Search results for: fluorcarbon water repellent agent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9946

Search results for: fluorcarbon water repellent agent

4966 Dewatering of Brewery Sludge through the Use of Biopolymers

Authors: Audrey Smith, M. Saifur Rahaman

Abstract:

The waste crisis has become a global issue, forcing many industries to reconsider their disposal methods and environmental practices. Sludge is a form of waste created in many fields, which include water and wastewater, pulp and paper, as well as from breweries. The composition of this sludge differs between sources and can, therefore, have varying disposal methods or future applications. When looking at the brewery industry, it produces a significant amount of sludge with a high water content. In order to avoid landfilling, this waste can further be processed into a valuable material. Specifically, the sludge must undergo dewatering, a process which typically involves the addition of coagulants like aluminum sulfate or ferric chloride. These chemicals, however, limit the potential uses of the sludge since it will contain traces of metals. In this case, the desired outcome of the brewery sludge would be to produce animal feed; however, these conventional coagulants would add a toxic component to the sludge. The use of biopolymers like chitosan, which act as a coagulant, can be used to dewater brewery sludge while allowing it to be safe for animal consumption. Chitosan is also a by-product created by the shellfish processing industry and therefore reduces the environmental imprint since it involves using the waste from one industry to treat the waste from another. In order to prove the effectiveness of this biopolymer, experiments using jar-tests will be utilised to determine the optimal dosages and conditions, while variances of contaminants like ammonium will also be observed. The efficiency of chitosan can also be compared to other polysaccharides to determine which is best suited for this waste. Overall a significant separation has been achieved between the solid and liquid content of the waste during the coagulation-flocculation process when applying chitosan. This biopolymer can, therefore, be used to dewater brewery sludge such that it can be repurposed as animal feed. The use of biopolymers can also be applied to treat sludge from other industries, which can reduce the amount of waste produced and allow for more diverse options for reuse.

Keywords: animal feed, biopolymer, brewery sludge, chitosan

Procedia PDF Downloads 160
4965 Olive Oil (Olea europea L.) Protects against Mercury (II) Induced Oxidative Tissue Damage in Rats

Authors: Ahlem Bahi, Youcef Necib, Sakina Zerizer, Cherif Abdennour, Mohamed Salah Boulakoud

Abstract:

Mercury (II) is a highly toxic metal which induces oxidative stress in the body. In this study, we aimed to investigate the possible protective effect of olive oil, an antioxidant agent, against experimental mercury toxicity in rat model. Administration of mercuric chloride induced significant increase in serum: ALT, AST, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels. Mercuric chloride also induced oxidative stress, as indicate by decreased tissue of GSH level, GSH-Px, and GST activities along with increase the level of lipid peroxidation. Furthermore, treatment with mercuric chloride caused a marked elevation of kidney and liver weight and decreased body weight. Virgin olive oil treatment markedly reduced elevated serum: AST, ALT, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels and contracted the deterious effects of mercuric chloride on oxidative stress markers changes caused by HgCl2 in tissue as compared to control group. Our results implicate that mercury induced oxidative damage in liver and kidney tissue protected by virgin olive oil, with its antioxidant effects.

Keywords: mercury, antioxidant enzymes, pro-inflammatory cytokine, virgin olive oil, lipid peroxidation

Procedia PDF Downloads 361
4964 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang

Abstract:

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation.

Keywords: glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation

Procedia PDF Downloads 285
4963 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 104
4962 Prevalence of Antibiotic Resistant Enterococci in Treated Wastewater Effluent in Durban, South Africa and Characterization of Vancomycin and High-Level Gentamicin-Resistant Strains

Authors: S. H. Gasa, L. Singh, B. Pillay, A. O. Olaniran

Abstract:

Wastewater treatment plants (WWTPs) have been implicated as the leading reservoir for antibiotic resistant bacteria (ARB), including Enterococci spp. and antibiotic resistance genes (ARGs), worldwide. Enterococci are a group of clinically significant bacteria that have gained much attention as a result of their antibiotic resistance. They play a significant role as the principal cause of nosocomial infections and dissemination of antimicrobial resistance genes in the environment. The main objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Furthermore, the antibiogram and resistance gene profile of Enterococci species recovered from treated wastewater effluent and receiving surface water in Durban were also investigated. Using membrane filtration technique, Enterococcus selective agar and selected antibiotics, ARE were enumerated in samples (influent, activated sludge, before chlorination and final effluent) collected from two WWTPs, as well as from upstream and downstream of the receiving surface water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving surface water were identified by biochemical and PCR-based methods, and their antibiotic resistance profiles determined by the Kirby-Bauer disc diffusion assay, while PCR-based assays were used to detect the presence of resistance and virulence genes. High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 40%. The influent and activated sludge samples contained the greatest prevalence of ARE with lower values observed in the before and after chlorination samples. Of the 44 vancomycin and high-level gentamicin-resistant isolates, 11 were identified as E. faecium, 18 as E. faecalis, 4 as E. hirae while 11 are classified as “other” Enterococci species. High-level aminoglycoside resistance for gentamicin (39%) and vancomycin (61%) was recorded in species tested. The most commonly detected virulence gene was the gelE (44%), followed by asa1 (40%), while cylA and esp were detected in only 2% of the isolates. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(3')-IIIa, and ant(6')-Ia detected in 43%, 45% and 41% of the isolates, respectively. Positive correlation was observed between resistant phenotypes to high levels of aminoglycosides and presence of all aminoglycoside resistance genes. Resistance genes for glycopeptide: vanB (37%) and vanC-1 (25%), and macrolide: ermB (11%) and ermC (54%) were detected in the isolates. These results show the need for more efficient wastewater treatment and disposal in order to prevent the release of virulent and antibiotic resistant Enterococci species and safeguard public health.

