Search results for: oyster production
2542 Towards a Smart Irrigation System Based on Wireless Sensor Networks
Authors: Loubna Hamami, Bouchaib Nassereddine
Abstract:
Due to the evolution of technologies, the need to observe and manage hostile environments, and reduction in size, wireless sensor networks (WSNs) are becoming essential and implicated in the most fields of life. WSNs enable us to change the style of living, working and interacting with the physical environment. The agricultural sector is one of such sectors where WSNs are successfully used to get various benefits. For successful agricultural production, the irrigation system is one of the most important factors, and it plays a tactical role in the process of agriculture domain. However, it is considered as the largest consumer of freshwater. Besides, the scarcity of water, the drought, the waste of the limited available water resources are among the critical issues that touch the almost sectors, notably agricultural services. These facts are leading all governments around the world to rethink about saving water and reducing the volume of water used; this requires the development of irrigation practices in order to have a complete and independent system that is more efficient in the management of irrigation. Consequently, the selection of WSNs in irrigation system has been a benefit for developing the agriculture sector. In this work, we propose a prototype for a complete and intelligent irrigation system based on wireless sensor networks and we present and discuss the design of this prototype. This latter aims at saving water, energy and time. The proposed prototype controls water system for irrigation by monitoring the soil temperature, soil moisture and weather conditions for estimation of water requirements of each plant.Keywords: precision irrigation, sensor, wireless sensor networks, water resources
Procedia PDF Downloads 1532541 Indirect Environmental Benefits from Cloud Computing Information and Communications Technology Integration in Rural Agricultural Communities
Authors: Jeana Cadby, Kae Miyazawa
Abstract:
With rapidly expanding worldwide adoption of mobile technologies, Information and Communication Technology (ITC) is a major energy user and a contributor to global carbon emissions, due to infrastructure and operational energy consumption. The agricultural sector is also significantly responsible for contributing to global carbon emissions. However, ICT cloud computing using mobile technology can directly reduce environmental impacts in the agricultural sector through applications and mobile connectivity, such as precision fertilizer and pesticide applications, or access to weather data, for example. While direct impacts are easily calculated, indirect environmental impacts from ICT cloud computing usage have not been thoroughly investigated. For example, while women may be more poorly equipped for adaptation to environmentally sustainable agricultural practices due to resource constraints, this research concludes that indirect environmental benefits can be achieved by improving rural access to mobile technology for women. Women in advanced roles and secure land tenure are more likely to invest in long-term agricultural conservation strategies, which protect against environmental degradation. This study examines how ICT using mobile technology advances the role of women in rural agricultural systems and indirectly reduces environmental impacts from agricultural production, through literature examination from secondary sources. Increasing access for women to ICT mobile technology provides indirect environmental and social benefits in the rural agricultural sector.Keywords: cloud computing, environmental benefits, mobile technology, women
Procedia PDF Downloads 1672540 Policy and Practice of Later-Life Learning in China: A Critical Document Discourse Analysis
Authors: Xue Wu
Abstract:
Since the 1980s, a series of policies and practices have been implemented in China in response to the unprecedented rate of ageing population. The paper provides a detailed narrative of what later-life learning policy discourses have been advocated and gives a description on relevant practical issues during the past three decades. The research process based on the discourse approach with a systematic review of the government-issued documents. It finds that the main practices taken by central government at various levels were making University of the Aged (UA) available in all urban and rural regions to consolidate the newly student enrollments; focusing social-recreational, leisure and cultural activities on 55-75 age group; and utilizing various methods including voluntary works and tourism to improve older adults’ physical and mental wellness. Although there were greater achievements with 30 years of development, many problems still exist. Finding reveals that the curriculum should be modified to meet the needs of the local development, to promote older adults’ contact and contribution to the community, and to enhance technical competences of those in rural areas involving in agricultural production. Central government should also integrate resources from all sectors of the society for further developing later-life learning in China. The result of this paper highlights the value to promote community-based later-life learning for building a society for active ageing and ageing in place.Keywords: ageing population, China, later-life learning, policy, University of the Aged
Procedia PDF Downloads 1432539 Exergy Analysis of Poultry Litter-to-Energy Production by the Advanced Combustion System
Authors: Samuel Oludayo Alamu, Seong Lee
Abstract:
The need for generating energy from biomass in an efficient way as well as maximizing the yield of total energy from the thermal conversion process has been a major concern for researchers. A holistic approach which involves the combination of First law of thermodynamics (FLT) and the second law of thermodynamics (SLT) is required for conducting an effective assessment of an energy plant since FLT analysis alone fails to identify the quality of the dissipated energy and how much work potential is available. The overall purpose of this study is to investigate the exergy analysis of direct combustion of poultry waste being converted to energy with a handful of environmental assessment of the conversion processes in order to maximize thermal efficiency. The exergy analysis around the shell and tube heat exchanger (STHE) was investigated primarily by varying the operating parameters for different tube shapes and flow direction, and an exergy model was obtained from estimations of the higher heating value and standard entropy of poultry waste from the elemental compositions. The STHE was designed and fabricated by Lee Research Group at Morgan State University. The analysis conducted on theSTHE using the flue gas temperature entering and exiting show that only about one-third of the energy input to the STHE was available to do work with an overall efficiency of 13.8%, while a huge amount was lost to the surrounding. By recirculating the flue gas, the exergy efficiency of the combustion system can be maximized with a greater reduction in the amount of exergy loss.Keywords: exergy analysis, shell and tube heat exchanger, thermodynamics, combustion system, thermal efficiency
Procedia PDF Downloads 1072538 Energy Conservation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis
Procedia PDF Downloads 2852537 Quality Evaluation of Treated Ballast Seawater for Potential Reuse
Authors: Siti Nur Muhamad, Mohamad Abu Ubaidah Amir, Adenen Shuhada Abdul Aziz, Siti Sarah Mohd Isnan, Ainul Husna Abdul Rahman, Nur Afiqah Rosly, Roshamida Abd Jamil
Abstract:
The International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM Convention) will commencing on 8 September 2017 after ratified by 51 States in September 2016. However, there is no value recovered for the treated ballast water as it simply discharged during de-ballasting. In order to evaluate value creation of treated ballast water, three seawater applications which are seawater toilet flushing, cooling tower and desalination was studied and compared with treated ballast seawater. An exploratory study was conducted in Singapore as a case study as this country is facing water scarcity issues and a busy port in the world which received more than 28 billion m3 of ballast water in 2015. Surprisingly the treatment technology between seawater toilet flushing and ballast water management has similarity as both applications use screening and disinfection process and quality standard and analysis between treated ballast water with seawater applications found that seawater toilet flushing have the same quality parameter with treated ballast water. Thus, the treated ballast water can replace the raw seawater for seawater desalination. As such, with reduction of cost for screen unit, desalination water can exceed water production by NEWater in Singapore as the cost can recover the energy needed for desalination. It can conclude that treated ballast water has high recovery value and can be reused in seawater application.Keywords: ballast water treatment, desalination, BWM convention, ballast water management
Procedia PDF Downloads 3762536 Investigations of the Crude Oil Distillation Preheat Section in Unit 100 of Abadan Refinery and Its Recommendation
Authors: Mahdi GoharRokhi, Mohammad H. Ruhipour, Mohammad R. ZamaniZadeh, Mohsen Maleki, Yusef Shamsayi, Mahdi FarhaniNejad, Farzad FarrokhZadeh
Abstract:
Possessing massive resources of natural gas and petroleum, Iran has a special place among all other oil producing countries, according to international institutions of energy. In order to use these resources, development and functioning optimization of refineries and industrial units is mandatory. Heat exchanger is one of the most important and strategic equipment which its key role in the process of production is clear to everyone. For instance, if the temperature of a processing fluid is not set as needed by heat exchangers, the specifications of desired product can change profoundly. Crude oil enters a network of heat exchangers in atmospheric distillation section before getting into the distillation tower; in this case, well-functioning of heat exchangers can significantly affect the operation of distillation tower. In this paper, different scenarios for pre-heating of oil are studied using oil and gas simulation software, and the results are discussed. As we reviewed various scenarios, adding a heat exchanger to pre-heating network is proposed as the most efficient factor in improving all governing parameters of the tower i.e. temperature, pressure, and reflux rate. This exchanger is embedded in crude oil’s path. Crude oil enters the exchanger after E-101 and exchanges heat with discharging kerosene pump around from E-136. As depicted in the results, it will efficiently assist the improvement of process operation and side expenses.Keywords: atmospheric distillation unit, heat exchanger, preheat, simulation
Procedia PDF Downloads 6582535 Enhancement of Rice Straw Composting Using UV Induced Mutants of Penicillium Strain
Authors: T. N. M. El Sebai, A. A. Khattab, Wafaa M. Abd-El Rahim, H. Moawad
Abstract:
Fungal mutant strains have produced cellulase and xylanase enzymes, and have induced high hydrolysis with enhanced of rice straw. The mutants were obtained by exposing Penicillium strain to UV-light treatments. Screening and selection after treatment with UV-light were carried out using cellulolytic and xylanolytic clear zones method to select the hypercellulolytic and hyperxylanolytic mutants. These mutants were evaluated for their cellulase and xylanase enzyme production as well as their abilities for biodegradation of rice straw. The mutant 12 UV/1 produced 306.21% and 209.91% cellulase and xylanase, respectively, as compared with the original wild type strain. This mutant showed high capacity of rice straw degradation. The effectiveness of tested mutant strain and that of wild strain was compared in relation to enhancing the composting process of rice straw and animal manures mixture. The results obtained showed that the compost product of inoculated mixture with mutant strain (12 UV/1) was the best compared to the wild strain and un-inoculated mixture. Analysis of the composted materials showed that the characteristics of the produced compost were close to those of the high quality standard compost. The results obtained in the present work suggest that the combination between rice straw and animal manure could be used for enhancing the composting process of rice straw and particularly when applied with fungal decomposer accelerating the composting process.Keywords: rice straw, composting, UV mutants, Penicillium
Procedia PDF Downloads 2822534 Can 3D Virtual Prototyping Conquers the Apparel Industry?
