Search results for: magnetic refrigeration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1458

Search results for: magnetic refrigeration

1458 New Refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ for Application in Magnetic Refrigeration

Authors: Essebti Dhahri

Abstract:

We present a new refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ (x = 0.0-0.1) manganites. These compounds were prepared by the sol-gel method. The refinement of the X-ray diffraction reveals that all samples crystallize in a rhombohedral structure (space group R3 ̅c). Detailed measurements of the magnetization as a function of temperature and magnetic applied field M (µ₀H, T) were carried out. From the M(µ₀H, T) curves, we have calculated the magnetic entropy change (ΔSM) according to the Maxwell relation. The temperature dependence of the magnetization M(T) reveals a decrease of M when increasing the x content. The magnetic entropy change (ΔSM) reaches a maximum value near room temperature. It was also found that this compound exhibits a large magnetocaloric effect MCE which increases when decreasing Ga concentration. So, the studied compounds could be considered potential materials for magnetic refrigeration application.

Keywords: magnetic measurements, Rietveld refinement, magnetic refrigeration, magnetocaloric effect

Procedia PDF Downloads 52
1457 Design of Advanced Materials for Alternative Cooling Devices

Authors: Emilia Olivos, R. Arroyave, A. Vargas-Calderon, J. E. Dominguez-Herrera

Abstract:

More efficient cooling systems are needed to reduce building energy consumption and environmental impact. At present researchers focus mainly on environmentally-friendly magnetic materials and the potential application in cooling devices. The magnetic materials presented in this project belong to a group known as Heusler alloys. These compounds are characterized by a strong coupling between their structure and magnetic properties. Usually, a change in one of them can alter the other, which implies changes in other electronic or structural properties, such as, shape magnetic memory response or the magnetocaloric effect. Those properties and its dependence with external fields make these materials interesting, both from a fundamental point of view, as well as on their different possible applications. In this work, first principles and Monte Carlo simulations have been used to calculate exchange couplings and magnetic properties as a function of an applied magnetic field on Heusler alloys. As a result, we found a large dependence of the magnetic susceptibility, entropy and heat capacity, indicating that the magnetic field can be used in experiments to trigger particular magnetic properties in materials, which are necessary to develop solid-state refrigeration devices.

Keywords: ferromagnetic materials, magnetocaloric effect, materials design, solid state refrigeration

Procedia PDF Downloads 165
1456 A Multi-Objective Optimization Tool for Dual-Mode Operating Active Magnetic Regenerator Model

Authors: Anna Ouskova Leonteva, Michel Risser, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet

Abstract:

This paper proposes an efficient optimization tool for an active magnetic regenerator (AMR) model, operating in two modes: magnetic refrigeration system (MRS) and thermo-magnetic generator (TMG). The aim of this optimizer is to improve the design of the AMR by applying a multi-physics multi-scales numerical model as a core of evaluation functions to achieve industrial requirements for refrigeration and energy conservation systems. Based on the multi-objective non-dominated sorting genetic algorithm 3 (NSGA3), it maximizes four different objectives: efficiency and power density for MRS and TMG. The main contribution of this work is in the simultaneously application of a CPU-parallel NSGA3 version to the AMR model in both modes for studying impact of control and design parameters on the performance. The parametric study of the optimization results are presented. The main conclusion is that the common (for TMG and MRS modes) optimal parameters can be found by the proposed tool.

Keywords: ecological refrigeration systems, active magnetic regenerator, thermo-magnetic generator, multi-objective evolutionary optimization, industrial optimization problem, real-world application

Procedia PDF Downloads 81
1455 An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design

Authors: Moulay Youssef El Hafidi

Abstract:

In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids.