Keywords: antibiogram, enterococci, gentamicin, vancomycin, virulence signatures

Procedia PDF Downloads 219
4961 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures

Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher

Abstract:

Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.

Keywords: CO₂ capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions

Procedia PDF Downloads 166
4960 Azadrachea indica Leaves Extract Assisted Green Synthesis of Ag-TiO₂ for Degradation of Dyes in Aqueous Medium

Authors: Muhammad Saeed, Sheeba Khalid

Abstract:

Aqueous pollution due to the textile industry is an important issue. Photocatalysis using metal oxides as catalysts is one of the methods used for eradication of dyes from textile industrial effluents. In this study, the synthesis, characterization, and evaluation of photocatalytic activity of Ag-TiO₂ are reported. TiO₂ catalysts with 2, 4, 6 and 8% loading of Ag were prepared by green methods using Azadrachea indica leaves' extract as reducing agent and titanium dioxide and silver nitrate as precursor materials. The 4% Ag-TiO₂ exhibited the best catalytic activity for degradation of dyes. Prepared catalyst was characterized by advanced techniques. Catalytic degradation of methylene blue and rhodamine B were carried out in Pyrex glass batch reactor. Deposition of Ag greatly enhanced the catalytic efficiency of TiO₂ towards degradation of dyes. Irradiation of catalyst excites electrons from conduction band of catalyst to valence band yielding an electron-hole pair. These photoexcited electrons and positive hole undergo secondary reaction and produce OH radicals. These active radicals take part in the degradation of dyes. More than 90% of dyes were degraded in 120 minutes. It was found that there was no loss catalytic efficiency of prepared Ag-TiO₂ after recycling it for two times. Photocatalytic degradation of methylene blue and rhodamine B followed Eley-Rideal mechanism which states that dye reacts in fluid phase with adsorbed oxygen. 27 kJ/mol and 20 kJ/mol were found as activation energy for photodegradation of methylene blue and rhodamine B dye respectively.

Keywords: TiO₂, Ag-TiO₂, methylene blue, Rhodamine B., photo degradation

Procedia PDF Downloads 165
4959 Potential of Pyrolytic Tire Char Use in Agriculture

Authors: M. L. Moyo

Abstract:

Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.

Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.

Procedia PDF Downloads 122
4958 Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese

Abstract:

Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness.

Keywords: water purification, polyelectrolytes, membrane modification, layer-by-layer coating, ceramic membranes

Procedia PDF Downloads 246
4957 Effect of Miconazole Nitrate on Immunological Response and Its Preventive Efficacy in Labeo rohita Fingerlings against Oomycetes Saprolegnia parasitica

Authors: Mukta Singh, Ratan Kumar Saha, Himadri Saha, Paramveer Singh

Abstract:

The present study evaluated the effect of sub-lethal doses of antifungal drug miconazole nitrate (MCZ) on immunological responses including immune-related gene expression and its role as a prophylactic drug against S. parasitica in Labeo rohita fingerlings. Fish were fed with sub lethal doses of MCZ i.e., T1- 6.30 mg MCZ kgBW⁻¹, T2- 12.61 mg MCZ kgBW⁻¹ and T3- 25.22 mg MCZ kgBW⁻¹ and sampling was done at different time intervals for 240 h. Immunological parameters viz. lysozyme activity, oxygen radical production and plasma anti-protease activity showed significant enhancement (p < 0.05) in fish fed with T2 and T3 doses. Significant reduction in plasma protein content was observed in all the dietary groups as compared to control. Expression of immune-relevant genes like TLR-22 and β2-M showed significantly higher expression at six h and 24 h of sampling in both liver and head-kidney. However, these genes showed a down-regulation after 120 h of sampling in both the tissues. Preventive efficacy study showed that single dose of MCZ provides protection against oomycetes up to the fourth day of infection. Significantly higher mortality was observed in control diet-fed fish as compared to fish fed with MCZ medicated diet. Thus, from the study, it can be concluded that the MCZ can act as a potent antifungal agent for preventing oomycetes infection as well as to enhance the immune response.

Keywords: antifungal, immune gene, immunological, miconazole nitrate, prophylactic

Procedia PDF Downloads 246
4956 Adsorption of Pb(II) with MOF [Co2(Btec)(Bipy)(DMF)2]N in Aqueous Solution

Authors: E. Gil, A. Zepeda, J. Rivera, C. Ben-Youssef, S. Rincón

Abstract:

Water pollution has become one of the most serious environmental problems. Multiple methods have been proposed for the removal of Pb(II) from contaminated water. Among these, adsorption processes have shown to be more efficient, cheaper and easier to handle with respect to other treatment methods. However, research for adsorbents with high adsorption capacities is still necessary. For this purpose, we proposed in this work the study of metal-organic Framework [Co2(btec)(bipy)(DMF)2]n (MOF-Co) as adsorbent material of Pb (II) in aqueous media. MOF-Co was synthesized by a simple method. Firstly 4, 4’ dipyridyl, 1,2,4,5 benzenetetracarboxylic acid, cobalt (II) and nitrate hexahydrate were first mixed each one in N,N dimethylformamide (DMF) and then, mixed in a reactor altogether. The obtained solution was heated at 363 K in a muffle during 68 h to complete the synthesis. It was washed and dried, obtaining MOF-Co as the final product. MOF-Co was characterized before and after the adsorption process by Fourier transforms infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The Pb(II) in aqueous media was detected by Absorption Atomic Spectroscopy (AA). In order to evaluate the adsorption process in the presence of Pb(II) in aqueous media, the experiments were realized in flask of 100 ml the work volume at 200 rpm, with different MOF-Co quantities (0.0125 and 0.025 g), pH (2-6), contact time (0.5-6 h) and temperature (298,308 and 318 K). The kinetic adsorption was represented by pseudo-second order model, which suggests that the adsorption took place through chemisorption or chemical adsorption. The best adsorption results were obtained at pH 5. Langmuir, Freundlich and BET equilibrium isotherms models were used to study the adsorption of Pb(II) with 0.0125 g of MOF-Co, in the presence of different concentration of Pb(II) (20-200 mg/L, 100 mL, pH 5) with 4 h of reaction. The correlation coefficients (R2) of the different models show that the Langmuir model is better than Freundlich and BET model with R2=0.97 and a maximum adsorption capacity of 833 mg/g. Therefore, the Langmuir model can be used to best describe the Pb(II) adsorption in monolayer behavior on the MOF-Co. This value is the highest when compared to other materials such as the graphene/activated carbon composite (217 mg/g), biomass fly ashes (96.8 mg/g), PVA/PAA gel (194.99 mg/g) and MOF with Ag12 nanoparticles (120 mg/g).