Authors: Evridiki Papachristou, Nikolaos Bilalis
Abstract:
Imagine an apparel industry where fashion design does not begin with a paper-and-pen drawing which is then translated into pattern and later to a 3D model where the designer tries out different fabrics, colours and contrasts. Instead, imagine a fashion designer in the future who produces that initial fashion drawing in a three-dimensional space and won’t leave that environment until the product is done, communicating his/her ideas with the entire development team in true to life 3D. Three-dimensional (3D) technology - while well established in many other industrial sectors like automotive, aerospace, architecture and industrial design, has only just started to open up a whole range of new opportunities for apparel designers. The paper will discuss the process of 3D simulation technology enhanced by high quality visualization of data and its capability to ensure a massive competitiveness in the market. Secondly, it will underline the most frequent problems & challenges that occur in the process chain when various partners in the production of textiles and apparel are working together. Finally, it will offer a perspective of how the Virtual Prototyping Technology will make the global textile and apparel industry change to a level where designs will be visualized on a computer and various scenarios modeled without even having to produce a physical prototype. This state-of-the-art 3D technology has been described as transformative and“disruptive”comparing to the process of the way apparel companies develop their fashion products today. It provides the benefit of virtual sampling not only for quick testing of design ideas, but also reducing process steps and having more visibility.A so called“digital asset” that can be used for other purposes such as merchandising or marketing.Keywords: 3D visualization, apparel, virtual prototyping, prototyping technology
Procedia PDF Downloads 5882533 Physical Properties of Crushed Aggregates in Some Selected Quarries in Kwara State, Nigeria
Authors: S. A. Agbalajobi, W. A. Bello
Abstract:
This study examines rock properties of crushed aggregate in some selected quarries in Kwara state, Nigeria. Some physical properties (chemical composition, mineral composition, particle size distribution) of gneiss sample were determined using ISRM standards. The physicomechanical properties (specific gravity, dry density, porosity, water absorption, point load index, tensile, and compressive strength) of the gneiss rock were evaluated. The analysis on the gneiss samples revealed the mean dry density and the unit weight are 2.52 g/m3, 2.63 g/m3, 2.38 g/m3; and 24.1 kN/m3, 25.78 kN/m3, 23.33 kN/m3, respectively (for locations A,B,C). The water absorption level of the gneiss rock sample ranged from 0.38 % – 0.57 % for the three locations. The mean Schmidt hammer rebound value ranged from 51.0 – 52.4 for the three locations and mean point load index values ranged from 9.89 – 10.56 MPa classified as very high strength while the uniaxial compressive strength of the rock samples revealed that its strength ranged from 120 - 139 MPa (for location A, B, and C) classified as strong rock. The aggregate impact value test and aggregate crushing value test conducted on the gneiss aggregates from the three locations in accordance with British Standard. The gneiss sample from the three locations (A, B, and C) is a good material for the production of construction works such as concrete, bricks, pavement, embankment among others, the compressive strength of the material is within the accepted limit.Keywords: gneiss, aggregate impact, aggregate crushing, physic-mechanical properties, rock hardness
Procedia PDF Downloads 3072532 Deciphering Suitability of Rhamnolipids as Emulsifying Agent for Hydrophobic Pollutants
Authors: Asif Jamal, Samia Sakindar, Ramla Rehman
Abstract:
Biosurfactants are amphiphilic surface active compounds obtained from natural resources such as plants and microorganisms. Because of their diverse physicochemical characteristics biosurfactant are replacing synthetic compounds in various commercial applications. In present study, a strain of P. aeruginosa was isolated from crude oil contaminated soil as efficient biosurfactant producers. The biosurfactant production was analyzed as a function of surface tension reduction, oil spreading capacity, emulsification index and hemolysis assay. This bacterial strain showed excellent emulsion activity of EI24 85%, surface tension reduction up to 28.6 mNm-1 and 7.0 mm oil displacement zone. Physicochemical and biological properties of extracted rhamnolipid were also investigated in current study. The chemical composition of product from strain PSS was analyzed by FTIR spectroscopy. The results revealed that extracted biosurfactant was rhamnolipid type in nature having RL-1 and RL-2 homologues. The surface behavior of rhamnolipid in aqueous phase was investigated varying extreme pH, temperature, salt conditions and with various hydrocarbons. The results indicated that biosurfactant produced by strain PSS Which showed stability during high temperature up to 121 C, salt concentrations up to 20% and pH range between (4—14). The emulsification activity with different hydrocarbons was also remarkable. It was concluded that rhamnolipid biosurfactant produced by strain PSS has excellent potential as emulsifying/remediation agent for broad range of hydrophobic pollutants.Keywords: P. aeruginosa, bioremediation, rhamnolipid, surfactants