Keywords: magnetic cooling, nanofluid, gadolinium, permanent magnets, heat exchange

Procedia PDF Downloads 40
1454 Magnetic, Magnetocaloric, and Electrical Properties of Pr0.7Ca0.3Mn0.9M0.1O3

Authors: A. Selmi, A. Bettaibi, H. Rahmouni, R. M’nassri, N. Chniba Boudjada, A. Chiekhrouhou, K. Khirouni

Abstract:

Investigation of magnetic and magnetocaloric properties of Pr₀.₇Ca₀.₃Mn₀.₉M₀.₁O₃ perovskite manganites (M=Cr and Ni) has been carried out. Our compounds were prepared by the conventional solid-state reaction method at high temperatures. Rietveld refinement of X-ray diffraction pattern using FULLPROF method shows that all compounds adopt the orthorhombic structure with Pnma space group. The partial substitution of Mn-site drives the system from charge order state to ferromagnetic one with a Curie temperature T𝒸=150K, 118k and 116K for M=Cr and Ni, respectively. Magnetization measurements versus temperature in a magnetic applied field of 0.05T show that all our samples exhibit a paramagnetic–ferromagnetic transition with decreasing temperature. From M(H) isotherms, we have deduced the magnetic entropy change, which present maximum values of 2.37 J/kg.K and 2.94 J/kg.K, in a magnetic field change of 5T for M=Cr and Ni, respectively.

Keywords: manganites, magnetocaloric, magnetic, refrigeration

Procedia PDF Downloads 36
1453 Performance Analysis of Air Conditioning System Working on the Vapour Compression Refrigeration Cycle under Magnetohydrodynamic Influence

Authors: Nikhil S. Mane, Mukund L. Harugade, Narayan V. Hargude, Vishal P. Patil

Abstract:

The fluids exposed to magnetic field can enhance the convective heat transfer by inducing secondary convection currents due to Lorentz force. The use of magnetohydrodynamic (MHD) forces in power generation and mass transfer is increasing steadily but its application to enhance the convective currents in fluids needed to be explored. The enhancement in convective heat transfer using MHD forces can be employed in heat exchangers, cooling of molten metal, vapour compression refrigeration (VCR) systems etc. The effective increase in the convective heat transfer without any additional energy consumption will lead to the energy efficient heat exchanging devices. In this work, the effect of MHD forces on the performance of air conditioning system working on the VCR system is studied. The refrigerant in VCR system is exposed to the magnetic field which influenced the flow of refrigerant. The different intensities of magnets are used on the different liquid refrigerants and investigation on performance of split air conditioning system is done under different loading conditions. The results of this research work show that the application of magnet on refrigerant flow has positive influence on the coefficient of performance (COP) of split air conditioning system. It is also observed that with increasing intensity of magnetic force the COP of split air conditioning system also increases.

Keywords: magnetohydrodynamics, heat transfer enhancement, VCRS, air conditioning, refrigeration

Procedia PDF Downloads 172
1452 Magnetocaloric Effect in Ho₂O₃ Nanopowder at Cryogenic Temperature

Authors: K. P. Shinde, M. V. Tien, H. Lin, H.-R. Park, S.-C.Yu, K. C. Chung, D.-H. Kim

Abstract:

Magnetic refrigeration provides an attractive alternative cooling technology due to its potential advantages such as high cooling efficiency, environmental friendliness, low noise, and compactness over the conventional cooling techniques based on gas compression. Magnetocaloric effect (MCE) occurs by changes in entropy (ΔS) and temperature (ΔT) under external magnetic fields. We have been focused on identifying materials with large MCE in two temperature regimes, not only room temperature but also at cryogenic temperature for specific technological applications, such as space science and liquefaction of hydrogen in fuel industry. To date, the commonly used materials for cryogenic refrigeration are based on hydrated salts. In the present work, we report giant MCE in rare earth Ho2O3 nanopowder at cryogenic temperature. HoN nanoparticles with average size of 30 nm were prepared by using plasma arc discharge method with gas composition of N2/H2 (80%/20%). The prepared HoN was sintered in air atmosphere at 1200 oC for 24 hrs to convert it into oxide. Structural and morphological properties were studied by XRD and SEM. XRD confirms the pure phase and cubic crystal structure of Ho2O3 without any impurity within error range. It has been discovered that Holmium oxide exhibits giant MCE at low temperature without magnetic hysteresis loss with the second-order antiferromagnetic phase transition with Néels temperature around 2 K. The maximum entropy change was found to be 25.2 J/kgK at an applied field of 6 T.