Keywords: adsorption, heavy metals, metal-organic frameworks, Pb(II)

Procedia PDF Downloads 214
4955 Modeling of Tsunami Propagation and Impact on West Vancouver Island, Canada

Authors: S. Chowdhury, A. Corlett

Abstract:

Large tsunamis strike the British Columbia coast every few hundred years. The Cascadia Subduction Zone, which extends along the Pacific coast from Vancouver Island to Northern California is one of the most seismically active regions in Canada. Significant earthquakes have occurred in this region, including the 1700 Cascade Earthquake with an estimated magnitude of 9.2. Based on geological records, experts have predicted a 'great earthquake' of a similar magnitude within this region may happen any time. This earthquake is expected to generate a large tsunami that could impact the coastal communities on Vancouver Island. Since many of these communities are in remote locations, they are more likely to be vulnerable, as the post-earthquake relief efforts would be impacted by the damage to critical road infrastructures. To assess the coastal vulnerability within these communities, a hydrodynamic model has been developed using MIKE-21 software. We have considered a 500 year probabilistic earthquake design criteria including the subsidence in this model. The bathymetry information was collected from Canadian Hydrographic Services (CHS), and National Oceanic Atmospheric and Administration (NOAA). The arial survey was conducted using a Cessna-172 aircraft for the communities, and then the information was converted to generate a topographic digital elevation map. Both survey information was incorporated into the model, and the domain size of the model was about 1000km x 1300km. This model was calibrated with the tsunami occurred off the west coast of Moresby Island on October 28, 2012. The water levels from the model were compared with two tide gauge stations close to the Vancouver Island and the output from the model indicates the satisfactory result. For this study, the design water level was considered as High Water Level plus the Sea Level Rise for 2100 year. The hourly wind speeds from eight directions were collected from different wind stations and used a 200-year return period wind speed in the model for storm events. The regional model was set for 12 hrs simulation period, which takes more than 16 hrs to complete one simulation using double Xeon-E7 CPU computer plus a K-80 GPU. The boundary information for the local model was generated from the regional model. The local model was developed using a high resolution mesh to estimate the coastal flooding for the communities. It was observed from this study that many communities will be effected by the Cascadia tsunami and the inundation maps were developed for the communities. The infrastructures inside the coastal inundation area were identified. Coastal vulnerability planning and resilient design solutions will be implemented to significantly reduce the risk.

Keywords: tsunami, coastal flooding, coastal vulnerable, earthquake, Vancouver, wave propagation

Procedia PDF Downloads 131
4954 Best Season for Seismic Survey in Zaria Area, Nigeria: Data Quality and Implications

Authors: Ibe O. Stephen, Egwuonwu N. Gabriel

Abstract:

Variations in seismic P-wave velocity and depth resolution resulting from variations in subsurface water saturation were investigated in this study in order to determine the season of the year that gives the most reliable P-wave velocity and depth resolution of the subsurface in Zaria Area, Nigeria. A 2D seismic refraction tomography technique involving an ABEM Terraloc MK6 Seismograph was used to collect data across a borehole of standard log with the centre of the spread situated at the borehole site. Using the same parameters this procedure was repeated along the same spread for at least once in a month for at least eight months in a year for four years. The choice for each survey time depended on when there was significant variation in rainfall data. The seismic data collected were tomographically inverted. The results suggested that the average P-wave velocity ranges of the subsurface in the area are generally higher when the ground was wet than when it was dry. The results also suggested that the overburden of about 9.0 m in thickness, the weathered basement of about 14.0 m in thickness and the fractured basement at a depth of about 23.0 m best fitted the borehole log. This best fit was consistently obtained in the months between March and May when the average total rainfall was about 44.8 mm in the area. The results had also shown that the velocity ranges in both dry and wet formations fall within the standard ranges as provided in literature. In terms of velocity, this study has not in any way clearly distinguished the quality of the results of the seismic data obtained when the subsurface was dry from the results of the data collected when the subsurface was wet. It was concluded that for more detailed and reliable seismic studies in Zaria Area and its environs with similar climatic condition, the surveys are best conducted between March and May. The most reliable seismic data for depth resolution are most likely obtainable in the area between March and May.