Procedia PDF Downloads 2792531 Ovarian Surface Epithelium Receptors during Pregnancy and Estrus Cycle of Rats with Emphasis on Steroids and Gonadotropins Fluctuation
Authors: Salina Yahya Saddik
Abstract:
The present study is designed to demonstrate the Ovarian Surface Epithelial cells (OSE) Estrogen Receptor α (ERα) and Progesterone Receptor (PR) during pregnancy and estrous cycle in rat. Moreover, determination of the levels of plasma progesterone, estradiol, FSH and LH were also made. The levels of plasma progesterone, estradiol, FSH and LH concentrations were determined on days 7 (n=5), 14 (n=5), and 21(n=5) of pregnancy in three groups of rats and during the estrous cycle (n=5) using ELISA kit. Immunohistochemical method for PR and ERα expression was also made on the ovary. During pregnancy, FSH and LH remained low except at term when LH levels began to increase from 16 ng/ml to 47 ng/ml. Progesterone levels significantly exceeded estradiol values in all pregnant rats with a peak value of 202 ng/ml on day 14. Elevated progesterone levels were associated negatively with LH and estradiol levels during pregnancy. The levels of estradiol surged significantly on day 21. Immunohistochemistry of the ovary showed low levels of OSE cells staining positive for ERα expression. ERα positive cells were absent on day 7 and 14 of pregnancy, only day 21 recorded a very low percentage of immunostaining (0.5%) within the nuclei of OSE cells. On the contrary, immunostaining of PR was not observed within the nuclei of OSE cells in all groups of study. In conclusions, these results may suggest that progesterone effect during pregnancy seems to be overriding the positive effect of estrogens on OSE cells. High progesterone levels may have a direct negative effect on gonadotropin production and thereby it might inhibit events leading to both follicular development and OSE proliferation. Understanding the factors affecting OSE proliferation may help elucidating the mechanism(s) of assisted diseases such as ovarian cancer.Keywords: ovarian surface, pregnancy, gonadotropins, steroids
Procedia PDF Downloads 3102530 Determination of Physicochemical Properties, Bioaccessibility of Phenolics and Antioxidant Capacity of Mineral Enriched Linden Herbal Tea Beverage
Authors: Senem Suna, Canan Ece Tamer, Ömer Utku Çopur
Abstract:
In this research, dried linden (Tilia argentea) leaves and blossoms were used as a raw material for mineral enriched herbal tea beverage production. For this aim, %1 dried linden was infused with boiling water (100 °C) for 5 minutes. After cooling, sucrose, citric acid, ascorbic acid, natural lemon flavor and natural mineral water were added. Beverage samples were plate filtered, filled into 200-mL glass bottles, capped then pasteurized at 98 °C for 15 minutes. Water soluble dry matter, titratable acidity, ascorbic acid, pH, minerals (Fe, Ca, Mg, K, Na), color (L*, a*, b*), turbidity, bioaccessible phenolics and antioxidant capacity were analyzed. Water soluble dry matter, titratable acidity, and ascorbic were determined as 7.66±0.28 g/100 g, 0.13±0.00 g/100 mL, and 19.42±0.62 mg/100 mL, respectively. pH was measured as 3.69. Fe, Ca, Mg, K and Na contents of the beverage were determined as 0.12±0.00, 115.48±0.05, 34.72±0.14, 48.67±0.43 and 85.72±1.01 mg/L, respectively. Color was measured as 13.63±0.05, -4.33±0.05, and 3.06±0.05 for L*, a*, and b* values. Turbidity was determined as 0.69±0.07 NTU. Bioaccessible phenolics were determined as 312.82±5.91 mg GAE/100 mL. Antioxidant capacities of chemical (MetOH:H2O:HCl) and physiological extracts (in vitro digestive enzymatic extraction) with DPPH (27.59±0.53 and 0.17±0.02 μmol trolox/mL), FRAP (21.01±0.97 and 13.27±0.19 μmol trolox/mL) and CUPRAC (44.71±9.42 and 2.80±0.64 μmol trolox/mL) methods were also evaluated. As a result, enrichment with natural mineral water was proposed for the development of functional and nutritional values together with a good potential for commercialization.Keywords: linden, herbal tea beverage, bioaccessibility, antioxidant capacity
Procedia PDF Downloads 1722529 Pragmatic Competence of Jordanian EFL Learners
Authors: Dina Mahmoud Hammouri
Abstract:
The study investigates the Jordanian EFL learners’ pragmatic competence through their production of the speech acts of responding to requests, making suggestions, making threats and expressing farewells. The sample of the study consists of 130 Jordanian EFL learners and native speakers. 2600 responses were collected through a Discourse Completion Test (DCT). The findings of the study revealed that the tested students showed similarities and differences in performing the strategies of four speech acts. Differences in the students’ performances led to pragmatic failure instances. The pragmatic failure committed by students refers to a lack of linguistic competence (i.e., pragmalinguistic failure), sociocultural differences and pragmatic transfer (i.e., sociopragmatic failure). EFL learners employed many mechanisms to maintain their communicative competence; the analysis of the test on speech acts showed learners’ tendency towards using particular strategies, resorting to modify strategies and relating them to their grammatical competence, prefabrication, performing long forms, buffing and transfer. The results were also suggestive of the learners’ lack of pragmalinguistic and sociopragmatic knowledge. The implications of this study are for language teachers to teach interlanguage pragmatics explicitly in EFL contexts to draw learners’ attention to both pragmalinguistic and sociopragmatic features, pay more attention to these areas and allocate more time and practice to solve learners’ problems in these areas. The implication of this study is also for pedagogical material designers to provide sufficient and well-organized pragmatic input.Keywords: pragmatic failure, Jordanian EFL learner, sociopragmatic competence, pragmalinguistic competence