Keywords: magnetocaloric effect, Ho₂O₃, magnetic entropy change, nanopowder

Procedia PDF Downloads 111
1451 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions

Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz

Abstract:

This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.

Keywords: absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle

Procedia PDF Downloads 197
1450 Structural, Magnetic and Magnetocaloric Properties of Iron-Doped Nd₀.₆Sr₀.₄MnO₃ Perovskite

Authors: Ismail Al-Yahmadi, Abbasher Gismelseed, Fatma Al-Mammari, Ahmed Al-Rawas, Ali Yousif, Imaddin Al-Omari, Hisham Widatallah, Mohamed Elzain

Abstract:

The influence of Fe-doping on the structural, magnetic and magnetocaloric properties of Nd₀.₆Sr₀.₄FeₓMn₁₋ₓO₃ (0≤ x ≤0.5) were investigated. The samples were synthesized by auto-combustion Sol-Gel method. The phase purity, crystallinity, and the structural properties for all prepared samples were examined by X-ray diffraction. XRD refinement indicates that the samples are crystallized in the orthorhombic single-phase with Pnma space group. Temperature dependence of magnetization measurements under a magnetic applied field of 0.02 T reveals that the samples with (x=0.0, 0.1, 0.2 and 0.3) exhibit a paramagnetic (PM) to ferromagnetic (FM) transition with decreasing temperature. The Curie temperature decreased with increasing Fe content from 256 K for x =0.0 to 80 K for x =0.3 due to increasing of antiferromagnetic superexchange (SE) interaction coupling. Moreover, the magnetization as a function of applied magnetic field (M-H) curves was measured at 2 K, and 300 K. the results of such measurements confirm the temperature dependence of magnetization measurements. The magnetic entropy change|∆SM | was evaluated using Maxwell's relation. The maximum values of the magnetic entropy change |-∆SMax |for x=0.0, 0.1, 0.2, 0.3 are found to be 15.35, 5.13, 3.36, 1.08 J/kg.K for an applied magnetic field of 9 T. Our result on magnetocaloric properties suggests that the parent sample Nd₀.₆Sr₀.₄MnO₃ could be a good refrigerant for low-temperature magnetic refrigeration.

Keywords: manganite perovskite, magnetocaloric effect, X-ray diffraction, relative cooling power

Procedia PDF Downloads 110
1449 Sustainable Refrigerated Transport Engineering

Authors: A. A, F. Belmir, A. El Bouari, Y. Abboud

Abstract:

This article presents a study of the thermal performance of a new solar mobile refrigeration prototype for the preservation of perishable foods. The simulation of the refrigeration cycle and the calculation of the thermal balances made it possible to estimate its consumption and to evaluate the capacity of each photovoltaic component necessary for the production of energy. The study provides a description of the refrigerator construction and operation, including an energy balance analysis of the refrigerator performance under typical loads. The photovoltaic system requirements are also detailed.

Keywords: composite, material, photovoltaic, refrigeration, thermal

Procedia PDF Downloads 198
1448 Enhancing the Performance of Vapor Compression Refrigeration Systems Using HFC134a by Nanoparticles Suspensions

Authors: Hafsi Khebab, Zirari Mounir, Mohamed Nadjib Bouaziz

Abstract:

High Global Warming Potential refrigerants (HydroFluroCarbons) are one of the worst greenhouse gases used in a wide variety of applications, including refrigeration and air-conditioning. Nanotechnology is a promising field in sustainable energy to reduce energy and ecological resource consumption for HVACR (heat, ventilation, air conditioning, and refrigeration) systems. Most researchers reported an improvement in heat transfer coefficient, Coefficient of performance. In this report, a brief summary has been done on the performance enhancement of the Vapor Compression Refrigeration system using HFC134a with nano refrigerants.

Keywords: nanorefrigerant, HFCs, greenhouse gases, GWP, HVACR systems, energy saving

Procedia PDF Downloads 38
1447 Evaluation of Advanced Architectures for Commercial Refrigeration Systems Using Low Global Warming Potential Refrigerants

Authors: Fabrizio Codella, Chris Parker, Samer Saab

Abstract:

The Kigali Amendment is driving the adoption of low Global Warming Potential refrigerants in commercial refrigeration systems in over a hundred countries. Several refrigeration systems for the small and large retail stores at mild and hot ambient temperature climates have been compared for hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), transcritical CO₂ and propane, in typical and advanced system architectures. The results of system performance, emissions and lifetime cost have been compared. The greatest benefits were found to be obtained by low global warming potential HFO advanced systems.

