Search results for: concrete large panel wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10528

Search results for: concrete large panel wall

5548 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 112
5547 Synthesis of CeF3:Sm3+ Nanophosphor for Biological Applications

Authors: Mayuri Gandhi, Nayan Agrawal, Harshita Bhatia

Abstract:

In the present work, cerium fluoride (CeF3) was selected as the host material because of its high density, fast response and high radiation resistance, efficient absorption and energy transfer by host (to activator). For the synthesis of CeF3 nanoparticles doped with Sm3+ ion, co-precipitation route was employed. Thus for optimum results, concentration dependent studies of the fluorescence of Sm3+ was carried out. The photoluminescence gave emissions in both visible as well as the NIR region and therefore it can have its application in solar cells, where it can absorb a large spectrum of energy. CeF3:Sm3+ nanoparticles were carefully incorporated in a suitable polymer matrix in order to demonstrate a variety of applications to improve the performance of the polymer materials and use it to develop high grade optoelectronic devices such as LEDs, security labelling, lasers, displays, biological imaging, etc.

Keywords: bioimaging, cerium fluoride, NIR emission, samarium

Procedia PDF Downloads 428
5546 OpenMP Parallelization of Three-Dimensional Magnetohydrodynamic Code FOI-PERFECT

Authors: Jiao F. Huang, Shi Chen, Shu C. Duan, Gang H. Wang

Abstract:

Due to its complex spatial structure as well as dynamic temporal evolution, an analytic solution of an X-pinch process is out of question, and numerical simulation becomes an important tool in X-pinch studies. Intrinsically, simulations of X-pinch are three-dimensional (3D) because of the specific structure of its load. Furthermore, in order to resolve both its μm-scales and ns-durations, fine spatial mesh grid and short time steps are usually adopted. The resulting large computational scales make the parallelization of codes a vital problem to be solved if any practical simulations are to be carried out. In this work, we report OpenMP parallelization of our 3D magnetohydrodynamic (MHD) code FOI-PERFECT. Results of test runs confirm that computational efficiency has been improved after parallelization, and both the sequential and parallel versions give the same physical results under the same initial conditions.

Keywords: MHD simulation, OpenMP, parallelization, X-pinch

Procedia PDF Downloads 343
5545 Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures

Authors: A. Aboubakr, E. Fehling, S. A. Mourad, M. Omar

Abstract:

Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results.

Keywords: grouted connection, 3D modeling, finite element analysis, offshore wind energy turbines, stresses

Procedia PDF Downloads 533
5544 Acute Hepatotoxicity of Nano and Micro-Sized Iron Particles in Adult Albino Rats

Authors: Ghada Hasabo, Mahmoud Saber Elbasiouny, Mervat Abdelsalam, Sherin Ghaleb, Niveen Eldessouky

Abstract:

In the near future, nanotechnology is envisaged for large scale use. Hence health and safety issues of nanoparticles should be promptly addressed. In the present study the acute hepatoxicity assessment due to high single oral dose of nano iron and micro iron particles were studied. The normal daily activities, biochemical alterations, blood coagulation, histopathological changes in Wister rats were the aspect of the toxicological assessment.This work found that significant alterations in biochemical enzymes (serum iron level, liver enzymes, albumin, and bilirubin levels), blood coagulation (PT, PC, INR), and histopathological changes occurred more prominently in the nano iron particle treated group.

Keywords: nanobiotechnology, nanosystems, nanomaterials, nanotechnology

Procedia PDF Downloads 510
5543 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform

Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu

Abstract:

Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.

Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS

Procedia PDF Downloads 549
5542 Verifiable Secure Computation of Large Scale Two-Point Boundary Value Problems Using Certificate Validation

Authors: Yogita M. Ahire, Nedal M. Mohammed, Ahmed A. Hamoud

Abstract:

Scientific computation outsourcing is gaining popularity because it allows customers with limited computing resources and storage devices to outsource complex computation workloads to more powerful service providers. However, it raises some security and privacy concerns and challenges, such as customer input and output privacy, as well as cloud cheating behaviors. This study was motivated by these concerns and focused on privacy-preserving Two-Point Boundary Value Problems (BVP) as a common and realistic instance for verifiable safe multiparty computing. We'll look at the safe and verifiable schema with correctness guarantees by utilizing standard multiparty approaches to compute the result of a computation and then solely using verifiable ways to check that the result was right.