Keywords: best season, variations in depth resolution, variations in P-wave velocity, variations in subsurface water saturation, Zaria area

Procedia PDF Downloads 290
4953 Quantifying the Impacts of Elevated CO2 and N Fertilization on Wood Density in Loblolly Pine

Authors: Y. Cochet, A. Achim, Tom Flatman, J-C. Domec, J. Ogée, L. Wingate, Ram Oren

Abstract:

It is accepted that atmospheric CO2 concentration will increase in the future. For the past 30 years, researchers have used FACE (Free-Air Carbon Dioxide Enrichment) facilities to study the development of terrestrial ecosystems under elevated CO2 (eCO2). Forest responses to eCO2 are likely to impact timber industries with potential feedbacks towards the atmosphere. The main objectives of this study were to examine whether eCO2 alone or in combination with N-fertilization alter wood properties and to identify changes in wood anatomy related to water transport. Wood disks were sampled at breast height from mature loblolly pine trees (Pinus taeda L.) harvested at the Duke FACE site (NC, USA). By measuring ring width and intra-ring changes in density (X-ray densitometry) and tracheid size (lumen and cell wall thickness) from pith to bark, the following hypotheses were tested: 1) eCO2 and N-fertilization interact positively to increase significantly above-ground primary productivity; 2) eCO2 and N-fertilization lead to a decrease in density; 3) eCO2 and N-fertilization increase lumen diameter and decrease cell wall thickness, thus affecting water transport capacity. Our results revealed a boost in earlywood tracheid production induced by eCO2 lasting a few years. The following decrease seemed to be buffered by N-fertilization. X-ray profiles did not show a marked decrease in wood density under eCO2 or N-fertilization, although there were changes in cell anatomical properties such as a reduction in cell-wall thickness and an increase in lumen diameter. If such effects of eCO2 are confirmed, forest management strategies for example N-fertilization should be redesigned.

Keywords: wood density, Duke FACE (free-air carbon dioxide enrichment), N fertilization, tree ring

Procedia PDF Downloads 336
4952 Laboratory Scale Purification of Water from Copper Waste

Authors: Mumtaz Khan, Adeel Shahid, Waqas Khan

Abstract:

Heavy metals presence in water streams is a big danger for aquatic life and ultimately effects human health. Removal of copper (Cu) by ispaghula husk, maize fibre, and maize oil cake from synthetic solution in batch conditions was studied. Different experimental parameters such as contact time, initial solution pH, agitation rate, initial Cu concentration, biosorbent concentration, and biosorbent particle size has been studied to quantify the Cu biosorption. The rate of adsorption of metal ions was very fast at the beginning and became slow after reaching the saturation point, followed by a slower active metabolic uptake of metal ions into the cells. Up to a certain point, (pH=4, concentration of Cu = ~ 640 mg/l, agitation rate = ~ 400 rpm, biosorbent concentration = ~ 0.5g, 3g, 3g for ispaghula husk, maize fiber and maize oil cake, respectively) increasing the pH, concentration of Cu, agitation rate, and biosorbent concentration, increased the biosorption rate; however the sorption capacity increased by decreasing the particle size. At optimized experimental parameters, the maximum Cu biosorption by ispaghula husk, maize fibre and maize oil cake were 86.7%, 59.6% and 71.3%, respectively. Moreover, the results of the kinetics studies demonstrated that the biosorption of copper on ispaghula husk, maize fibre, and maize oil cake followed pseudo-second order kinetics. The results of adsorption were fitted to both the Langmuir and Freundlich models. The Langmuir model represented the sorption process better than Freundlich, and R² value ~ 0.978. Optimizations of physical and environmental parameters revealed, ispaghula husk as more potent copper biosorbent than maize fibre, and maize oil cake. The sorbent is cheap and available easily, so this study can be applied to remove Cu impurities on pilot and industrial scale after certain modifications.

Keywords: biosorption, copper, ispaghula husk, maize fibre, maize oil cake, purification

Procedia PDF Downloads 410
4951 Effect of Different Level of Pomegranate Molasses on Performance, Egg Quality Trait, Serological and Hematological Parameters in Older Laying Hens

Authors: Ismail Bayram, Aamir Iqbal, E. Eren Gultepe, Cangir Uyarlar, Umit Ozcınar, I. Sadi Cetingul

Abstract:

The current study was planned with the objective to explore the potential of pomegranate molasses (PM) on performance, egg quality and blood parameters in older laying hens. A total of 240 Babcock white laying hens (52 weeks old) were divided into 5 groups (n=48) with 8 subgroups having 6 hens in each. Pomegranate molasses was added in the drinking water to experimental groups with 0 %, 0.1%, 0.25 %, 0.5%, and 1%, respectively during one month. In our results, egg weight values were remained the same in all pomegranate molasses supplemented groups except 1% group over control. However, feed consumption, egg production, feed conversion ratio (FCR), egg mass, egg yolk cholesterol, body weights, and water consumption remained unaffected (P > 0.05). During mid-study (15 Days) analyses, egg quality parameters such as Haugh unit, eggshell thickness, albumin index, yolk index, and egg yolk color were remained non-significant (P > 0.05) while after final (30 Days) egg analyses, only egg yolk color had positively (P < 0.05) increased in 0.5% group. Moreover, Haugh unit, eggshell thickness, and albumin index were not significantly (P > 0.05) affected by the supplementation of pomegranate molasses. Regarding serological parameters, pomegranate molasses did not show any positive effect on cholesterol, total protein, LDL, HDL, GGT, AST, ALT, and glucose level. Similarly, pomegranate molasses also showed non-significant (P > 0.05) results on different blood parameters such as HCT, RBC, MCV, MCH, MCHC, PLT, RDWC, MPV except hemoglobin level. Only hemoglobin level was increased in all experimental groups over control showing that pomegranate molasses can be used as an enhancer in animals with low hemoglobin level.