Procedia PDF Downloads 782528 Efficiency-Based Model for Solar Urban Planning
Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas
Abstract:
Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.Keywords: solar urban planning, solar smart city, urban development, energy efficiency
Procedia PDF Downloads 3282527 Integration from Laboratory to Industrialization for Hybrid Printed Electronics
Authors: Ahmed Moulay, Mariia Zhuldybina, Mirko Torres, Mike Rozel, Ngoc Duc Trinh, Chloé Bois
Abstract:
Hybrid printed electronics technology (HPE) provides innovative opportunities to enhance conventional electronics applications, which are often based on printed circuit boards (PCB). By combining the best of both performance from conventional electronic components and the flexibility from printed circuits makes it possible to manufacture HPE at high volumes using roll-to-roll printing processes. However, several challenges must be overcome in order to accurately integrate an electronic component on a printed circuit. In this presentation, we will demonstrate the integration process of electronic components from the lab scale to the industrialization. Both the printing quality and the integration technique must be studied to define the optimal conditions. To cover the parameters that influence the print quality of the printed circuit, different printing processes, flexible substrates, and conductive inks will be used to determine the optimized printing process/ink/substrate system. After the systems is selected, an electronic component of 2.5 mm2 chip size will be integrated to validate the functionality of the printed, electronic circuit. Critical information such as the conductive adhesive, the curing conditions, and the chip encapsulation will be determined. Thanks to these preliminary results, we are able to demonstrate the chip integration on a printed circuit using industrial equipment, showing the potential of industrialization, compatible using roll-to-roll printing and integrating processes.Keywords: flat bed screen-printing, hybrid printed electronics, integration, large-scale production, roll-to-roll printing, rotary screen printing
Procedia PDF Downloads 1752526 Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer
Authors: Munir Rusan
Abstract:
Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity.Keywords: composting, organic solid waste, soil, plant
Procedia PDF Downloads 802525 Wheat Yield and Yield Components under Raised Bed Planting System
Authors: Hamidreza Miri, Farahnaz Momtazi
Abstract:
Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates.Keywords: wheat, raised bed planting, drought stress, yield, water use
Procedia PDF Downloads 622524 The Effects of Scientific Studies on the Future Fashion Trends
Authors: Basak Ozkendirci
Abstract:
The discovery of chemical dyes, the development of regenerated fibers, and warp knitting technology have enormous effects on the fashion world. The trends created by the information obtained in the context of various studies today shape the fashion world. Trend analysts must follow scientific developments as well as sociological events, political developments and artwork to obtain healthy data on trends. Digital printing technologies have changed the dynamics of textile printing production and also the style of printed designs. Fashion designers already have started design 3D printed accessories and garments. The research fields like the internet of things, artificial intelligence, hologram technologies, mechatronics, energy storage systems, nanotechnology are seen as the technologies that will change the social life and economy of the future. It is clear that research carried out in these areas will affect the textiles of the future and whereat the trends of fashion. The article aims to create a future vision for trend researchers and designers by giving clues about the changes to be experienced in the fashion world. In the first part of the article, information about the scientific studies that are thought to shape the future is given, and the forecasting about how the inventions that can be obtained from these studies can be adapted at the textile are presented. In the second part of the article, examples of how the new generation of innovative textiles will affect the daily life experience of the user are given.Keywords: biotextiles, fashion trends, nanotextiles, new materials, smart textiles, techno textiles
Procedia PDF Downloads 3362523 Production of Camel Nanobodies against of Anti-Morphine-3-Glucuronide for the Development of a Biosensor for Detecting Illicit Drug
Authors: Shirin Jalili, Sadegh Hasannia, Hadi Shirzad, Afshin Khara
Abstract:
Morphine is one of the most medicinally important analgesics and narcotics. Structurally, it is classified as an alkaloid because of the presence of nitrogen. Its structure is similar to that of codeine, thebaine, and heroin. An immunoassay to accurately discriminate between these analogous alkaloids would be highly beneficial. A key factor for such an assay is specificity with high sensitivity, which is totally dependent on the antibody employed. However, most antibodies against haptens are polyclonal serum antibodies that exhibit significant cross-reactivities with closely related compounds. The camel-derived single-chain antibody fragments (VHH) are the smallest molecules with antigen-binding capacity, possessing unique properties compared to other conventional antibodies. In this study, a library containing the VHH genes of a camel immunized with with morphine conjugated BSA following phage display technology was generated. By screening the camel-derived variable region of the heavy chain cDNA phage display library with the ability to bind the desired hapten, we obtained some nanobodies that recognize this hapten. Phage display expression of the Nbs from this library and pannings against this hapten resulted in a clear enrichment of four distinct Nb-displaying phages with specificity for morphine that could be a potential target site for the development of new strategies for the development of a biosensor for detecting illicit drug.Keywords: phage display, nanobody, Morphine-3, glucuronide, ELISA, biosensor
Procedia PDF Downloads 4242522 High-Yield Synthesis of Nanohybrid Shish-Kebab of Polyethylene on Carbon NanoFillers
Authors: Dilip Depan, Austin Simoneaux, William Chirdon, Ahmed Khattab
Abstract:
In this study, we present a novel approach to synthesize polymer nanocomposites with nanohybrid shish-kebab architecture (NHSK). For this low-density and high density polyethylene (PE) was crystallized on various carbon nano-fillers using a novel and convenient method to prepare high-yield NHSK. Polymer crystals grew epitaxially on carbon nano-fillers using a solution crystallization method. The mixture of polymer and carbon fillers in xylene was flocculated and precipitated in ethanol to improve the product yield. Carbon nanofillers of varying diameter were also used as a nucleating template for polymer crystallization. The morphology of the prepared nanocomposites was characterized scanning electron microscopy (SEM), while differential scanning calorimetry (DSC) was used to quantify the amount of crystalline polymer. Interestingly, whatever the diameter of the carbon nanofiller is, the lamellae of PE is always perpendicular to the long axis of nanofiller. Surface area analysis was performed using BET. Our results indicated that carbon nanofillers of varying diameter can be used to effectively nucleate the crystallization of polymer. The effect of molecular weight and concentration of the polymer was discussed on the basis of chain mobility and crystallization capability of the polymer matrix. Our work shows a facile, rapid, yet high-yield production method to form polymer nanocomposites to reveal application potential of NHSK architecture.Keywords: carbon nanotubes, polyethylene, nanohybrid shish-kebab, crystallization, morphology
Procedia PDF Downloads 3282521 Effect of PMMA Shield on the Patient Dose Equivalent from Photoneutrons Produced by High Energy Medical Linacs
Authors: Seyed Mehdi Hashemi, Gholamreza Raisali, Mehran Taheri
Abstract:
One of the important problems of using high energy linacs at IMRT is the production of photoneutrons. Besides the clinically useful photon beams, high-energy photon beams from medical linacs produce secondary neutrons. These photoneutrons increase the patient dose and may cause secondary malignancies. The effect of the shield on the reduction of photoneutron dose equivalent produced by a high energy medical linac at the patient plane is investigated in this study. To determine the photoneutron dose equivalent received to the patient a Varian linac working at 18 MV photon mode investigated. Photoneutron dose equivalent measured with Polycarbonate films of 0.25 mm thick. PC films placed at distances of 0, 10, 20, and 50 cm from the center of X-ray field on the patient couch. The results show that by increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreases rapidly for both open and shielded fields and that by inserting the shield in the path of the X-ray beam, the photoneutron dose equivalent was decreased obviously compared to open field. Results show the shield, significantly reduces photoneutron dose equivalent to the patient. Results can be readily generalized to other models of medical linacs. It may be concluded that using this kind of shield can help more safe, inexpensive and efficient employment of high energy linacs in radiotherapy and IMRT.Keywords: photoneutron, Linac, PMMA shield, equivalent dose
Procedia PDF Downloads 4922520 Intensity Analysis to Link Changes in Land-Use Pattern in the Abuakwa North and South Municipalities, Ghana, from 1986 to 2017
Authors: Isaac Kwaku Adu, Jacob Doku Tetteh, John Joseph Puthenkalam, Kwabena Effah Antwi
Abstract:
The continuous increase in population implies increase in food demand. There is, therefore, the need to increase agricultural production and other forest products to ensure food security and economic development. This paper employs the three-level intensity analysis to assess the total change of land-use in two-time intervals (1986-2002 and 2002-2017), the net change and swap as well as gross gains and losses in the two intervals. The results revealed that the overall change in the 31-year period was greater in the second period (2002-2017). Agriculture and forest categories lost in the first period while the other land class gained. However, in the second period agriculture and built-up increased greatly while forest, water bodies and thick bushes/shrubland experienced loss. An assessment revealed a reduction of forest in both periods but was greater in the second period and expansion of agricultural land was recorded as population increases. The pixels gaining built-up targeted agricultural land in both intervals, it also targeted thick bushes/shrubland and waterbody in the second period only. Built-up avoided forest in both intervals as well as waterbody and thick bushes/shrubland. To help in developing the best land-use strategies/policies, a further validation of the social factors is necessary.Keywords: agricultural land, forest, Ghana, land-use, intensity analysis, remote sensing