Keywords: verifiable computing, cloud computing, secure and privacy BVP, secure computation outsourcing

Procedia PDF Downloads 102
5541 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 82
5540 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.

Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis

Procedia PDF Downloads 78
5539 A Delphi Study to Build Consensus for Tuberculosis Control Guideline to Achieve Who End Tb 2035 Strategy

Authors: Pui Hong Chung, Cyrus Leung, Jun Li, Kin On Kwok, Ek Yeoh

Abstract:

Introduction: Studies for TB control in intermediate tuberculosis burden countries (IBCs) comprise a relatively small proportion in TB control literature, as compared to the effort put in high and low burden counterparts. It currently lacks of consensus in the optimal weapons and strategies we can use to combat TB in IBCs; guidelines of TB control are inadequate and thus posing a great obstacle in eliminating TB in these countries. To fill-in the research and services gap, we need to summarize the findings of the effort in this regard and to seek consensus in terms of policy making for TB control, we have devised a series of scoping and Delphi studies for these purposes. Method: The scoping and Delphi studies are conducted in parallel to feed information for each other. Before the Delphi iterations, we have invited three local experts in TB control in Hong Kong to participate in the pre-assessment round of the Delphi study to comments on the validity, relevance, and clarity of the Delphi questionnaire. Result: Two scoping studies, regarding LTBI control in health care workers in IBCs and TB control in elderly of IBCs respectively, have been conducted. The result of these two studies is used as the foundation for developing the Delphi questionnaire, which tapped on seven areas of question, namely: characteristics of IBCs, adequacy of research and services in LTBI control in IBCs, importance and feasibility of interventions for TB control and prevention in hospital, screening and treatment of LTBI in community, reasons of refusal to/ default from LTBI treatment, medical adherence of LTBI treatment, and importance and feasibility of interventions for TB control and prevention in elderly in IBCs. The local experts also commented on the two scoping studies conducted, thus act as the sixth phase of expert consultation in Arksey and O’Malley framework of scoping studies, to either nourish the scope and strategies used in these studies or to supplement ideas for further scoping or systematic review studies. In the subsequent stage, an international expert panel, comprised of 15 to 20 experts from IBCs in Western Pacific Region, will be recruited to join the two-round anonymous Delphi iterations. Four categories of TB control experts, namely clinicians, policy makers, microbiologists/ laboratory personnel, and public health clinicians will be our target groups. A consensus level of 80% is used to determine the achievement of consensus on particular issues. Key messages: 1. Scoping review and Delphi method are useful to identify gaps and then achieve consensus in research. 2. Lots of resources are put in the high burden countries now. However, the usually neglected intermediate-burden countries with TB is an indispensable part for achieving the ambitious WHO End TB 2035 target.

Keywords: dephi questionnaire, tuberculosis, WHO, latent TB infection

Procedia PDF Downloads 307
5538 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs

Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro

Abstract:

This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.

Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression

Procedia PDF Downloads 449
5537 Usability Evaluation in Practice: Selecting the Appropriate Method

Authors: Hanan Hayat, Russell Lock

Abstract:

The importance of usability in ensuring software quality has been well established in literature and widely accepted by software development practitioners. Consequently, numerous usability evaluation methods have been developed. However, the availability of large variety of evaluation methods alongside insufficient studies that critically analyse them resulted in an ambiguous process of selection amongst non-usability-expert practitioners. This study investigates the factors affecting the selection of usability evaluation methods within a project by interviewing a software development team. The results of the data gathered are then analysed and integrated in developing a framework. The framework developed poses a solution to the selection processes of usability evaluation methods by adjusting to individual projects resources and goals. It has the potential to be further evaluated to verify its applicability and usability within the domain of this study.