Keywords: commercial refrigeration, CO₂, emissions, HFO, lifetime cost, performance

Procedia PDF Downloads 97
1446 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources

Authors: Samad Jafarmadar, Amin Habibzadeh

Abstract:

A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.

Keywords: combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids

Procedia PDF Downloads 229
1445 Magnetic Nanoparticles for Cancer Therapy

Authors: Sachinkumar Patil, Sonali Patil, Shitalkumar Patil

Abstract:

Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles.

Keywords: magnetic nanoparticles, synthesis, characterization, cancer therapy, hyperthermia, application

Procedia PDF Downloads 597
1444 Experimental and Finite Element Analysis of Large Deformation Characteristics of Magnetic Responsive Hydrogel Nanocomposites Membranes

Authors: Mallikarjunachari Gangapuram

Abstract:

Stimuli-responsive hydrogel nanocomposite membranes are gaining significant attention these days due to their potential applications in various engineering fields. For example, sensors, soft actuators, drug delivery, remote controlled therapy, water treatment, shape morphing, and magnetic refrigeration are few advanced applications of hydrogel nanocomposite membranes. In this work, hydrogel nanocomposite membranes are synthesized by embedding nanometer-sized (diameter - 300 nm) Fe₃O₄ magnetic particles into the polyvinyl alcohol (PVA) polymer. To understand the large deformation characteristics of these membranes, a well-known experimental method ball indentation technique is used. Different designing parameters such as membrane thickness, the concentration of magnetic particles and ball diameter on the viscoelastic properties are studied. All the experiments are carried out without and with a static magnetic field. Finite element simulations are carried out to validate the experimental results. It is observed, the creep response decreases and Young’s modulus increases as the thickness and concentration of magnetic particles increases. Image analysis revealed the hydrogel membranes are undergone global deformation for ball diameter 18 mm and local deformation when the diameter decreases from 18 mm to 0.5 mm.

Keywords: ball indentation, hydrogel membranes, nanocomposites, Young's modulus

Procedia PDF Downloads 94
1443 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite

Authors: M. Bahgat, F. M. Awan, H. A. Hanafy

Abstract:

The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.

Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties

Procedia PDF Downloads 648
1442 Optimization of a Combined Ejector-Vapor Compression Refrigeration Systems with R134a

Authors: Ilhem Ouelhazi, Mouna Elakhdar, Lakdar Kairouani

Abstract:

A computer simulation model for a combined ejector-vapor compression cycle that uses working fluid R134a. A refrigeration system was developed which combines a basic vapor compression refrigeration cycle with an ejector cooling cycle. A one-dimensional mathematical model was developed using the equations governing the flow and thermodynamics based on the constant area ejector flow model. The effects of the operating parameters on the cooling capacity, the performance coefficient, and the entrainment ratio are studied. The current model is based on the NIST-REFPROP database for refrigerants properties calculations. The simulated performance is compared with the available experimental data from the literature for validation.

Keywords: combined refrigeration cycle, constant area ejector, R134a, ejector-cooling cycle, performance, mathematical simulation, vapor compression cycle

Procedia PDF Downloads 180
1441 Energy Efficient Refrigerator

Authors: Jagannath Koravadi, Archith Gupta

Abstract:

In a world with constantly growing energy prices, and growing concerns about the global climate changes caused by increased energy consumption, it is becoming more and more essential to save energy wherever possible. Refrigeration systems are one of the major and bulk energy consuming systems now-a-days in industrial sectors, residential sectors and household environment. Refrigeration systems with considerable cooling requirements consume a large amount of electricity and thereby contribute greatly to the running costs. Therefore, a great deal of attention is being paid towards improvement of the performance of the refrigeration systems in this regard throughout the world. The Coefficient of Performance (COP) of a refrigeration system is used for determining the system's overall efficiency. The operating cost to the consumer and the overall environmental impact of a refrigeration system in turn depends on the COP or efficiency of the system. The COP of a refrigeration system should therefore be as high as possible. Slight modifications in the technical elements of the modern refrigeration systems have the potential to reduce the energy consumption, and improvements in simple operational practices with minimal expenses can have beneficial impact on COP of the system. Thus, the challenge is to determine the changes that can be made in a refrigeration system in order to improve its performance, reduce operating costs and power requirement, improve environmental outcomes, and achieve a higher COP. The opportunity here, and a better solution to this challenge, will be to incorporate modifications in conventional refrigeration systems for saving energy. Energy efficiency, in addition to improvement of COP, can deliver a range of savings such as reduced operation and maintenance costs, improved system reliability, improved safety, increased productivity, better matching of refrigeration load and equipment capacity, reduced resource consumption and greenhouse gas emissions, better working environment, and reduced energy costs. The present work aims at fabricating a working model of a refrigerator that will provide for effective heat recovery from superheated refrigerant with the help of an efficient de-superheater. The temperature of the refrigerant and water in the de-super heater at different intervals of time are measured to determine the quantity of waste heat recovered. It is found that the COP of the system improves by about 6% with the de-superheater and the power input to the compressor decreases by 4 % and also the refrigeration capacity increases by 4%.

Keywords: coefficiency of performance, de-superheater, refrigerant, refrigeration capacity, heat recovery

Procedia PDF Downloads 293
1440 A Conceptual Design of Freeze Desalination Using Low Cost Refrigeration

Authors: Parul Sahu

Abstract:

In recent years, seawater desalination has been emerged as a potential resource to circumvent water scarcity, especially in coastal regions. Among the various methods, thermal evaporation or distillation and membrane operations like Reverse Osmosis (RO) has been exploited at commercial scale. However, the energy cost and maintenance expenses associated with these processes remain high. In this context Freeze Desalination (FD), subjected to the availability of low cost refrigeration, offers an exciting alternative. Liquefied Natural Gas (LNG) regasification terminals provide an opportunity to utilize the refrigeration available with regasification of LNG. This work presents the conceptualization and development of a process scheme integrating the ice and hydrate based FD to the LNG regasification process. This integration overcomes the high energy demand associated with FD processes by utilizing the refrigeration associated with LNG regasification. An optimal process scheme was obtained by performing process simulation using ASPEN PLUS simulator. The results indicated the new proposed process requires only 1 kWh/m³ of energy with the utilization of maximum refrigeration. In addition, a sensitivity analysis was also performed to study the effect of various process parameters on water recovery and energy consumption for the proposed process. The results show that the energy consumption decreases by 30% with an increase in water recovery from 30% to 60%. However, due to operational limitations associated with ice and hydrate handling in seawater, the water recovery cannot be maximized but optimized. The proposed process can be potentially used to desalinate seawater in integration with LNG regasification terminal.

Keywords: freeze desalination, liquefied natural gas regasification, process simulation, refrigeration

Procedia PDF Downloads 94
1439 Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field

Authors: P. W. Chen, C. T. Chang, Y. Peng, J. Y. Wu, D. J. Jan, Md. Manirul Ali

Abstract:

In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength.

Keywords: cathode spot, vacuum arc discharge, oblique magnetic field, tangential magnetic field

Procedia PDF Downloads 280
1438 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves

Authors: Angel Pérez Sánchez

Abstract:

Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.

Keywords: magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves

Procedia PDF Downloads 30
1437 Exergy Analysis of Vapour Compression Refrigeration System Using R507A, R134a, R114, R22 and R717

Authors: Ali Dinarveis

Abstract:

This paper compares the energy and exergy efficiency of a vapour compression refrigeration system using refrigerants of different groups. In this study, five different refrigerants including R507A, R134a, R114, R22 and R717 have been studied. EES Program is used to solve the thermodynamic equations. The results of this analysis are shown graphically. Based on the results, energy and exergy efficiencies for R717 are higher than the other refrigerants. Also, the energy and exergy efficiencies will be decreased with increasing the condensing temperature and decreasing the evaporating temperature.

