Search results for: neural stem/precursor cells
5208 Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network
Authors: Katsumi Hirata
Abstract:
Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.Keywords: environmental sound, bispectrum, spectrogram, slice bispectrogram, convolutional neural network
Procedia PDF Downloads 1265207 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application
Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior
Abstract:
Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks
Procedia PDF Downloads 1705206 Application of Acer velutinum for Absorbing Heavy Metal, Mercury, from the Environment
Authors: Seyed Armin Hashemi, Somayeh Rahimzadeh
Abstract:
One-year seedlings of Acer velutinum were provided from plantations and the solution of Mercuric chloride was developed in 20,40 and 60 mg/l concentrations, then this solution was added to the soil and the Acer velutinum were placed in a vase. Six months after seedlings’ growth, the leaf, stem and roots were separated. The results were investigated by variance analysis and Duncan test. The highest level of mercury accumulation in the organs of leaf, stem and root was 45.67, 40 and 55 mg/kg, respectively. According to the obtained results from this research, the velutinum species was appropriate for refining the soils contaminated by mercury.Keywords: heavy metals, acer velutinum, mercury, phytoremediation
Procedia PDF Downloads 4025205 Effects of Stiffness on Endothelial Cells Behavior
Authors: Forough Ataollahi, Sumit Pramanik, Belinda Pingguan-Murphy, Wan Abu Bakar Bin Wan Abas, Noor Azuan Bin Abu Osman
Abstract:
Endothelium proliferation is an important process in cardiovascular homeostasis and can be regulated by extracellular environment, as cells can actively sense mechanical environment. In this study, we evaluated endothelial cell proliferation on PDMS/alumina (Al2O3) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 5% and 10% Al2O3 at curing temperature 50˚C for 4 h and then characterized by mechanical, structural and morphological analyses. Higher stiffness was found in the composites compared to the pure PDMS substrate. Cell proliferation of the cultured bovine aortic endothelial cells on substrate materials were evaluated via Resazurin assay and 1, 1’-Dioctadecyl-1, 3, 3, 3’, 3’-Tetramethylindocarbocyanine Perchlorate-Acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The results revealed that stiffer substrates promote more endothelial cells proliferation to the less stiff substrates. Therefore, this study firmly hypothesizes that the stiffness elevates endothelial cells proliferation.Keywords: stiffness, proliferation, bovine aortic endothelial cells, extra cellular matrix, vascular
Procedia PDF Downloads 3435204 Activation of AMPK-TSC axis is involved in cryptotanshinone inhibition of mTOR signaling in cancer cells
Authors: Wenxing Chen, Guangying Chen, Yin Lu, Shile Huang
Abstract:
Cryptotanshinone (CPT), a fat-soluble tanshinone from Salvia miltiorrhiza Bunge, has been demonstrated to inhibit mTOR pathway, resulting in inhibition of cancer cell proliferation. However, the molecular mechanism how CPT acts on mTOR is unknown. Here, cancer cells expressing rapamycin-resistant mutant mTOR are also sensitive to CPT, while phosphorylation of AMPK and TSC2 was activated, suggesting that CPT inhibition of mTOR maybe due to activating upstream of mTOR, AMPK, but not directly binding to and inhibiting mTOR. Further results indicated that Compound C, inhibitor of AMPK, could partially reversed CPT inhibition effect on cancer cells, and dominant-negative AMPK in cancer cells conferred resistance to CPT inhibition of 4EBP1 and phosphorylation of S6K1, as well as sh-AMPK. Furthermore, compared with MEF cells with AMPK positive, MEF cells with AMPK knock out are less sensitive to CPT by the findings that 4E-BP1 and phosphorylation of S6K1 express comparatively much. Furthermore, downexpression of TSC2 slightly recovered expression of 4EBP1 and phosphorylation of S6K1, while co-immunoprecipitation of TSC2 did not affect expression of TSC1 by CPT. Collectively, the above-mentioned results suggest that CPT inhibited mTOR pathway mostly was due to activation of AMPK-TSC2 pathway rather than specific inhibition of mTOR and then induction of subsequent lethal cellular effect.Keywords: cryptotanshinone, AMPK, TSC2, mTOR, cancer cells
Procedia PDF Downloads 4895203 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response
Authors: Sharmi Mukherjee, Anindita Chakraborty
Abstract:
Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma
Procedia PDF Downloads 1845202 Induction of Hsp70 and Antioxidant Status in Porcine Granulosa Cells in Response to Deoxynivalenol and Zearalenone Exposure in vitro
Authors: Marcela Capcarova, Adriana Kolesarova, Marina Medvedova, Peter Petruska, Alexander V. Sirotkin
Abstract:
The aim of this study was to determine the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), total antioxidant status (TAS) and accumulation of Hsp70 in porcine ovarian granulosa cells after deoxynivalenol (DON) and zearalenone (ZEA) exposure in vitro. Porcine ovarian granulosa cells were incubated with DON/ZEA administrations as follows: group A (10/10 ng/mL), group B (100/100 ng/mL), group C (1000/1000 ng/mL), and the control group without any additions for 24h. In this study mycotoxins developed stress reaction of porcine ovarian granulosa cells and increased accumulation of Hsp70 what resulted in increasing activities of SOD and GPx in groups with lower doses of mycotoxins. High dose of DON and ZEA had opposite effect on GPx activity than the lower doses. Slight increase in TAS of porcine granulosa cells was observed after mycotoxins exposure. These results contribute towards the understanding of cellular stress and its response.Keywords: deoxynivalenol, zearalenone, antioxidants, Hsp70, granulosa cells
Procedia PDF Downloads 2565201 Qualitative and Quantitative Analyses of Phytochemicals and Antioxidant Activity of Ficus sagittifolia (Warburg Ex Mildbread and Burret)
Authors: Taiwo O. Margaret, Olaoluwa O. Olaoluwa
Abstract:
Moraceae family has immense phytochemical constituents and significant pharmacological properties, hence have great medicinal values. The aim of this study was to screen and quantify phytochemicals as well as the antioxidant activities of the leaf and stem bark extracts and fractions (crude ethanol extracts, n-hexane, ethyl acetate and aqueous ethanol fractions) of Ficus sagittifolia. Leaf and stem bark of F. sagittifolia were extracted by maceration method using ethanol to give ethanol crude extract. The ethanol crude extract was partitioned by n-hexane and ethyl-acetate to give their respective fractions. All the extracts were screened for their phytochemicals using standard methods. The total phenolic, flavonoid, tannin, saponin contents and antioxidant activity were determined by spectrophotometric method while the alkaloid content was evaluated by titrimetric method. The amount of total phenolic in extracts and fractions were estimated in comparison to gallic acid, whereas total flavonoids, tannins and saponins were estimated corresponding to quercetin, tannic acid and saponin respectively. 2, 2-diphenylpicryl hydrazyl radical (DPPH)* and phosphomolybdate methods were used to evaluate the antioxidant activities of leaf and stem bark of F. sagittifolia. Phytochemical screening revealed the presence of flavonoids, saponins, terpenoids/steroids, alkaloids for both extracts of leaf and stem bark of F. sagittifolia. The phenolic content of F. sagittifolia was most abundant in leaf ethanol crude extract as 3.53 ± 0.03 mg/g equivalent of gallic acid. Total flavonoids and tannins content were highest in stem bark aqueous ethanol fraction of F. sagittifolia estimated as 3.41 ± 0.08 mg/g equivalent of quercetin and 1.52 ± 0.05 mg/g equivalent of tannic acid respectively. The hexane leaf fraction of F. sagittifolia had the utmost saponin and alkaloid content as 5.10 ± 0.48 mg/g equivalent of saponins and 0.171 ± 0.39 g of alkaloids. Leaf aqueous ethanol fraction of F. sagittifolia showed high antioxidant activity (IC50 value of 63.092 µg/mL) and stem ethanol crude extract (227.43 ± 0.78 mg/g equivalent of ascorbic acid) for DPPH and phosphomolybdate method respectively and the least active was found to be the stem hexane fraction using both methods (313.32 µg/mL; 16.21 ± 1.30 mg/g equivalent of ascorbic acid). The presence of these phytochemicals in the leaf and stem bark of F. sagittifolia are responsible for their therapeutic importance as well as the ability to scavenge free radicals in living systems.Keywords: Moraceae, Ficus sagittifolia, phytochemicals, antioxidant
Procedia PDF Downloads 2305200 The Effect of Cinnamaldehyde on Escherichia coli Survival during Low Temperature Long Time Cooking
Authors: Fuji Astuti, Helen Onyeaka
Abstract:
The aim of the study was to investigate the combine effects of cinnamaldehyde (0.25 and 0.45% v/v) on thermal resistance of pathogenic Escherichia coli during low temperature long time (LT-LT) cooking below 60℃. Three different static temperatures (48, 53 and 50℃) were performed, and the number of viable cells was studied. The starting concentrations of cells were 10⁸ CFU/ml. In this experiment, heat treatment efficiency for safe reduction indicated by decimal logarithm reduction of viable recovered cells, which was monitored for heating over 6 hours. Thermal inactivation was measured by means of establishing the death curves between the mean log surviving cells (log₁₀ CFU/ml) and designated time points (minutes) for each temperature test. The findings depicted that addition of cinnamaldehyde exhibited to elevate the thermal sensitivity of E. coli. However, the injured cells found to be well-adapted to all temperature tests after certain time point of cooking, in which they grew to more than 10⁵ CFU/ml.Keywords: cinnamaldehyde, decimal logarithm reduction, Escherichia coli, LT-LT cooking