Keywords: usability evaluation, evaluating usability in non-user entered designs, usability evaluation methods (UEM), usability evaluation in projects

Procedia PDF Downloads 163
5536 Ficus carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modeling and Optimization

Authors: Tizi Hayet, Berrama Tarek, Bounif Nadia

Abstract:

Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and the illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that are considered potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria annually produces 131000 tons of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of a statistical method for modeling and to optimize the conditions of the phenol adsorption from agricultural by-products, locally available (fig leaves). The best experimental performance of phenol elimination on the adsorbent was obtained with: Adsorbent concentration (X₂) = 200 mg L⁻¹; Initial concentration (X₃) = 150 mg L⁻¹; Speed agitation (X₁) = 300 rpm.

Keywords: low-cost adsorbents, adsorption, fig leaves, phenol, factorial design

Procedia PDF Downloads 118
5535 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube

Authors: Cathal Merz, Gareth O’Donnell

Abstract:

Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.

Keywords: neurovascular catheter, coil reinforced tube, buckling, three-point bend, tensile

Procedia PDF Downloads 119
5534 Oil-to-Cash Reform and Inequality Evidence From Iranian Reform 2010

Authors: Mohammadali Mokhtari

Abstract:

Developing countries increasingly recognize the need to reduce energy subsidies. Cash transfers are proposed instead of subsidies to mitigate the negative effects of energy subsidy reforms. However, there is little evidence about the redistribution effect of these subsidy-to-cash reforms. We study the redistribution impact of the largest subsidy-to-cash reform in the history of developing countries in Iran in 2010. We find a strong pro-poor impact of the reform using five inequality measures, including the Gini index and the ratio of rich to poor expenditures. Finally, we show this pro-poor impact is on average and discuss other possible mechanisms by which low-income groups objected to these pro-poor reforms in the next round, which took place in November 2019 and led to wide and large protests.

Keywords: energy economics, subsidy reform, inequality, Middle East, Iran

Procedia PDF Downloads 120
5533 Load Characteristics of Improved Howland Current Pump for Bio-Impedance Measurement

Authors: Zhao Weijie, Lin Xinjian, Liu Xiaojuan, Li Lihua

Abstract:

The Howland current pump is widely used in bio-impedance measurement. Much attention has been focused on the output impedance of the Howland circuit. Here we focus on the maximum load of the Howland source and discuss the relationship between the circuit parameters at maximum load. We conclude that the signal input terminal of the feedback resistor should be as large as possible, but that the current-limiting resistor should be smaller. The op-amp saturation voltage should also be high. The bandwidth of the circuit is proportional to the bandwidth of the op-amp. The Howland current pump was simulated using multisim12. When the AD8066AR was selected as the op-amp, the maximum load was 11.5 kΩ, and the Howland current pump had a stable output ipp to 2mAp up to 200 kHz. However, with an OPA847 op-amp and a load of 6.3 kΩ, the output current was also stable, and the frequency was as high as 3 MHz.

Keywords: bio-impedance, improved Howland current pump, load characteristics, bioengineering

Procedia PDF Downloads 521
5532 Domestic Rooftop Rainwater Harvesting for Prevention of Urban Flood in the Gomti Nagar Region of Lucknow, Uttar Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

Urban flooding is a common occurrence throughout Asia. Almost every city is vulnerable to urban floods in some fashion, and city people are particularly vulnerable. Pluvial and fluvial flooding are the most prominent causes of urban flooding in the Gomti Nagar region of Lucknow, Uttar Pradesh, India. The pluvial flooding is regarded to be less damaging because it is caused by heavy rainfall, Seasonal rainfall fluctuations, water flows off concrete infrastructures, blockages of the drainage system, and insufficient drainage capacity or low infiltration capacity. However, this study considers pluvial flooding in Lucknow to be a significant source of cumulative damage over time, and the risks of such events are increasing as a result of changes in ageing infrastructure, hazard exposure, rapid urbanization, massive water logging and global warming. As a result, urban flooding has emerged as a critical field of study. The popularity of analytical approaches to project the spatial extent of flood dangers has skyrocketed. To address future urban flood resilience, more effort is needed to enhance both hydrodynamic models and analytical tools to simulate risks under present and forecast conditions. Proper urban planning with drainage system and ample space for high infiltration capacity are required to reduce urban flooding. A better India with no urban flooding is a pipe dream that can be realized by putting household rooftop rainwater collection systems in every structure. According to the current study, domestic RTRWHs are strongly recommended as an alternative source of water, as well as to prevent surface runoff and urban floods in this region of Lucknow, urban areas of India.