Procedia PDF Downloads 1522519 Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province
Authors: Leila Rashidian, Abbas Ebrahimi
Abstract:
The development of industrial activities, increase in fossil fuel consumption, vehicles, destruction of forests and grasslands, changes in land use, and population growth have caused to increase the amount of greenhouse gases especially CO2 in the atmosphere in recent decades. This has led to global warming and climate change. In the present paper, we have investigated the trend of climate change according to the data simulation during the time interval of 2010-2030 in the Fars province. In this research, the daily climatic parameters such as maximum and minimum temperature, precipitation and number of sunny hours during the 1977-2008 time interval for synoptic stations of Shiraz and Abadeh and during 1995-2008 for Lar stations and also the output of HADCM3 model in 2010-2030 time interval have been used based on the A2 propagation scenario. The results of the model show that the average temperature will increase by about 1 degree centigrade and the amount of precipitation will increase by 23.9% compared to the observational data. In conclusion, according to the temperature increase in this province, the amount of precipitation in the form of snow will be reduced and precipitations often will occur in the form of rain. This 1-degree centigrade increase during the season will reduce production by 6 to 10% because of shortening the growing period of wheat.Keywords: climate change, Lars WG, HADCM3, Gillan province, climatic parameters, A2 scenario
Procedia PDF Downloads 2142518 Workplace Risk Assessment in a Paint Factory
Authors: Rula D. Alshareef, Safa S. Alqathmi, Ghadah K. Alkhouldi, Reem O. Bagabas, Farheen B. Hasan
Abstract:
Safety engineering is among the most crucial considerations in any work environment. Providing mentally, physically, and environmentally safe work conditions must be the top priority of any successful organization. Company X is a local paint production company in Saudi Arabia; in a month, the factory experienced two significant accidents, which indicates that workers’ safety is overlooked. The aim of the research is to examine the risks, assess the root causes and recommend control measures that will eventually contribute to providing a safe workplace. The methodology used is sectioned into three phases, risk identification, assessment, and finally, mitigation. In the identification phase, the team used Rapid Entire Body Assessment (REBA) and National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) tools to holistically establish knowledge about the current risk posed to the factory. The physical hazards in the factory were assessed in two different operations, which are mixing and filling/packaging. For the risk assessment phase, the hazards were deeply analyzed through their severity and impact. Additionally, through risk mitigation, the Rapid Entire Body Assessment (REBA) score decreased from 11 to 7, and the National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) has been reduced from 5.27 to 1.85.Keywords: ergonomics, safety, workplace risks, hazards, awkward posture, fatigue, work environment
Procedia PDF Downloads 772517 The Scenario of Disaster Management in Nepal: A Case Study of Nepal Earthquakes, 2015
Authors: Sandesh Yadav
Abstract:
Earthquake constitutes one of the most terrible natural hazards which often turn into a disaster or causing extensive devastation and loss of human lives and their properties. In the year 2015, Nepal experienced the most devastating earthquakes on 25th April, 2015 and 12th May, 2015 respectively. Several villages, towns, human constructions and their properties, lives were completely damaged. The hazardous effect of Nepal earthquakes depends not only on their magnitude of Richter Scale on intensity alone, but also on so many factors, such as geology of earth crust (lithology, elasticity, soil condition, permissible stress, rock structures etc.). The unscientifically and non-seismically designed buildings resulted in huge loss of life and property. Further, the loss due to earthquake can be grouped into three broad categories namely agriculture sector (loss of livestock, poultry and food stocks), industrial sector (mainly brick production industry) and infrastructural sector (transportation infrastructure). The present research study begins with the tracing of Geological history of earthquakes in Nepal along with identification of causes of Nepal earthquakes, 2015. Secondly, research study identifies the extent of tremors of earthquakes of 2015 in Nepal and surrounding areas along with their sphere of impact. Thirdly, the research study tries to assess the agricultural loss, industrial loss and infrastructural loss due to earthquakes in Nepal. Lastly, the research study ends with the various recommendations and suggestions in order to minimize the loss due to earthquakes in the future.Keywords: earthquake, richter scale, sphere of impact, tremors
