed. The incorporation of the TiO₂-SiO₂ composite into cement mortar is found to increase the nitrate selectivity index.Keywords: cement matrix, NO₂ abatement, photocatalysis, TiO₂-SiO₂ composite
Procedia PDF Downloads 162293 Development and Evaluation of Surgical Sutures Coated with Antibiotic Loaded Gold Nanoparticles
Authors: Sunitha Sampathi, Pankaj Kumar Tiriya, Sonia Gera, Sravanthi Reddy Pailla, V. Likhitha, A. J. Maruthi
Abstract:
Surgical site infections (SSIs) are the most common nosocomial infections localized at the incision site. With an estimated 27 million surgical procedures each year in USA, approximately 2-5% rate of SSIs are predicted to occur annually. SSIs are treated with antibiotic medication. Current trend suggest that the direct drug delivery from the suture to the scared tissue can improve patient comfort and wound recovery. For that reason coating the surface of the medical device such as suture and catguts with broad spectrum antibiotics can prevent the formation of bactierial colonies with out comprimising the mechanical properties of the sutures.Hence, the present study was aimed to develop and evaluate a surgical suture coated with an antibiotic Ciprofloxacin hydrochloride loaded on gold nanoparticles. Gold nanoparticles were synthesized by chemical reduction method and conjugated with ciprofloxacin using Polyvinylpyrolidone as stabilizer and gold as carrier. Ciprofloxacin conjugated gold nanoparticles were coated over an absorbable surgical suture made of Polyglactan using sodium alginate as an immobilising agent by slurry dipping technique. The average particle size and Polydispersity Index of drug conjugated gold NPs were found to be 129±2.35 nm and 0.243±0.36 respectively. Gold nanoparticles are characterized by UV-Vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy and Transmission electron microscopy. FT-IR revealed that there is no chemical interaction between drug and polymer. Antimicrobial activity for coated sutures was evaluated by disc diffusion method on culture plates of both gram negative (E-coli) and gram positive bacteria (Staphylococcus aureus) and results found to be satisfactory. In vivo studies for coated sutures was performed on Swiss albino mice and histological evaluation of intestinal wound healing parameters such as wound edges in mucosa, muscularis, presence of necrosis, exudates, granulation tissue, granulocytes, macrophages, restoration, and repair of mucosal epithelium and muscularis propria on day 7 after surgery were studied. The control animal group, sutured with plain suture (uncoated suture) showed signs of restoration and repair, but presence of necrosis, heamorraghic infiltration and granulation tissue was still noticed. Whereas the animal group treated with ciprofloxacin and ciprofloxacin gold nanoparticle coated sutures has shown promising decrease in terms of haemorraghic infiltration, granulation tissue, necrosis and better repaired muscularis layers on comparision with plain coated sutures indicating faster rate of repair and less chance of sepsis. Hence coating of sutures with broad spectrum antibiotics can be an alternate technique to reduce SSIs.Keywords: ciprofloxacin hydrochloride, gold nanoparticles, surgical site infections, sutures
Procedia PDF Downloads 256292 Conducting Glove Leathers Prepared through in-situ Polymerization of Pyrrole
Authors: Wegene Demisie Jima
Abstract:
Leather is a durable and flexible material used for various purposes including clothing, footwear, upholstery and gloves. However, the use of leather for smart product applications is a challenge since it is electrically insulating material. Here, we report a simple method to produce conducting glove leathers using an in-situ polymerization of pyrrole. The concentrations of pyrrole, ferric chloride and anthraquinone-2-sulfonic acid sodium salt monohydrate were optimized to produce maximum conductivity in the treated leathers. The coating of polypyrrole in the treated leathers was probed using FT-IR, X-ray diffraction and electron microscopic analysis. FTIR confirms that the formation of polypyrrole on the leather surface as well as presence of prominent N-C stretching band. X-ray diffraction analysis suggests para-crystallinity in the PPy-treated leathers.We further demonstrate that the treated leathers, with maximum conductivity of 7.4 S/cm, can be used for making conductive gloves for operating touch-screen devices apart from other smart product applications.Keywords: electrical conductivity, in-situ polymerization, pyrrole, smart product
Procedia PDF Downloads 194291 Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic
Authors: Sadık Ata, Kevser Dincer
Abstract:
In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell.Keywords: proton exchange membrane (PEM), fuel cell, rule-based mamdani-type fuzzy (RMBTF) modelling, Yttria-stabilized zirconia (YSZ)
Procedia PDF Downloads 242290 Porosity Characterization and Its Destruction by Authigenic Minerals: Reservoir Sandstones, Mamuniyat Formation, Murzuq Basin, SW Libya
Authors: Mohamrd Ali Alrabib
Abstract:
Sandstones samples were selected from cores of seven wells ranging in depth from 5040 to 7181.4 ft. The dominant authigenic cement phase is quartz overgrowth cement (up to 13% by volume) and this is the major mechanism for porosity reduction. Late stage carbonate cements (siderite and dolomite/ferroan dolomite) are present and these minerals infill intergranular porosity and, therefore, further reduce porosity and probably permeability. Authigenic clay minerals are represented by kaolinite, illite, and grain coating clay minerals. Kaolinite occurs as booklet and vermicular forms. Minor amounts of illite were noted in the studied samples, which commonly block pore throats, thereby reducing permeability. Primary porosity of up to 26.5% is present. Secondary porosity (up to 17%) is also present as a result of feldspar dissolution. The high intergranular volume (IGV) of the sandstones indicates that mechanical and chemical compaction played a more important role than cementation of porosity loss.Keywords: authigenic minerals, porosity types, porosity reduction, mamuniyat sandstone reservoir
Procedia PDF Downloads 378289 Degradation Mechanism of Automotive Refinish Coatings Exposed to Biological Substances: The Role of Cross-Linking Density
Authors: M. Mahdavi, M. Mohseni, R. Rafiei, H. Yari
Abstract:
Environmental factors can deteriorate the automotive coatings significantly. Such as UV radiations, humidity, hot-cold shock and destructive chemical compounds. Furthermore, some natural materials such as bird droppings and tree gums have the potential to degrade the coatings as well. The present work aims to study the mechanism of degradation for two automotive refinish coating (PU based) systems exposed to two types of biological materials, i.e. Arabic gum and the simulated bird dropping, pancreatin. To reach this goal, effects of these biological materials on surface properties and appearance were studied using different techniques including digital camera, FT-IR spectroscopy, optical microscopy, and gloss measurements. In addition, the thermo-mechanical behavior of coatings was examined by DMTA. It was found that cross-linking had a crucial role on the biological resistance of clear coat. The higher cross-linking enhanced biological resistance.Keywords: refinish clear coat, pancreatin, Arabic gum, cross-linking, biological degradation
Procedia PDF Downloads 368288 Bibliometric Analysis of the Research Progress on Graphene Inks from 2008 to 2018
Authors: Jean C. A. Sousa, Julio Cesar Maciel Santos, Andressa J. Rubio, Edneia A. S. Paccola, Natália U. Yamaguchi
Abstract:
A bibliometric analysis in the Web of Science database was used to identify overall scientific results of graphene inks to date (2008 to 2018). The objective of this study was to evaluate the evolutionary tendency of graphene inks research and to identify its aspects, aiming to provide data that can guide future work. The contributions of different researches, languages, thematic categories, periodicals, place of publication, institutes, funding agencies, articles cited and applications were analyzed. The results revealed a growing number of annual publications, of 258 papers found, 107 were included because they met the inclusion criteria. Three main applications were identified: synthesis and characterization, electronics and surfaces. The most relevant research on graphene inks has been summarized in this article, and graphene inks for electronic devices presented the most incident theme according to the research trends during the studied period. It is estimated that this theme will remain in evidence and will contribute to the direction of future research in this area.Keywords: bibliometric, coating, nanomaterials, scientometrics
Procedia PDF Downloads 170287 Multiresolution Mesh Blending for Surface Detail Reconstruction
Authors: Honorio Salmeron Valdivieso, Andy Keane, David Toal
Abstract:
In the area of mechanical reverse engineering, processes often encounter difficulties capturing small, highly localized surface information. This could be the case if a physical turbine was 3D scanned for lifecycle management or robust design purposes, with interest on eroded areas or scratched coating. The limitation partly is due to insufficient automated frameworks for handling -localized - surface information during the reverse engineering pipeline. We have developed a tool for blending surface patches with arbitrary irregularities into a base body (e.g. a CAD solid). The approach aims to transfer small surface features while preserving their shape and relative placement by using a multi-resolution scheme and rigid deformations. Automating this process enables the inclusion of outsourced surface information in CAD models, including samples prepared in mesh handling software, or raw scan information discarded in the early stages of reverse engineering reconstruction.Keywords: application lifecycle management, multiresolution deformation, reverse engineering, robust design, surface blending
Procedia PDF Downloads 140286 Effect of Nano Packaging Containing Ag-TiO₂ in Inactivating the Selected Bacteria Experimentally Exposed to the Chicken-Eggshell
Authors: Hamed Ahari, Sepideh Farokhi, Mohamad Reza Abedini
Abstract:
This paper focuses on inactivation of the growth of the bacterial mixture, Salmonella enteritidis, Staphylococcus aureus, Bacillus cereus and Escherichia coli, experimentally subjected to the chicken eggshell by two types of nano particle-Ag, composite film and colloidal spray carried out at concentrations of 500, 1000 and 2000 ppm over 28 days. The GLM, Repeated Measurement-ANOVA procedure was used to analyze the effect of time and concentration of nano groups on inactivation of bacteria, simultaneously. The maximum reduction of the bacterial growth was respected to the group “spray 2000 ppm” for which the value of the bacteria reached the minimum (0.93±0.42) on day 7, calculated to be 0.0 on days14 and 28 and followed by the group “spray 1000 ppm”. It was obviously concluded that increasing the dilution of nano coating in spray and film created a significant decrease in the number of bacteria colonies on the eggshells but the effect of packaging in different concentrations of nanocomposite was not statistically significant in different days of the study.Keywords: nano particle, composite film, eggshell, bacteria
Procedia PDF Downloads 396285 Synthesis, Characterization and Coating of the Zinc Oxide Nanoparticles on Cotton Fabric by Mechanical Thermo-Fixation Techniques to Impart Antimicrobial Activity
Authors: Imana Shahrin Tania, Mohammad Ali
Abstract:
The present study reports the synthesis, characterization and application of nano-sized zinc-oxide (ZnO) particles on a cotton fabric surface. The aim of the investigations is to impart the antimicrobial activity on textile cloth. Nanoparticle is synthesized by wet chemical method from zinc sulphate and sodium hydroxide. SEM (scanning electron micrograph) images are taken to demonstrate the surface morphology of nanoparticles. XRD analysis is done to determine the crystal size of the nanoparticle. With the conformation of nanoformation, the cotton woven fabric is treated with ZnO nanoparticle by mechanical thermo-fixation (pad-dry-cure) technique. To increase the wash durability of nano treated fabric, an acrylic binder is used as a fixing agent. The treated fabric shows up to 90% bacterial reduction for S. aureus (Staphylococcus aureus) and 87% for E. coli (Escherichia coli) which is appreciable for bacteria protective clothing.Keywords: nanoparticle, zinc oxide, cotton fabric, antibacterial activity, binder
Procedia PDF Downloads 134284 Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nano Composite Coatings
Authors: Soroor Ghaziof, Wei Gao
Abstract:
Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nano-composite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ-Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nano composite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings.Keywords: Zn-Ni-Al2O3 composite coatings, steel, sol-enhanced electroplating, corrosion resistance
Procedia PDF Downloads 393283 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents
Authors: Amesh P, Suneesh A S, Venkatesan K A
Abstract:
The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment
Procedia PDF Downloads 170282 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)
Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram
Abstract:
Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition
Procedia PDF Downloads 246281 Surface Roughness Modeling in Dry Face Milling of Annealed and Hardened AISI 52100 Steel
Authors: Mohieddine Benghersallah, Mohamed Zakaria Zahaf, Ali Medjber, Idriss Tibakh
Abstract:
The objective of this study is to analyse the effects of cutting parameters on surface roughness in dry face milling using statistical techniques. We studied the effect of the microstructure of AISI 52100 steel on machinability before and after hardening. The machining tests were carried out on a high rigidity vertical milling machine with a 25 mm diameter face milling cutter equipped with micro-grain bicarbide inserts with PVD (Ti, AlN) coating in GC1030 grade. A Taguchi L9 experiment plan is adopted. Analysis of variance (ANOVA) was used to determine the effects of cutting parameters (Vc, fz, ap) on the roughness (Ra) of the machined surface. Regression analysis to assess the machinability of steel presented mathematical models of roughness and the combination of parameters to minimize it. The recorded results show that feed per tooth has the most significant effect on the surface condition for both steel treatment conditions. The best roughnesses were obtained for the hardened AISI 52100 steel.Keywords: machinability, heat treatment, microstructure, surface roughness, Taguchi method
Procedia PDF Downloads 148280 New Isolate of Cucumber Mosaic Virus Infecting Banana
Authors: Abdelsabour G. A. Khaled, Ahmed W. A. Abdalla And Sabry Y. M. Mahmoud
Abstract:
Banana plants showing typical mosaic and yellow stripes on leaves as symptoms were collected from Assiut Governorate in Egypt. The causal agent was identified as Cucumber mosaic virus (CMV) on the basis of symptoms, transmission, serology, transmission electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). Coat protein (CP) gene was amplified using gene specific primers for coat protein (CP), followed by cloning into desired cloning vector for sequencing. In this study the CMV was transmitted into propagation host either by aphid or mechanically. The transmission was confirmed through Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA). Analysis of the 120 deduced amino acid sequence of the coat protein gene revealed that the EG-A strain of CMV shared from 97.50 to 98.33% with those strains belonging to subgroup IA. The cluster analysis grouped the Egyptian isolate with strains Fny and Ri8 belonging sub-group IA. It appears that there occurs a high incidence of CMV infecting banana belonging to IA subgroup in most parts of Egypt.Keywords: banana, CMV, transmission, CP gene, RT-PCR
Procedia PDF Downloads 343279 Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land
Authors: Jalil Badamfirooz
Abstract:
Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses.Keywords: mulch, bitumen emulsion, arid land, PAH
Procedia PDF Downloads 90278 Effects of Flame Retardant Nano Bio-Filler on the Fire Behaviour of Thin Film Intumescent Coatings
Authors: Ming Chian Yew, Ming Kun Yew, Lip Huat Saw, Tan Ching Ng, Rajkumar Durairaj, Jing Han Beh
Abstract:
This paper analyzes the fire protection performance, char formation and heat release characteristics of the thin film intumescent coatings that incorporate waste eggshell (ES) as a nano bio-filler. In this study, the Bunsen burner and the fire propagation (BS 476: Part 6) tests of coatings were measured. Experiments on the samples were also tested to evaluate their fire behavior using a cone calorimeter according to ISO 5660-1 specifications. On exposure, the samples B, C and D had been certified to be Class 0 due to the fire propagation indexes of the samples were less than 12. Samples B and D showed a significant reduction in total heat rate (B=11.6 MJ/m² and D=12.0 MJ/m²) and uniform char structures with the addition of 3.30 wt.% and 2.75 wt.% ES nano bio-filler, respectively. As a result, ES nano bio-filler composition good to slow down the fire expanding and demonstrate better fire protection due to its positive synergistic effect with flame retardant ingredients on physical and chemical reactions in fire protection.Keywords: cone calorimeter, eggshell, fire protection, heat release rate, intumescent coating
Procedia PDF Downloads 272277 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents
Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino
Abstract:
In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.Keywords: column-filter, mercury, mining, polysulfide, water treatment
Procedia PDF Downloads 149276 Modified Surface Morphology, Structure and Enhanced Weathering Performance of Polyester-Urethane/Organoclay Nanocomposite Coatings
Authors: Gaurav Verma
Abstract:
Organoclay loaded (0-5 weight %) polyester-urethane (PU) coatings were prepared with a branched hydroxyl-bearing polyester and an aliphatic poly-isocyanate. TEM micrographs show partial exfoliation and intercalation of clay platelets in organoclay-polyester dispersions. AFM surface images reveals that the PU hard domains tend to regularise and also self-organise into spherical shapes of sizes 50 nm (0 wt %), 60 nm (2 wt %) and 190 nm (4 wt %) respectively. IR analysis shows that PU chains have increasing tendency to interact with exfoliated clay platelets through hydrogen bonding. This interaction strengthens inter-chain linkages in PU matrix and hence improves anti-ageing properties. 1000 hours of accelerated weathering was evaluated by ATR spectroscopy, while yellowing and overall discoloration was quantified by the Δb* and ΔE* values of the CIELab colour scale. Post-weathering surface properties also showed improvement as the loss of thickness and reduction in gloss in neat PU was 25% and 42%; while it was just 3.5% and 14% respectively for the 2 wt% nanocomposite coating. This work highlights the importance of modifying surface and bulk properties of PU coatings at nanoscale, which led to improved performance in accelerated weathering conditions.Keywords: coatings, AFM, ageing, spectroscopy
Procedia PDF Downloads 454275 Effect of Ti+ Irradiation on the Photoluminescence of TiO2 Nanofibers
Authors: L. Chetibi, D. Hamana, T. O. Busko, M. P. Kulish, S. Achour
Abstract:
TiO2 nanostructures have attracted much attention due to their optical, dielectric and photocatalytic properties as well as applications including optical coating, photocatalysis and photoelectrochemical solar cells. This work aims to prepare TiO2 nanofibers (NFs) on titanium substrate (Ti) by in situ oxidation of Ti foils in a mixture solution of concentrated H2O2 and NaOH followed by proton exchange and calcinations. Scanning Electron microscopy (SEM) revealed an obvious network of TiO2 nanofibers. The photoluminescence (PL) spectra of these nanostructures revealed a broad intense band in the visible light range with a reduced near edge band emission. The PL bands in the visible region, mainly, results from surface oxygen vacancies and others defects. After irradiation with Ti+ ions (the irradiation energy was E = 140 keV with doses of 1013 ions/cm2), the intensity of the PL spectrum decreased as a consequence of the radiation treatment. The irradiation with Ti+ leads to a reduction of defects and generation of non irradiative defects near to the level of the conduction band as evidenced by the PL results. On the other hand, reducing the surface defects on TiO2 nanostructures may improve photocatalytic and optoelectronic properties of this nanostructure.Keywords: TiO2, nanofibers, photoluminescence, irradiation
Procedia PDF Downloads 244274 Reactive Sputter Deposition of Titanium Nitride on Silicon Using a Magnetized Sheet Plasma Source
Authors: Janella Salamania, Marcedon Fernandez, Matthew Villanueva Henry Ramos
Abstract:
Titanium nitrite (TiN) a popular functional and decorative coating because of its golden yellow color, high hardness and superior wear resistance. It is also being studied as a diffusion barrier in integrated circuits due to its known chemical stability and low resistivity. While there have been numerous deposition methods done for TiN, most required the heating of substrates at high temperatures. In this work, TiN films are deposited on silicon (111) and (100) substrates without substrate heating using a patented magnetized sheet plasma source. Films were successfully deposited without substrate heating at various target bias, while maintaining a constant 25% N2 to Ar ratio, and deposition of time of 30 minutes. The resulting films exhibited a golden yellow color which is characteristic of TiN. X-ray diffraction patterns show the formation of TiN predominantly oriented in the (111) direction regardless of substrate used. EDX data also confirms the 1:1 stoichiometry of titanium an nitrogen. Ellipsometry measurements estimate the thickness to range from 28 nm to 33 nm. SEM images were also taken to observe the morphology of the film.Keywords: coatings, nitrides, coatings, reactive magnetron sputtering, thin films
Procedia PDF Downloads 342273 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip
Authors: Rama Bhargava, Mania Goyal
Abstract:
The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.Keywords: viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM
Procedia PDF Downloads 314272 Improvement of Heat Dissipation Ability of Polyimide Composite Film
Authors: Jinyoung Kim, Jinuk Kwon, Haksoo Han
Abstract:
Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc.Keywords: polyimide, heat dissipation, electric device, filler
Procedia PDF Downloads 679271 The Effect of Combustion Chamber Deposits (CCD) on Homogeneous Change Compression Ignition (HCCI)
Authors: Abdulmagid A. Khattabi, Ahmed A. Hablus, Osama Ab. M. Shafah
Abstract:
The goal of this work is to understand how the thermal influence of combustion chamber deposits can be utilized to expand the operating range of HCCI combustion. In order to do this, two main objectives must first be met; tracking deposit formation trends in an HCCI engine and determining the sensitivity of HCCI combustion to CCD. This requires testing that demonstrates the differences in combustion between a clean engine and one with deposits coating the chamber. This will involve a long-term test that tracks the effects of CCD on combustion. The test will start with a clean engine. One baseline HCCI operating point is maintained for the duration of the test during which gradual combustion chamber deposit formation will occur. Combustion parameters, including heat release rates and emissions will be tracked for the duration and compared to the case of a clean engine. This work will begin by detailing the specifics of the test procedure and measurements taken throughout the test. Then a review of the effects of the gradual formation of deposits in the engine will be given.Keywords: fuels, fuel atomization, pattern factor, alternate fuels combustion, efficiency gas turbine combustion, lean blow out, exhaust and liner wall temperature
Procedia PDF Downloads 531270 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens
Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian
Abstract:
Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate
Procedia PDF Downloads 175269 Safety System Design and Overfill Protection for Loading Asphalt onto Trucks
Authors: Wendy Ampadu, Ray Diezmos, Hassan Malik, Jeremy Hyslob
Abstract:
There are several technologies out there for use as high-level switches as part of a system for shutting down flow to a vessel. Given that the asphalt truck loading poses issues such as poor visibility, coating, condensation, and fumes, a solution that is robust enough to last in these conditions is often needed in industries. Furthermore, the design of the loading arm, rack, and process equipment should allow for the safety of workers. The objective of this report includes the redesign of structures for use at loading facilities and selecting an overflow technology protection from hot bitumen. The report is based on loading facilities at a Canadian bitumen production company. The engineering design approach was used to create multiple redesign concepts for the loading dock system. Research on overfill systems was also completed by surveying the existing market for technologies and securing quotes from over 20 Canadian and United States instrumentation companies. A final loading dock redesign and level transmitter for overfill protection solution were chosen.Keywords: bitumen, reliability engineering, safety system, process safety management, asphalt, loading docks, tanker trucks
Procedia PDF Downloads 158268 Direct Electrophoretic Deposition of Hierarchical Structured Electrode Supercapacitor Application
Authors: Jhen-Ting Huang, Chia-Chia Chang, Hu-Cheng Weng, An-Ya Lo
Abstract:
In this study, Co3O4-CNT-Graphene composite electrode was deposited by electrophoretic deposition (EPD) method, where micro polystyrene spheres (PSs) were added for co-deposition. Applied with heat treatment, a hierarchical porosity is left in the electrode which is beneficial for supercapacitor application. In terms of charge and discharge performance, we discussed the optimal CNT/Graphene ratio, macroporous ratio, and the effect of Co3O4 addition on electrode capacitance. For materials characterization, scanning electron microscope (SEM), X-ray diffraction, and BET were applied, while cyclic voltammetry (CV) and chronopotentiometry (CP) measurements, and Ragone plot were applied as in-situ analyses. Based on this, the effects of PS amount on the structure, porosity and their effect on capacitance of the electrodes were investigated. Finally, the full device performance was examined with charge-discharge and electron impedance spectrum (EIS) methods. The results show that the EPD coating with hierarchical porosity was successfully demonstrated in this study. As a result, the capacitance was greatly enhanced by 2.6 times with the hierarchical structure.Keywords: supercapacitor, nanocarbon tub, graphene, metal oxide
Procedia PDF Downloads 140267 Nanocharacterization of PIII Treated 7075 Aluminum Alloy
Authors: Bruno Bacci Fernandes, Stephan Mändl, Ataíde Ribeiro da Silva Junior, José Osvaldo Rossi, Mário Ueda
Abstract:
Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties.Keywords: aluminum alloys, plasma immersion ion implantation, tribological properties, hardness, nanofatigue
Procedia PDF Downloads 339