Keywords: rooftop rainwater harvesting, urban flood, pluvial flooding, fluvial flooding

Procedia PDF Downloads 90
5531 New Refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ for Application in Magnetic Refrigeration

Authors: Essebti Dhahri

Abstract:

We present a new refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ (x = 0.0-0.1) manganites. These compounds were prepared by the sol-gel method. The refinement of the X-ray diffraction reveals that all samples crystallize in a rhombohedral structure (space group R3 ̅c). Detailed measurements of the magnetization as a function of temperature and magnetic applied field M (µ₀H, T) were carried out. From the M(µ₀H, T) curves, we have calculated the magnetic entropy change (ΔSM) according to the Maxwell relation. The temperature dependence of the magnetization M(T) reveals a decrease of M when increasing the x content. The magnetic entropy change (ΔSM) reaches a maximum value near room temperature. It was also found that this compound exhibits a large magnetocaloric effect MCE which increases when decreasing Ga concentration. So, the studied compounds could be considered potential materials for magnetic refrigeration application.

Keywords: magnetic measurements, Rietveld refinement, magnetic refrigeration, magnetocaloric effect

Procedia PDF Downloads 92
5530 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

Authors: J. R. Wang, W. Y. Li, H. T. Lin, J. H. Yang, C. Shih, S. W. Chen

Abstract:

Fuel rod analysis program transient (FRAPTRAN) code was used to study the fuel rod performance during a postulated large break loss of coolant accident (LBLOCA) in Maanshan nuclear power plant (NPP). Previous transient results from thermal hydraulic code, TRACE, with the same LBLOCA scenario, were used as input boundary conditions for FRAPTRAN. The simulation results showed that the peak cladding temperatures and the fuel center line temperatures were all below the 10CFR50.46 LOCA criteria. In addition, the maximum hoop stress was 18 MPa and the oxide thickness was 0.003 mm for the present simulation cases, which are all within the safety operation ranges. The present study confirms that this analysis method, the FRAPTRAN code combined with TRACE, is an appropriate approach to predict the fuel integrity under LBLOCA with operational ECCS.

Keywords: FRAPTRAN, TRACE, LOCA, PWR

Procedia PDF Downloads 516
5529 Therapy Finding and Perspectives on Limbic Resonance in Gifted Adults

Authors: Andreas Aceranti, Riccardo Dossena, Marco Colorato, Simonetta Vernocchi

Abstract:

By the term “limbic resonance,” we usually refer to a state of deep connection, both emotional and physiological, between people who, when in resonance, find their limbic systems in tune with one another. Limbic resonance is not only about sharing emotions but also physiological states. In fact, people in such resonance can influence each other’s heart rate, blood pressure, and breathing. Limbic resonance is fundamental for human beings to connect and create deep bonds among a certain group. It is fundamental for our social skills. A relationship between gifted and resonant subjects is perceived as feeling safe, living the relation like an isle of serenity where it is possible to recharge, to communicate without words, to understand each others without giving explanations, to strengthen the balance of each member of the group. Within the circle, self-esteem is consolidated and makes it stronger to face what is outside, others, and reality. The idea that gifted people who are together may be unfit for the world does not correspond to the truth. The circle made up of people with high cognitive potential characterized by a limbic resonance is, in general, experienced as a solid platform from which you can safely move away and where you can return to recover strength. We studied 8 adults (between 21 and 47 years old). All of them with IQ higher than 130. We monitored their brain waves frequency (alpha, beta, theta, gamma, delta) by means of biosensing tracker along with their physiological states (heart beat frequency, blood pressure, breathing frequency, pO2, pCO2) and some blood works only (5-HT, dopamine, catecholamines, cortisol). The subjects of the study were asked to adhere to a protocol involving bonding activities (such as team building activities), role plays, meditation sessions, and group therapy. All these activities were carried out together. We observed that after about 4 months of activities, their brain waves frequencies tended to tune quicker and quicker. After 9 months, the bond among them was so important that they could “sense” each other inner states and sometimes also guess each others’ thoughts. According to our findings, it may be hypothesized that large synchronized outbursts of cortex neurons produces not only brain waves but also electromagnetic fields that may be able to influence the cortical neurons’ activity of other people’s brain by inducing action potentials in large groups of neurons and this is reasonably conceivable to be able to transmit information such as different emotions and cognition cues to the other’s brain. We also believe that upcoming research should focus on clarifying the role of brain magnetic particles in brain-to-brain communication. We also believe that further investigations should be carried out on the presence and role of cryptochromes to evaluate their potential roles in direct brain-to-brain communication.

Keywords: limbic resonance, psychotherapy, brain waves, emotion regulation, giftedness

Procedia PDF Downloads 97
5528 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples

Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann

Abstract:

Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.

Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing

Procedia PDF Downloads 285
5527 Comparing the Motion of Solar System with Water Droplet Motion to Predict the Future of Solar System

Authors: Areena Bhatti

Abstract:

The geometric arrangement of planet and moon is the result of a self-organizing system. In our solar system, the planets and moons are constantly orbiting around the sun. The aim of this theory is to compare the motion of a solar system with the motion of water droplet when poured into a water body. The basic methodology is to compare both motions to know how they are related to each other. The difference between both systems will be that one is extremely fast, and the other is extremely slow. The role of this theory is that by looking at the fast system we can conclude how slow the system will get to an end. Just like ripples are formed around water droplet that move away from the droplet and water droplet forming those ripples become small in size will tell us how solar system will behave in the same way. So it is concluded that large and small systems can work under the same process but with different motions of time, and motion of the solar system is the slowest form of water droplet motion.

Keywords: motion, water, sun, time

Procedia PDF Downloads 158
5526 Interferometric Demodulation Scheme Using a Mode-Locker Fiber Laser

Authors: Liang Zhang, Yuanfu Lu, Yuming Dong, Guohua Jiao, Wei Chen, Jiancheng Lv

Abstract:

We demonstrated an interferometric demodulation scheme using a mode-locked fiber laser. The mode-locked fiber laser is launched into a two-beam interferometer. When the ratio between the fiber path imbalance of interferometer and the laser cavity length is close to an integer, an interferometric fringe emerges as a result of vernier effect, and then the phase shift of the interferometer can be demodulated. The mode-locked fiber laser provides a large bandwidth and reduces the cost for wavelength division multiplexion (WDM). The proposed interferometric demodulation scheme can be further applied in multi-point sensing system such as fiber optics hydrophone array, seismic wave detection network with high sensitivity and low cost.

Keywords: fiber sensing, interferometric demodulation, mode-locked fiber laser, vernier effect

Procedia PDF Downloads 334
5525 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics

Procedia PDF Downloads 499
5524 Climate Change, Women's Labour Markets and Domestic Work in Mexico

Authors: Luis Enrique Escalante Ochoa

Abstract:

This paper attempts to assess the impacts of Climate change (CC) on inequalities in the labour market. CC will have the most serious effects on some vulnerable economic sectors, such as agriculture, livestock or tourism, but also on the most vulnerable population groups. The objective of this research is to evaluate the impact of CC on the labour market and particularly on Mexican women. Influential documents such as the synthesis reports produced by the Intergovernmental Panel on Climate Change (IPCC) in 2007 and 2014 revived a global effort to counteract the effects of CC, called for an analysis of the impacts on vulnerable socio-economic groups and on economic activities, and for the development of decision-making tools to enable policy and other decisions based on the complexity of the world in relation to climate change, taking into account socio-economic attributes. We follow up this suggestion and determine the impact of CC on vulnerable populations in the Mexican labour market, taking into account two attributes (gender and level of qualification of workers). Most studies have focused on the effects of CC on the agricultural sector, as it is considered a highly vulnerable economic sector to the effects of climate variability. This research seeks to contribute to the existing literature taking into account, in addition to the agricultural sector, other sectors such as tourism, water availability, and energy that are of vital importance to the Mexican economy. Likewise, the effects of climate change will be extended to the labour market and specifically to women who in some cases have been left out. The studies are sceptical about the impact of CC on the female labour market because of the perverse effects on women's domestic work, which are too often omitted from analyses. This work will contribute to the literature by integrating domestic work, which in the case of Mexico is much higher among women than among men (80.9% vs. 19.1%), according to the 2009 time use survey. This study is relevant since it will allow us to analyse impacts of climate change not only in the labour market of the formal economy, but also in the non-market sphere. Likewise, we consider that including the gender dimension is valid for the Mexican economy as it is a country with high degrees of gender inequality in the labour market. In the OECD economic study for Mexico (2017), the low labour participation of Mexican women is highlighted. Although participation has increased substantially in recent years (from 36% in 1990 to 47% in 2017), it remains low compared to the OECD average where women participate around 70% of the labour market. According to Mexico's 2009 time use survey, domestic work represents about 13% of the total time available. Understanding the interdependence between the market and non-market spheres, and the gender division of labour within them is the necessary premise for any economic analysis aimed at promoting gender equality and inclusive growth.

Keywords: climate change, labour market, domestic work, rural sector

Procedia PDF Downloads 135
5523 Changes in Consumption Pattern of Western Consumers and Its Effect to the Ottoman Oriental Carpet-Making Industry

Authors: Emine Zeytinli

Abstract:

Ottoman carpets were depicted in Renaissance painting while they were exported commercially. The carpets were highly demanded and used by the middle and upper classes of Western European countries. The motifs, designs, patterns, and ornamentation of these carpets were decorative objects of luxury for Western European residences as well as paintings. Oriental carpets found their way into European market already from the medieval times to the present century. They were considered as luxury items first, however, demanded by middle classes in Europe and North America within the nineteenth century. This century brought unprecedented changes in production and consumption in the world. Expanding industries created quick urbanization, changed the city life and new types of goods dominated the entire century. Increases in income allowed Europeans to spend on luxury items, consumers taste changed in number of ways including furniture and decoration. Use of a carpet in the orient lifestyle often considered as an art object with Western aesthetic sensibility. A carpet with an oriental character, an essential part of home decoration, was highly appreciated for floor, table covering and wall hanging. Turkish carpets with distinctive classical style, patterns, and colours were changed for the tastes of European consumers. This paper attempts to analyse how the taste and preferences of European and American consumers increased their buying of oriental objects namely carpets. The production of local hand woven carpet industry developed, carpet factories were set up and special weaving schools were opened in some major waving centres, and carpet weaving became one of the main manufacturing and export commodity of the empire. All of these attempts increased the reputation and market share in international market. The industry flourished, commercially operated carpet looms, sales revenues and export increased unprecedentedly. British and Ottoman archival documents, parliamentary papers and travel notes were used to analysed above mention effect on how the foreign demand changed designs of carpets and the business itself, how the production in households moved to the commercial premises and a flourished the industry.