Procedia PDF Downloads 3585199 Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks
Authors: H. Kiani, S. Moradi, B. Soltani Soulgani, S. Mousavian
Abstract:
Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data.Keywords: desalting unit, crude oil, neural networks, simulation, recovery, separation
Procedia PDF Downloads 4505198 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.Keywords: gravitational resistance, neural network, non-linear, pattern recognition
Procedia PDF Downloads 2125197 Enhancement in the Absorption Efficiency of GaAs/InAs Nanowire Solar Cells through a Decrease in Light Reflection
Authors: Latef M. Ali, Farah A. Abed, Zheen L. Mohammed
Abstract:
In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV. it explore the design and optimization of high-efficiency solar cells on low-reflective absorption efficiency of GaAs/InAs using simulation software tool. The changes in the core and shell diameters profoundly affects the generation and recombination process, thus affecting the conversion efficiency of solar cells.Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, FDTD simulation
Procedia PDF Downloads 495196 A Green Approach towards the Production of CaCO₃ Scaffolds for Bone Tissue Engineering
Authors: Sudhir Kumar Sharma, Abiy D. Woldetsadik, Mazin Magzoub, Ramesh Jagannathan
Abstract:
It is well known that bioactive ceramics exhibit specific biological affinities, especially in the area of tissue re-generation. In this context, we report the development of an eminently scalable, novel, supercritical CO₂ based process for the fabrication of hierarchically porous 'soft' CaCO₃ scaffolds. Porosity at the macro, micro, and nanoscales was obtained through process optimization of the so-called 'coffee-ring effect'. Exposure of these CaCO₃ scaffolds to monocytic THP-1 cells yielded negligible levels of tumor necrosis factor-alpha (TNF-α) thereby confirming the lack of immunogenicity of the scaffolds. ECM protein treatment of the scaffolds showed enhanced adsorption comparable to standard control such as glass. In vitro studies using osteoblast precursor cell line, MC3T3, also demonstrated the cytocompatibility of hierarchical porous CaCO₃ scaffolds.Keywords: supercritical CO2, CaCO3 scaffolds, coffee-ring effect, ECM proteins
Procedia PDF Downloads 3035195 Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D
Authors: Hassane Ben Slimane, Benmoussa Dennai, Abderrahman Hemmani, Abderrachid Helmaoui
Abstract:
During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells.Keywords: multijunction solar cell, GaAs, CIGS, AMPS-1D
Procedia PDF Downloads 5185194 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4475193 Mobile Traffic Management in Congested Cells using Fuzzy Logic
Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh
Abstract:
To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells
Procedia PDF Downloads 1205192 The Effect of Combined Doxorubicin and Dioscorea esculenta on Apoptosis Induction in Human Breast Cancer Cells
Authors: Dina Fatmawati, Sofia Mubarika, Mae Sri Wahyuningsih
Abstract:
Chemotherapy for breast cancer is largely ineffective, but innovative combinations of chemotherapeutic agents and natural compounds represent a promising strategy. In our previous study, the combination of Doxorubicin (Dox) and ethanolic extract of Dioscorea esculenta tuber ((EED) was found to have a synergistic effect on T47D human breast cancer cell line. In this study, we investigated the apoptotic effect of the combination on T47D human breast cancer cells and normal fibroblasts cell line and its effects on the expression of Caspase-3 and cleaved poly (ADP-Ribose) Polymerase-1 (cPARP-1) protein. T47D cell lines and fibroblasts cells were treated with the combination of Dox and EED. Apoptotic effect of the combination was determined using flow cytrometry assay. Protein expressions were determined by immunocytochemistry staining. The percentage of apoptotic cells were significantly higher in T47D cell lines (75%) than that of in fibroblast cells (23%). The expression of Caspase 3 (84.53%) and cPARP-1 (83.36%) were significantly higher in the cancer cell lines than those of normal cells. These results indicate that the combination of doxorubicin and Dioscorea esculenta is a promising candidate for the treatment of breast cancer cells.Keywords: Dioscorea esculenta, Doxorubicin, apoptosis, immunocytochemistry, cancer cells
Procedia PDF Downloads 4585191 The Role of Okra (Abelmoschus esculentus Linn.) on Lipopolysaccharide-Induced Reactive Oxygen Species and Inflammatory Mediator in BV2 Microglial Cells
Authors: Nootchanat Mairuae, Walaiporn Tongjaroenbuangam, Chalisa Louicharoen Cheepsunthorn, Poonlarp Cheepsunthorn
Abstract:
The aim of this study was to investigate the anti-oxidative effect, the anti-inflammatory effects, and the molecular mechanisms of okra (Abelmoschus esculentus Linn.) on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The BV2 cells were treated with LPS in the presence or absence of okra. Reactive oxygen species (ROS) and nitric oxide (NO) production were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. The phosphorylation levels of nuclear factor-kappa B (NF-kB) p65 was detected by Western blot assay. Treatment of BV2 microglia cells with okra was found to significantly suppress the LPS-induced inflammatory mediator NO as well as ROS compared to untreated cells. The levels of LPS-induced NF-kB p65 phosphorylation were significantly decreased following okra treatment too. These results show that okra exerts anti-oxidative and anti-inflammatory effects in LPS-stimulated BV2 microglial cells by suppressing the NF-κB pathway. This suggests okra might be a valuable agent for treatment of anti-neuroinflammatory diseases mediated by microglial cells.Keywords: Abelmoschus esculentus Linn, microglia, neuroinflammation, reactive oxygen spicy
Procedia PDF Downloads 2865190 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed
Authors: Marion G. Ben-Jacob, David Wang
Abstract:
There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.Keywords: emporium model, mathematics, pedagogy, STEM
Procedia PDF Downloads 755189 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5135188 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network
Authors: Boukari Nassim
Abstract:
This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network
Procedia PDF Downloads 3455187 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks
Authors: Mohanad Alhabo, Naveed Nawaz
Abstract:
The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing the handover procedure while the user is on the move. However, the dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and handover failure because of short time of stay of the user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. Multi-tier small cells network is considered in this work. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method has decreased the candidate small cell list, unnecessary handovers, handover failure, and short time of stay cells compared to the competitive method.Keywords: handover, HetNets, multi-attribute decision making, small cells
Procedia PDF Downloads 1195186 Monitoring Memories by Using Brain Imaging
Authors: Deniz Erçelen, Özlem Selcuk Bozkurt
Abstract:
The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons
Procedia PDF Downloads 855185 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms
Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani
Abstract:
This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.Keywords: tunnel fire, flame length, ANN, genetic algorithm
Procedia PDF Downloads 6435184 Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs
Authors: Imdad Ullah Khan, Yongseok Yoon, Kyeung Uk Choi, Kwang Rae Jo, Namyul Kim, Eunbee Lee, Wan Hee Kim, Oh-Kyeong Kweon
Abstract:
The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs.Keywords: HO-1 MSCs, BDNF MSCs, neuroregeneration, inflammation, anti-inflammation, spinal cord injury, dogs
Procedia PDF Downloads 1185183 A Time Delay Neural Network for Prediction of Human Behavior
Authors: A. Hakimiyan, H. Namazi
Abstract:
Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time
Procedia PDF Downloads 6635182 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 945181 An Improved Circulating Tumor Cells Analysis Method for Identifying Tumorous Blood Cells
Authors: Salvador Garcia Bernal, Chi Zheng, Keqi Zhang, Lei Mao
Abstract:
Circulating Tumor Cells (CTC) is used to detect tumoral cell metastases using blood samples of patients with cancer (lung, breast, etc.). Using an immunofluorescent method a three channel image (Red, Green, and Blue) are obtained. These set of images usually overpass the 11 x 30 M pixels in size. An aided tool is designed for imaging cell analysis to segmented and identify the tumorous cell based on the three markers signals. Our Method, it is cell-based (area and cell shape) considering each channel information and extracting and making decisions if it is a valid CTC. The system also gives information about number and size of tumor cells found in the sample. We present results in real-life samples achieving acceptable performance in identifying CTCs in short time.Keywords: Circulating Tumor Cells (CTC), cell analysis, immunofluorescent, medical image analysis
Procedia PDF Downloads 2135180 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images
Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim
Abstract:
In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles
Procedia PDF Downloads 2605179 Speaker Recognition Using LIRA Neural Networks
Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul
Abstract:
This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition
Procedia PDF Downloads 177