Keywords: pomegranate molasses, laying hen, egg yield, blood parameters

Procedia PDF Downloads 169
4950 Observed Changes in Constructed Precipitation at High Resolution in Southern Vietnam

Authors: Nguyen Tien Thanh, Günter Meon

Abstract:

Precipitation plays a key role in water cycle, defining the local climatic conditions and in ecosystem. It is also an important input parameter for water resources management and hydrologic models. With spatial continuous data, a certainty of discharge predictions or other environmental factors is unquestionably better than without. This is, however, not always willingly available to acquire for a small basin, especially for coastal region in Vietnam due to a low network of meteorological stations (30 stations) on long coast of 3260 km2. Furthermore, available gridded precipitation datasets are not fine enough when applying to hydrologic models. Under conditions of global warming, an application of spatial interpolation methods is a crucial for the climate change impact studies to obtain the spatial continuous data. In recent research projects, although some methods can perform better than others do, no methods draw the best results for all cases. The objective of this paper therefore, is to investigate different spatial interpolation methods for daily precipitation over a small basin (approximately 400 km2) located in coastal region, Southern Vietnam and find out the most efficient interpolation method on this catchment. The five different interpolation methods consisting of cressman, ordinary kriging, regression kriging, dual kriging and inverse distance weighting have been applied to identify the best method for the area of study on the spatio-temporal scale (daily, 10 km x 10 km). A 30-year precipitation database was created and merged into available gridded datasets. Finally, observed changes in constructed precipitation were performed. The results demonstrate that the method of ordinary kriging interpolation is an effective approach to analyze the daily precipitation. The mixed trends of increasing and decreasing monthly, seasonal and annual precipitation have documented at significant levels.

Keywords: interpolation, precipitation, trend, vietnam

Procedia PDF Downloads 275
4949 Acrylate-Based Photopolymer Resin Combined with Acrylated Epoxidized Soybean Oil for 3D-Printing

Authors: Raphael Palucci Rosa, Giuseppe Rosace

Abstract:

Stereolithography (SLA) is one of the 3D-printing technologies that has been steadily growing in popularity for both industrial and personal applications due to its versatility, high accuracy, and low cost. Its printing process consists of using a light emitter to solidify photosensitive liquid resins layer-by-layer to produce solid objects. However, the majority of the resins used in SLA are derived from petroleum and characterized by toxicity, stability, and recalcitrance to degradation in natural environments. Aiming to develop an eco-friendly resin, in this work, different combinations of a standard commercial SLA resin (Peopoly UV professional) with a vegetable-based resin were investigated. To reach this goal, different mass concentrations (varying from 10 to 50 wt%) of acrylated epoxidized soybean oil (AESO), a vegetable resin produced from soyabean oil, were mixed with a commercial acrylate-based resin. 1.0 wt% of Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) was used as photo-initiator, and the samples were printed using a Peopoly moai 130. The machine was set to operate at standard configurations when printing commercial resins. After the print was finished, the excess resin was drained off, and the samples were washed in isopropanol and water to remove any non-reacted resin. Finally, the samples were post-cured for 30 min in a UV chamber. FT-IR analysis was used to confirm the UV polymerization of the formulated resin with different AESO/Peopoly ratios. The signals from 1643.7 to 1616, which corresponds to the C=C stretching of the AESO acrylic acids and Peopoly acrylic groups, significantly decreases after the reaction. The signal decrease indicates the consumption of the double bonds during the radical polymerization. Furthermore, the slight change of the C-O-C signal from 1186.1 to 1159.9 decrease of the signals at 809.5 and 983.1, which corresponds to unsaturated double bonds, are both proofs of the successful polymerization. Mechanical analyses showed a decrease of 50.44% on tensile strength when adding 10 wt% of AESO, but it was still in the same range as other commercial resins. The elongation of break increased by 24% with 10 wt% of AESO and swelling analysis showed that samples with a higher concentration of AESO mixed absorbed less water than their counterparts. Furthermore, high-resolution prototypes were printed using both resins, and visual analysis did not show any significant difference between both products. In conclusion, the AESO resin was successful incorporated into a commercial resin without affecting its printability. The bio-based resin showed lower tensile strength than the Peopoly resin due to network loosening, but it was still in the range of other commercial resins. The hybrid resin also showed better flexibility and water resistance than Peopoly resin without affecting its resolution. Finally, the development of new types of SLA resins is essential to provide new sustainable alternatives to the commercial petroleum-based ones.

Keywords: 3D-printing, bio-based, resin, soybean, stereolithography

Procedia PDF Downloads 128
4948 A Multicriteria Analysis of Energy Poverty Index: A Case Study of Non-interconnected Zones in Colombia

Authors: Angelica Gonzalez O, Leonardo Rivera Cadavid, Diego Fernando Manotas

Abstract:

Energy poverty considers a population that does not have access to modern energy service. In particular, an area of a country that is not connected to the national electricity grid is known as a Non-Interconnected Zone (NIZ). Access to electricity has a significant impact on the welfare and development opportunities of the population. Different studies have shown that most health problems have an empirical cause and effect relationship with multidimensional energy poverty. Likewise, research has been carried out to review the consequences of not having access to electricity, and its results have concluded a statistically significant relationship between energy poverty and sources of drinking water, access to clean water, risks of mosquito bites, obesity, sterilization, marital status, occupation, and residence. Therefore, extensive research has been conducted in the construction of an energy poverty measure based on an index. Some of these studies introduce a Multidimensional Energy Poverty Index (MEPI), Compose Energy Poverty Index (CEPI), Low Income High Costs indicator (LIHC), among others. For this purpose, this study analyzes the energy poverty index using a multicriteria analysis determining the set of feasible alternatives - for which Colombia's ZNI will be used as a case study - to be considered in the problem and the set of relevant criteria in the characterization of the ZNI, from which the prioritization is obtained to determine the level of adjustment of each alternative with respect to the performance in each criterion. Additionally, this study considers the installation of Micro-Grids (MG). This is considered a straightforward solution to this problem because an MG is a local electrical grid, able to operate in grid-connected and island mode. Drawing on those insights, this study compares an energy poverty index considering an MG installation and calculates the impacts of different criterias in an energy poverty index in NIZ.