Keywords: consumption patterns, carpet weaving, ottoman oriental carpets, commercialisation

Procedia PDF Downloads 142
5522 Viability Analysis of a Centralized Hydrogen Generation Plant for Use in Oil Refining Industry

Authors: C. Fúnez Guerra, B. Nieto Calderón, M. Jaén Caparrós, L. Reyes-Bozo, A. Godoy-Faúndez, E. Vyhmeister

Abstract:

The global energy system is experiencing a change of scenery. Unstable energy markets, an increasing focus on climate change and its sustainable development is forcing businesses to pursue new solutions in order to ensure future economic growth. This has led to the interest in using hydrogen as an energy carrier in transportation and industrial applications. As an energy carrier, hydrogen is accessible and holds a high gravimetric energy density. Abundant in hydrocarbons, hydrogen can play an important role in the shift towards low-emission fossil value chains. By combining hydrogen production by natural gas reforming with carbon capture and storage, the overall CO2 emissions are significantly reduced. In addition, the flexibility of hydrogen as an energy storage makes it applicable as a stabilizer in the renewable energy mix. The recent development in hydrogen fuel cells is also raising the expectations for a hydrogen powered transportation sector. Hydrogen value chains exist to a large extent in the industry today. The global hydrogen consumption was approximately 50 million tonnes (7.2 EJ) in 2013, where refineries, ammonia, methanol production and metal processing were main consumers. Natural gas reforming produced 48% of this hydrogen, but without carbon capture and storage (CCS). The total emissions from the production reached 500 million tonnes of CO2, hence alternative production methods with lower emissions will be necessary in future value chains. Hydrogen from electrolysis is used for a wide range of industrial chemical reactions for many years. Possibly, the earliest use was for the production of ammonia-based fertilisers by Norsk Hydro, with a test reactor set up in Notodden, Norway, in 1927. This application also claims one of the world’s largest electrolyser installations, at Sable Chemicals in Zimbabwe. Its array of 28 electrolysers consumes 80 MW per hour, producing around 21,000 Nm3/h of hydrogen. These electrolysers can compete if cheap sources of electricity are available and natural gas for steam reforming is relatively expensive. Because electrolysis of water produces oxygen as a by-product, a system of Autothermal Reforming (ATR) utilizing this oxygen has been analyzed. Replacing the air separation unit with electrolysers produces the required amount of oxygen to the ATR as well as additional hydrogen. The aim of this paper is to evaluate the technical and economic potential of large-scale production of hydrogen for oil refining industry. Sensitivity analysis of parameters such as investment costs, plant operating hours, electricity price and sale price of hydrogen and oxygen are performed.

Keywords: autothermal reforming, electrolyser, hydrogen, natural gas, steam methane reforming

Procedia PDF Downloads 213
5521 Trade in Value Added: The Case of the Central and Eastern European Countries

Authors: Łukasz Ambroziak

Abstract:

Although the impact of the production fragmentation on trade flows has been examined many times since the 1990s, the research was not comprehensive because of the limitations in traditional trade statistics. Early 2010s the complex databases containing world input-output tables (or indicators calculated on their basis) has made available. It increased the possibilities of examining the production sharing in the world. The trade statistic in value-added terms enables us better to estimate trade changes resulted from the internationalisation and globalisation as well as benefits of the countries from international trade. In the literature, there are many research studies on this topic. Unfortunately, trade in value added of the Central and Eastern European Countries (CEECs) has been so far insufficiently studied. Thus, the aim of the paper is to present changes in value added trade of the CEECs (Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia) in the period of 1995-2011. The concept 'trade in value added' or 'value added trade' is defined as the value added of a country which is directly and indirectly embodied in final consumption of another country. The typical question would be: 'How much value added is created in a country due to final consumption in the other countries?' The data will be downloaded from the World Input-Output Database (WIOD). The structure of this paper is as follows. First, theoretical and methodological aspects related to the application of the input-output tables in the trade analysis will be studied. Second, a brief survey of the empirical literature on this topic will be presented. Third, changes in exports and imports in value added of the CEECs will be analysed. A special attention will be paid to the differences in bilateral trade balances using traditional trade statistics (in gross terms) on one side, and value added statistics on the other. Next, in order to identify factors influencing value added exports and value added imports of the CEECs the generalised gravity model, based on panel data, will be used. The dependent variables will be value added exports and imports. The independent variables will be, among others, the level of GDP of trading partners, the level of GDP per capita of trading partners, the differences in GDP per capita, the level of the FDI inward stock, the geographical distance, the existence (or non-existence) of common border, the membership (or not) in preferential trade agreements or in the EU. For comparison, an estimation will also be made based on exports and imports in gross terms. The initial research results show that the gravity model better explained determinants of trade in value added than gross trade (R2 in the former is higher). The independent variables had the same direction of impact both on value added exports/imports and gross exports/imports. Only value of coefficients differs. The most difference concerned geographical distance. It had smaller impact on trade in value added than gross trade.