Procedia PDF Downloads 2342516 Mapping of Adrenal Gland Diseases Research in Middle East Countries: A Scientometric Analysis, 2007-2013
Authors: Zahra Emami, Mohammad Ebrahim Khamseh, Nahid Hashemi Madani, Iman Kermani
Abstract:
The aim of the study was to map scientific research on adrenal gland diseases in the Middle East countries through the Web of Science database using scientometric analysis. Data were analyzed with Excel software; and HistCite was used for mapping of the scientific texts. In this study, from a total of 268 retrieved records, 1125 authors from 328 institutions published their texts in 138 journals. Among 17 Middle East countries, Turkey ranked first with 164 documents (61.19%), Israel ranked second with 47 documents (15.53%) and Iran came in the third place with 26 documents. Most of the publications (185 documents, 69.2%) were articles. Among the universities of the Middle East, Istanbul University had the highest science production rate (9.7%). The Journal of Clinical Endocrinology & Metabolism had the highest TGCS (243 citations). In the scientific mapping, 7 clusters were formed based on TLCS (Total Local Citation Score) & TGCS (Total Global Citation Score). considering the study results, establishment of scientific connections and collaboration with other countries and use of publications on adrenal gland diseases from high ranking universities can help in the development of this field and promote the medical practice in this regard. Moreover, investigation of the formed clusters in relation to Congenital Hyperplasia and puberty related disorders can be research priorities for investigators.Keywords: mapping, scientific research, adrenal gland diseases, scientometric
Procedia PDF Downloads 2702515 Effect of Probiotic and Prebiotic on Performance, Some Blood Parameters, and Intestine Morphology of Laying Hens
Authors: A. Zarei, M. Porkhalili, B. Gholamhosseini
Abstract:
In this experiment, sixty Hy-Line (W-36) laying hens were selected in 40weeks of age. Experimental diets were consumed for 12 weeks duration by them. The experimental design was completely randomized block included four treatments and each of them with five replications and three sample in each replicate. Treatments were as follow: Basal diet+probiotic, basal diet + prebiotic and basal diet+probiotic+ prebiotic. Performance traits were measured such as: hen production, egg weight, feed intake, feed conversion ratio ,shell thickness, shell strength, shell weight, hough unit, yolk color, and yolk cholesterol. Blood parameters like; Ca, cholesterol, triglyceride, VLDL and antibody titer and so morphological of intestine were determined. At the end of experimental period, after sampling from end of cecum, bacterial colony count was measured. Results showed; shell weight was significantly greater than other treatments in probiotic treatment.Yolk weight in prebiotic treatment was significantly greater than other treatments. The ratio of height of villi to dept of crypt cells in duodenum, jejunum, ileum and secum in prebiotic treatment were significantly greater. Results from the other traits were not significant between treatments, however there were totally good results in other traits with simultaneous usage of probiotic and prebiotic.Keywords: probiotic, prebiotic, laying hens, performance, blood parameters, intestine morphology
Procedia PDF Downloads 3212514 Artificial Intelligence for Generative Modelling
Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta
Abstract:
As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques
Procedia PDF Downloads 1472513 Carbon Fiber Manufacturing Conditions to Improve Interfacial Adhesion
Authors: Filip Stojcevski, Tim Hilditch, Luke Henderson
Abstract:
Although carbon fibre composites are becoming ever more prominent in the engineering industry, interfacial failure still remains one of the most common limitations to material performance. Carbon fiber surface treatments have played a major role in advancing composite properties however research into the influence of manufacturing variables on a fiber manufacturing line is lacking. This project investigates the impact of altering carbon fiber manufacturing conditions on a production line (specifically electrochemical oxidization and sizing variables) to assess fiber-matrix adhesion. Pristine virgin fibers were manufactured and interfacial adhesion systematically assessed from a microscale (single fiber) to a mesoscale (12k tow), and ultimately a macroscale (laminate). Correlations between interfacial shear strength (IFSS) at each level is explored as a function of known interfacial bonding mechanisms; namely mechanical interlocking, chemical adhesion and fiber wetting. Impact of these bonding mechanisms is assessed through extensive mechanical, topological and chemical characterisation. They are correlated to performance as a function of IFSS. Ultimately this study provides a bottoms up approach to improving composite laminates. By understanding the scaling effects from a singular fiber to a composite laminate and linking this knowledge to specific bonding mechanisms, material scientists can make an informed decision on the manufacturing conditions most beneficial for interfacial adhesion.Keywords: carbon fibers, interfacial adhesion, surface treatment, sizing
Procedia PDF Downloads 264