Keywords: multicirteria, energy poverty, rural, microgrids, non-interconnect zones

Procedia PDF Downloads 117
4947 Chemicals to Remove and Prevent Biofilm

Authors: Cynthia K. Burzell

Abstract:

Aequor's Founder, a Marine and Medical Microbiologist, discovered novel, non-toxic chemicals in the ocean that uniquely remove biofilm in minutes and prevent its formation for days. These chemicals and over 70 synthesized analogs that Aequor developed can replace thousands of toxic biocides used in consumer and industrial products and, as new drug candidates, kill biofilm-forming bacteria and fungi Superbugs -the antimicrobial-resistant (AMR) pathogens for which there is no cure. Cynthia Burzell, PhD., is a Marine and Medical Microbiologist studying natural mechanisms that inhibit biofilm formation on surfaces in contact with water. In 2002, she discovered a new genus and several new species of marine microbes that produce small molecules that remove biofilm in minutes and prevent its formation for days. The molecules include new antimicrobials that can replace thousands of toxic biocides used in consumer and industrial products and can be developed into new drug candidates to kill the biofilm-forming bacteria and fungi -- including the antimicrobial-resistant (AMR) Superbugs for which there is no cure. Today, Aequor has over 70 chemicals that are divided into categories: (1) Novel natural chemicals. Lonza validated that the primary natural chemical removed biofilm in minutes and stated: "Nothing else known can do this at non-toxic doses." (2) Specialty chemicals. 25 of these structural analogs are already approved under the U.S. Environmental Protection Agency (EPA)'s Toxic Substances Control Act, certified as "green" and available for immediate sale. These have been validated for the following agro-industrial verticals: (a) Surface cleaners: The U.S. Department of Agriculture validated that low concentrations of Aequor's formulations provide deep cleaning of inert, nano and organic surfaces and materials; (b) Water treatments: NASA validated that one dose of Aequor's treatment in the International Space Station's water reuse/recycling system lasted 15 months without replenishment. DOE validated that our treatments lower energy consumption by over 10% in buildings and industrial processes. Future validations include pilot projects with the EPA to test efficacy in hospital plumbing systems. (c) Algae cultivation and yeast fermentation: The U.S. Department of Energy (DOE) validated that Aequor's treatment boosted biomass of renewable feedstocks by 40% in half the time -- increasing the profitability of biofuels and biobased co-products. DOE also validated increased yields and crop protection of algae under cultivation in open ponds. A private oil and gas company validated decontamination of oilfield water. (3) New structural analogs. These kill Gram-negative and Gram-positive bacteria and fungi alone, in combinations with each other, and in combination with low doses of existing, ineffective antibiotics (including Penicillin), "potentiating" them to kill AMR pathogens at doses too low to trigger resistance. Both the U.S. National Institutes for Health (NIH) and Department of Defense (DOD) has executed contracts with Aequor to provide the pre-clinical trials needed for these new drug candidates to enter the regulatory approval pipelines. Aequor seeks partners/licensees to commercialize its specialty chemicals and support to evaluate the optimal methods to scale-up of several new structural analogs via activity-guided fractionation and/or biosynthesis in order to initiate the NIH and DOD pre-clinical trials.

Keywords: biofilm, potentiation, prevention, removal

Procedia PDF Downloads 99
4946 A Literature Review: The Anti-Obesity Effect of Epigallocathecin-3-Gallate of Camellia sinensis (Green Tea) Extraction as a Potential Adjuvant Therapy for Management Obesity

Authors: Nunuy Nuraeni, Vera Amalia Lestari, Atri Laranova, Viena Nissa Mien Fadhillah, Mutia, Muhammad Ikhlas Abdian Putra

Abstract:

Introduction: Obesity is a common disease with high prevalence especially in developing countries including Indonesia. The obesitygenic lifestyle such as excessive intake of food, sedentary lifestyle is the major environmental etiologies of obesity. Obesity is also as one of burden disease with high morbidity due to its complication, such as diabetes mellitus and hypertension. The objective of this literature review is to know how the Epigallocathecin-3-Gallate of Green tea or Camellia sinensis effect as anti-obesity agent and reduce the complication of obesity. Material and Methods: This study based on the secondary data analysis complemented by primary data collection from several journal and textbook. We identified the effect of Epigallocathecin-3-Gallate of Green tea or Camellia sinensis as adjuvant therapy for management obesity and to prevent the complications of obesity. Results: Based on the result, Green tea or Camellia sinensis contain Epigallocathecin-3-Gallate (EGCG) that has anti-obesity effect such as induce apoptosis, inhibit adipogenesis, increasing lipolytic activity, increasing fat oxidation and thermogenesis. Discussion: EGCG are naturally distributed in green tea, that contains a biological activity that has a potential effect to treat obesity. Conclusion: EGCG are capable to treat obesity. By consuming EGCG can prevent obesity in normal health person and prevent complication in patient with obesity.

Keywords: adjuvant therapy, anti-obesity effect, complication, epigallocathecin-3-gallate, obesity

Procedia PDF Downloads 279
4945 Catalytic Wet Air Oxidation as a Pretreatment Option for Biodegradability Enhancement of Industrial Effluent

Authors: Sushma Yadav, Anil K. Saroha

Abstract:

Complex industrial effluent generated from chemical industry is contaminated with toxic and hazardous organic compounds and not amenable to direct biological treatment. To effectively remove many toxic organic pollutants has made it evident that new, compact and more efficient systems are needed. Catalytic Wet Air Oxidation (CWAO) is a promising treatment technology for the abatement of organic pollutants in wastewater. A lot of information is available on using CWAO for the treatment of synthetic solution containing single organic pollutant. But the real industrial effluents containing multi-component mixture of organic compounds were less studied. The main objective of this study is to use the CWAO process for converting the organics into compounds more amenable to biological treatment; complete oxidation may be too expensive. Therefore efforts were made in the present study to explore the potential of alumina based Platinum (Pt) catalyst for the treatment of industrial organic raffinate containing toxic constituents like ammoniacal nitrogen, pyridine etc. The catalysts were prepared by incipient wetness impregnation method and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and BET (Brunauer, Emmett, and Teller) surface area. CWAO experiments were performed at atmospheric pressure and (30 °C - 70 °C) temperature conditions and the results were evaluated in terms of COD removal efficiency. The biodegradability test was performed by BOD/COD ratio for checking the toxicity of the industrial wastewater as well as for the treated water. The BOD/COD ratio of treated water was significantly increased and signified that the toxicity of the organics was decreased while the biodegradability was increased, indicating the more amenability towards biological treatment.