Keywords: Energy, Exergy, Refrigeration, thermodynamic, vapour

Procedia PDF Downloads 109
1436 Study of Skid-Mounted Natural Gas Treatment Process

Authors: Di Han, Lingfeng Li

Abstract:

Selection of low-temperature separation dehydration and dehydrochlorination process applicable to skid design, using Hysys software to simulate the low-temperature separation dehydration and dehydrochlorination process under different refrigeration modes, focusing on comparing the refrigeration effect of different refrigeration modes, the condensation amount of hydrocarbon liquids and alcoholic wastewater, as well as the adaptability of the process, and determining the low-temperature separation process applicable to the natural gas dehydration and dehydrochlorination skid into the design of skid; and finally, to carry out the CNG recycling process calculations of the processed qualified natural gas and to determine the dehydration scheme and the key parameters of the compression process.

Keywords: skidding, dehydration and dehydrochlorination, cryogenic separation process, CNG recovery process calculations

Procedia PDF Downloads 92
1435 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.

Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables

Procedia PDF Downloads 293
1434 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.

Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables

Procedia PDF Downloads 331
1433 Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids

Authors: Sameh Frikha, Mohamed Salah Abid

Abstract:

We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture.

Keywords: coefficient of performance, environment friendly zeotropic mixture, integrated cascade, ultra low temperature, vapor compression refrigeration cycles

Procedia PDF Downloads 226
1432 Study of Two Adsorbent-Refrigerant Pairs for the Application of Solar-Powered Adsorption Refrigeration System

Authors: Mohammed Ali Hadj Ammar, Fethi Bouras, Kamel Sahlaoui

Abstract:

This article presents a detailed study of two working pairs intended for use in solar adsorption refrigeration (SAR) system. The study was based on two indicators: the daily production and coefficient of performance (COP). The thermodynamic cycle of the system is based on the adsorption phenomena at a constant temperature. A computer simulation program has been developed for modeling and performance evaluation for the solar-powered adsorption refrigeration cycle. It was found that maximal cycled mass is obtained by S40/water (0.280kg/kg) followed by CarboTech C40/1/methanol (0.260kg/kg). At a condenser temperature of 30°C, with an adsorbent mass of 38.59 kg, and an integrated collector/bed configuration, the couple CarboTech C40/1/methanol for the ice-maker purpose can reach cycle COP of 0.63 and can produce about 13.6kg ice per day, while the couple S40/water for the air-conditioning can reach cycle COP of 0.66 and 212kg as daily cold-water production. Additionally, adequate indicators are evaluated addressing the economic and environmental associated with each working pair.

Keywords: solar adsorption, refrigeration, activated carbon, silica gel

Procedia PDF Downloads 88
1431 Magnetic and Optical Properties of GaFeMnN

Authors: A.Abbad, H.A.Bentounes, W.Benstaali

Abstract:

The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties.

Keywords: FP-LAPW, LSDA, magnetic moment, reflectivity

Procedia PDF Downloads 484
1430 Effect of White Roofing on Refrigerated Buildings

Authors: Samuel Matylewicz, K. W. Goossen

Abstract:

The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.

Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes

Procedia PDF Downloads 95
1429 Thermodynamic Analysis of an Ejector-Absorption Refrigeration Cycle with Using NH3-H2O

Authors: Samad Jafarmadar, Amin Habibzadeh, Mohammad Mehdi Rashidi, Sayed Sina Rezaei, Abbas Aghagoli

Abstract:

In this paper, the ejector-absorption refrigeration cycle is presented. This article deals with the thermodynamic simulation and the first and second law analysis of an ammonia-water. The effects of parameters such as condenser, absorber, generator, and evaporator temperatures have been investigated. The influence of the various operating parameters on the performance coefficient and exergy efficiency of this cycle has been studied. The results show that when the temperature of different parts increases, the performance coefficient and the exergy efficiency of the cycle decrease, except for evaporator and generator, that causes an increase in coefficient of performance (COP). According to the results, absorber and ejector have the highest exergy losses in the studied conditions.

Keywords: absorption refrigeration, COP, ejector, exergy efficiency

Procedia PDF Downloads 284