Keywords: central and eastern European countries, gravity model, input-output tables, trade in value added

Procedia PDF Downloads 243
5520 Post-Hatching Development of the Cloacal Bursa in Chicken

Authors: Fatimah A. Alhomaid

Abstract:

A total of 40 one day-old LSL chicks (Lohman Selected Loghorn) were used in this study. In 20 days-old chicks, the bursa was formed of mucosa, musculosa and serosa. Its lamina propria was lymphoid in nature. After hatching, the bursa continued to grow and became fully developed at the 30th day post- hatching. It appeared as a blind sac. Its lumen was occupied by 12-13 mucosal folds. Each fold was lined by tall columnar or pseudo- stratified columnar epithelium. Its core was made of lamina propria infiltrated by a large number of lymphoid follicles. Most follicles possessed an outer corona surrounding a germinal center. At the age of 6 weeks physiological regression of the bursa was observed. The lymphoid follicles were decreased in size, the lymphocytes were depleted and the interfollicular stroma became obvious, thicker and more fibrous. Fibrosis of the lymphoid follicles was frequently seen in some sections at the age of 30 weeks.

Keywords: Bursa of fabricius, lymphocytes, cloacal Bursa

Procedia PDF Downloads 478
5519 Dinoflagellate Thecal Plates as a Green Cellulose Source

Authors: Alvin Chun Man Kwok, Wai Sun Chan, Wei Yuan, Joseph Tin Yum Wong

Abstract:

Cellulose, the most abundant biopolymer, is the major constituent of plant and dinoflagellate cell walls. Thecate dinoflagellates, in particular, are renowned for their remarkable capacity to synthesize intricate cellulosic thecal plates (CTPs). Unlike the extracellular two-dimensional structure of plant cell walls, these CTPs are three-dimensional and reside within the cellular structure itself. The deposition of CTPs occurs with remarkable precision, and their arrangement serves as crucial taxonomic markers. It is noteworthy that these plates possess the hardness of wood, despite the absence of lignin. Partial and prolonged hydrolysis of CTPs results in the formation of uniform long bundles and lowdimensional, modular crystalline whiskers. This observation aligns with the consistent nanomechanical properties, suggesting a CTPboard structure. The unique composition and structural characteristics of CTPs distinguish them from other cellulose-based materials in the natural world. Spectroscopic studies using Raman and FTIR methods indicate a clear low crystallinity index, with the OH shift becoming more distinct following SDS treatment. Birefringence imaging confirms the highly organized structure of CTPs, demonstrating varying degrees of anisotropy in different regions, including both seaward and cytosolic passages. The knockdown of a cellulose synthase enzyme in dinoflagellates resulted in severe malformation of CTPs and hindered the life-cycle transition. Unlike certain other microalgal groups, these unique circum-spherical depositions of CTPs were not pre-fabricated and transported "to site," but synthesized within alveolar sacs at the specific site. Our research is particularly focused on unraveling the mechanisms underlying the biodeposition of CTPs and exploring their potential biotechnological applications. Understanding the processes involved in CTP formation can pave the way for harnessing their unique properties for various practical applications. Dinoflagellates play a crucial role as major agents of algal blooms and are also known for producing anti-greenhouse sulfur compounds such as DMS/DMSP, highlighting the significance of CTPs as a carbon-neutral source of cellulose. Grant acknowledgement: Research in the laboratory are supported by GRF16104523 from Research Grant Council to JTYW.

Keywords: cellulosic thecal plates, dinoflagellates, cellulose, cell wall

Procedia PDF Downloads 107