Keywords: alumina based pt catalyst, BOD/COD ratio, catalytic wet air oxidation, COD removal efficiency, industrial organic raffinate

Procedia PDF Downloads 304
4944 Organotin (IV) Based Complexes as Promiscuous Antibacterials: Synthesis in vitro, in Silico Pharmacokinetic, and Docking Studies

Authors: Wajid Rehman, Sirajul Haq, Bakhtiar Muhammad, Syed Fahad Hassan, Amin Badshah, Muhammad Waseem, Fazal Rahim, Obaid-Ur-Rahman Abid, Farzana Latif Ansari, Umer Rashid

Abstract:

Five novel triorganotin (IV) compounds have been synthesized and characterized. The tin atom is penta-coordinated to assume trigonal-bipyramidal geometry. Using in silico derived parameters; the objective of our study is to design and synthesize promiscuous antibacterials potent enough to combat resistance. Among various synthesized organotin (IV) complexes, compound 5 was found as potent antibacterial agent against various bacterial strains. Further lead optimization of drug-like properties was evaluated through in silico predictions. Data mining and computational analysis were utilized to derive compound promiscuity phenomenon to avoid drug attrition rate in designing antibacterials. Xanthine oxidase and human glucose- 6-phosphatase were found as only true positive off-target hits by ChEMBL database and others utilizing similarity ensemble approach. Propensity towards a-3 receptor, human macrophage migration factor and thiazolidinedione were found as false positive off targets with E-value 1/4> 10^-4 for compound 1, 3, and 4. Further, displaying positive drug-drug interaction of compound 1 as uricosuric was validated by all databases and docked protein targets with sequence similarity and compositional matrix alignment via BLAST software. Promiscuity of the compound 5 was further confirmed by in silico binding to different antibacterial targets.

Keywords: antibacterial activity, drug promiscuity, ADMET prediction, metallo-pharmaceutical, antimicrobial resistance

Procedia PDF Downloads 504
4943 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation

Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher

Abstract:

Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.

Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment

Procedia PDF Downloads 118
4942 Effect of Supplementation of Rough Lemon Juice, Amla Juice and Aloe Vera Gel on Physio-biochemical and Hematological Parameters of Broiler Chicken During Summer Season

Authors: Suraj Amrutkar, R. Gowri, Asma Khan, Nazam Khan, Vikas Mahajan, Manpreet Kour And Bharti Deshmukh

Abstract:

Herbal additives are rich in vitamin C, A and other biological active compounds and may act as surrogate source to subdue heat stress in chicken. Among various herbal additives such as rough lemon (Citrus Jambhiri Lush) juice, amla (Emblica officinalis) juice and aloe vera (Aloe barbadensis miller) gel are easily available during summer (stress period) and also cost less as comparison to synthetic feed additives in market. In order to analyze the performance by supplementation of rough lemon juice, amla juice and aloe vera gel in broiler under heat stress conditions. Study was carried out with a random distribution of day old straight run chicks (240 No.) in to four treatment group (n=60) was done. All the groups were given basal diet (Maize-Soya based; T0) was same for all the groups with supplementation of rough lemon juice (T1), amla juice (T2) and aloe vera (T3) @ 2% in drinking water. Experiment trial lasted for 42 days during heat stress period (June-July) with minimum THI (78.2) and Maximum THI (88.02). Feed and water were offered ad-libitum throughout the trial. Results revealed significantly higher (P<0.05) body weight in T3 and T2, followed by T1 and least in T0 at 42 days of age. The overall mean of Feed conversion ratio of various treatment T0, T1, T2 andT3 were 2.16, 1.98, 1.89 and 1.82, respectively. The mortality percentage in various treatment, T0, T1, T2 and T3, were 6.67, 3.33, 0.0 and 1.67, respectively. pH value, PCV (%), Sodium (mmol/L) and Potassium (mmol/L) was higher in T3 than rest of the groups. HL ratio is significantly lower (P<0.05) in T3, T2 followed by T1 than T0 at 42 days of age. It may be inferred that amongst these phyto-additives, aloe vera leads in alleviating heat stress in broiler in an economical way, followed by amla and rough lemon.

Keywords: rough lemon, amla, aloe vera, heat stress, broiler

Procedia PDF Downloads 94
4941 Oxidative Stability of Methyl and Ethyl Microalgae Biodiesel with Synthetic Antioxidants

Authors: Willian L. G. Silva, Fabio R. M. Batista, Matthieu Tubino

Abstract:

Microalgae can be considered a potential source of oil for biodiesel synthesis since this microorganism can grow rapidly in either fresh or salty water, not competing with food production. There are several favorable conditions in Brazil for this type of culture due to the country’s great amount of water. Another very positive aspect of this type of culture is its ability to fix atmospheric CO2, contributing to the reduction of greenhouse gases and their effects on global warming. Despite this biodiesel environmental advantages it degrades resulting in changes in its physical and chemical properties. In this work, the methyl and ethyl microalgae biodiesel oxidative stability was studied in the absence and presence of a synthetic antioxidant. The synthetic antioxidants used were propyl gallate (PG) and tert-butylhydroquinone (TBHQ), at a 0,12% (w/w) concentration. The biodiesel mixture was kept in a sealed glass flask, sheltered from light, and at room temperature (about 25 ºC) for 180 days. During this period, aliquots from this biodiesel were subjected to induced degradation by the Rancimat method, which determines an important quality parameter, provided in the current methods, and is used to monitor the degradation processes that occur in the biodiesel over time. The induction period (IP) expresses the biodiesel oxidative stability. It was stablished that the minimum accepted IP value for biodiesel is 8 hours. The results show that ethylic biodiesel increased its IP value from 7,6 hours to 31 hours when using PG, and to 67 hours when using TBHQ, exceeding the minimum accepted IP value. When the antioxidants were added to the methylic biodiesel samples, the IP was raised to 28 hours when using PG, and to 62 hours when using TBHQ. These values were maintained throughout the entire period of study (180 days). On the other hand, the biodiesel samples without additives maintained an IP above the allowed value for only 30 days. Therefore, in order to preserve microalgae biodiesel for longer periods of time, it is necessary to add antioxidants to both derivatives, i.e., the ethylic and methylic.

Keywords: biodiesel, microalgae, oxidative stability, storage, synthetic antioxidants

Procedia PDF Downloads 462
4940 Induction of Cytotoxicity and Apoptosis in Ovarian Cancer Cell Line (CAOV-3) by an Isoquinoline Alkaloid Isolated from Enicosanthellum pulchrum (King) Heusden

Authors: Noraziah Nordin, Najihah Mohd Hashim, Nazia Abdul Majid, Mashitoh Abdul Rahman, Hamed Karimian, Hapipah Mohd Ali

Abstract:

Enicosanthellum pulchrum belongs to family Annonaceae is also known as family of 'mempisang' in Malaysia. Liriodenine was isolated by prep-HPLC method. This method was first technique used for the isolation of this compound. The structure of the liriodenine was elucidated by 1D and 2D spectroscopy techniques. Liriodenine was tested on ovarian cancer cells line (CAOV-3) for MTT, AO/PI and cytotoxicity 3 assays. The MTT assay was performed to determine the cytotoxicity effect of lirodenine on CAOV-3 cells. The morphological changes on CAOV-3 cells were observed by AO/PI assay for the early and late stage of apoptosis, as well as necrosis. Meanwhile, the measurement of cell loss, nuclear morphology, DNA content, cell membrane permeability, mitochondrial membrane potential changes and cytochrome c release from mitochondria were detected through cytotoxicity 3 assay. The IC50 results showed liriodenine inhibits the growth of CAOV-3 cells after 24 h of treatment at 10.25 ± 1.06 µg/mL. After 48 and 72 h of treatments, the IC50 values were decreased to 7.65 ± 0:07 and 6.35 ± 1.62 µg/mL, respectively. The morphology changes can be seen on CAOV-3 with a production of cell membrane blebbing, cromatin condensation and apoptotic bodies with increasing time of treatment from 24 to 72 h. Evaluation of cytotoxicity 3 on CAOV-3 cells after treated with liriodenine, resulting loss of mitochondrial membrane potential and release of cytochrome c from mitochondria. The results demonstrated the capability of liriodenine as a promising anticancer agent, particularly on human ovarian cancer.

Keywords: Enicosanthellum pulchrum, ovarian cancer, apoptosis, cytotoxicity

Procedia PDF Downloads 444
4939 Evaluation of Chromium Fortified - Parboiled Rice Coated with Herbal Extracts: Cooking Quality and Sensory Properties

Authors: Wisnu Adi Yulianto, Agus Slamet, Sri Luwihana, Septian Albar Dwi Suprayogi

Abstract:

Parboiled rice was developed to produce rice, which has a low glycemic index for diabetics. However, diabetics also have a chromium (Cr) deficiency. Thus, it is important to fortify rice with Cr to increase the Cr content. Moreover, parboiled rice becomes rancid easily and has a musty odor, rendering the rice unfavorable. Natural herbs such as pandan leaves (Pandanus amaryllifolius Roxb.), bay leaves (Syzygium polyanthum [Wigh] Walp) and cinnamon bark powder (Cinnamomon cassia) are commonly added to food as aroma enhancers. Previous research has shown that these herbs could improve insulin sensitivity. The purpose of this study was to evaluate the effect of herbal extract coatings on the cooking quality and the preference level of chromium fortified - parboiled rice (CFPR). The rice grain variety used for this experiment was Ciherang and the fortificant was CrCl3. The three herbal extracts used for coating the CFPR were cinnamon, pandan and bay leaf, with concentration variations of 3%, 6%, and 9% (w/w) for each of the extracts. The samples were analyzed for their alkali spreading value, cooking time, elongation, water uptake ratio, solid loss, colour and lightness; and their sensory properties were determined by means of an organoleptic test. The research showed that coating the CFPR with pandan and cinnamon extracts at a concentration of 3% each produced a preferred CFPR. When coated with those herbal extracts the CFPR had the following cooking quality properties: alkali spreading value 5 (intermediate gelatinization temperature), cooking time, 26-27 min, color value, 14.95-15.00, lightness, 42.30 – 44.06, elongation, 1.53 – 1.54, water uptake ratio , 4.05-4.06, and solid loss, 0.09/100 g – 0.13 g/100 g.

Keywords: bay leaves, chromium, cinnamon, pandan leaves, parboiled rice

Procedia PDF Downloads 457
4938 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue

Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella

Abstract:

Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.

Keywords: automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis

Procedia PDF Downloads 127
4937 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents

Authors: Neha Budhwani

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsor¬bents of natural origin including sawdust (shiham), coconut fiber, neem bark, chitin, activated charcol. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.

Keywords: natural adsorbent, PAHs, TPO, coconut fiber, wood powder (shisham), naphthalene, acenaphthene, biphenyl and anthracene

Procedia PDF Downloads 231