Search results for: neural stem cell
1024 Hybrid-Nanoengineering™: A New Platform for Nanomedicine
Authors: Mewa Singh
Abstract:
Nanomedicine, a fusion of nanotechnology and medicine, is an emerging technology ideally suited to the targeted therapies. Nanoparticles overcome the low selectivity of anti-cancer drugs toward the tumor as compared to normal tissue and hence result-in less severe side-effects. Our new technology, HYBRID-NANOENGINEERING™, uses a new molecule (MR007) in the creation of nanoparticles that not only helps in nanonizing the medicine but also provides synergy to the medicine. The simplified manufacturing process will result in reduced manufacturing costs. Treatment is made more convenient because hybrid nanomedicines can be produced in oral, injectable or transdermal formulations. The manufacturing process uses no protein, oil or detergents. The particle size is below 180 nm with a narrow distribution of size. Importantly, these properties confer great stability of the structure. The formulation does not aggregate in plasma and is stable over a wide range of pH. The final hybrid formulation is stable for at least 18 months as a powder. More than 97 drugs, including paclitaxel, docetaxel, tamoxifen, doxorubicinm prednisone, and artemisinin have been nanonized in water soluble formulations. Preclinical studies on cell cultures of tumors show promising results. Our HYBRID-NANOENGINEERING™ platform enables the design and development of hybrid nano-pharmaceuticals that combine efficacy with tolerability, giving patients hope for both extended overall survival and improved quality of life. This study would discuss or present this new discovery of HYBRID-NANOENGINEERING™ which targets drug delivery, synergistic, and potentiating effects, and barriers of drug delivery and advanced drug delivery systems.Keywords: nano-medicine, nano-particles, drug delivery system, pharmaceuticals
Procedia PDF Downloads 4861023 Advanced Metallic Frameworks for Development of Robust and Efficient Water Splitting Electrodes
Authors: Tam D. Nguyen, Joe Varga, Douglas MacFarlane, Alexandr Simonov
Abstract:
Development of advanced technologies for green hydrogen generation from renewables is of key strategic importance to global future energy security and economic growth. Renewable-powered water electrolysis (WE) is considered as the most effective of the sustainable methods for hydrogen generation at scale. Currently, the greatest challenge of hydrogen production via water electrolysis is the insufficiently high efficiency. In which, the energy loss associated with the conversion of water to hydrogen is approximately 40-60%, with 30-35% associated with the electrolysis itself and 10-12% with gas compression and transportation. Hence, development of an energy-efficient water electrolyser that can generate hydrogen at high pressure will address both of these major challenges. This requires the development of advanced electrode configuration of the water electrolysis cell. Herein, we developed a highly-ordered interconnected structure of the metallic inverse-opal (IO) frameworks based on low cost materials, e.g. Cu, Ni, Fe, Co. The water electrolysis electrodes based on these frameworks can provide excellent mechanical strength required for the application under conditions of extreme pressure, as well as outstanding catalytic performance through the exceptional high surface area and high electrical conductivity. For example, NiFe layered double hydroxide (LDH) catalyst deposited on Cu IO is able to reach the oxygen evolution reaction (OER) catalytic performance up to the rates of > 100 mA cm−2 (>727A gcatalyst-1) at an overpotential of ~0.3 V. This high performance is achieved with only few micron-thick catalyst layers, in contrast to similarly performance of 103-fold thicker electrodes based on foams and other substrates.Keywords: oxygen evolution reaction, support materials, mass transport, NiFe LDH
Procedia PDF Downloads 51022 Multiscale Cohesive Zone Modeling of Composite Microstructure
Authors: Vincent Iacobellis, Kamran Behdinan
Abstract:
A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling
Procedia PDF Downloads 4881021 PRENACEL: Development and Evaluation of an M-Health Strategy to Improve Prenatal Care in Brazil
Authors: E. M. Vieira, C. S. Vieira, L. P. Bonifácio, L. M. de Oliveira Ciabati, A. C. A. Franzon, F. S. Zaratini, J. A. C. Sanchez, M. S. Andrade, J. P. Dias de Souza
Abstract:
The quality of prenatal care is key to reduce maternal morbidity and mortality. Communication between the health service and users can stimulate prevention and care. M-health has been an important and low cost strategy to health education. The PRENACEL programme (prenatal in the cell phone) was developed. It consists of a programme of information via SMS from the 20th week of pregnancy up to 12th week after delivery. Messages were about prenatal care, birth, contraception and breastfeeding. Communication of the pregnant woman asking questions about their health was possible. The objective of this study was to evaluate the implementation of PRENACEL as a useful complement to the standard prenatal care. Twenty health clinics were selected and randomized by cluster, 10 as the intervention group and 10 as the control group. In the intervention group, women and their partner were invited to participate. The control group received the standard prenatal care. All women were interviewed in the immediate post-partum and in the 12th and 24th week post-partum. Most women were married, had more than 8 years of schooling and visit the clinic more than 6 times during prenatal care. The intervention group presented lowest percentage of higher economic participants (5.6%), less single mothers and no drug user. It also presented more prenatal care visits than the control group and it was less likely to present Severe Acute Maternal Mortality when compared to control group as well as higher percentage of partners (75.4%) was present at the birth compared to control group. Although the study is still being carried out, preliminary data are showing positive results of the compliance of women to prenatal care.Keywords: cellphone, health technology, prenatal care, prevention
Procedia PDF Downloads 3891020 Single Protoplast of Murraya paniculata L. Jack Regenerated Into Plantlets
Authors: Hasan Basri Jumin, Danil Endriand Basri
Abstract:
Isolated protoplast from embryogenic callus of orange Jessamine (Murraya paniculata L. (Jack) cultured and maintained under growth chamber at the temperature +25oC. The parameter observed are the plating efficiency, the number of spherical embryos, heard-shaped embryos-like structure, shoot formation, and plantlets obtained. Treatment was arranged with 0.0, 0.001, 0.01, 0.1 or 1.0 mg 1-1 Naphthalene acetic acid (NAA), and 0, 300, 500 mg 1/l malt extract (ME) and 0.M sorbitol in the medium with 2.5 % sucrose. Interaction between 0.001 mg/l NAA and 500 mg/l was observed the higher percentage of planting efficiency. For embryo development from callus, the media was added to 0.0 mg/l, 0.001 mg/l, 0.01 ,mg/l, 0.1 mg/l, 1.0 mg/l NAA, and 1.0 %, 2.0 %, 3.0 %, 4.0 % sucrose. Media supplemented with 0.01mg/l NAA, and 1.0% sucrose was found to be a suitable medium for the development of spherical somatic embryos. A combination of 0.1 mg/ indole acetic acid (IAA) and 0.1 mg/l zeatin constituted the spherical somatic embryo became heart-shaped embryos-like structure. A combination between GA3 0.1 mg 1/l GA3 and 0.1 mg 1-1 zeatin is looking high, growing the heart-shaped embryos-like structure to form a shoot. Cells were developed into spherical embryos and grew into heart-shaped embryos, and then spherical somatic embryos developed into shoot formation. Sequence from single protoplast to plantlets was obtained by using a low concentration of plant growth regulator and sucrose; This recovery of single protoplast to be completed plantlets is a new technology in plant cell culture, and this could be used in genetic engineering in citrus.Keywords: heart-shaped-embryos-like-structure, Muraya-paniculata, plant-growth-regulator, spherical- somatic-embryo, single protoplast, glucose
Procedia PDF Downloads 1121019 Nagami Kumkuat: A Source of Antiviral and Antimicrobial Bioactive Compounds
Authors: Howaida I. Abd-Alla, Nagwa M. M. Shalaby
Abstract:
The fruit rind of Fortunella margarita (Nagami Kumkuat) was investigated for its chemical constituents. Thirteen metabolites were obtained and classified into, a sterol; β-sitosterol (1) and twelve phenolic compounds, three coumarins; xanthotoxin (2), isopimpinellin (3), umbelliferone (4), nine flavonoids of O-glycosides of flavone; apigenin-7-O-β-D-glucopyranoside (5), apigenin-7-O-rhamnoglucoside (rhoifolin) (6), C-glycosides; vitexin (7), vicenin II (8), and the methoxylated; 6-methoxyapigenin-7-methyl ether (9) and tangeretin (10) as well as flavanones class; naringenin (11), liquiritigenin (12), hesperdin (hesperetin-7-rhamnoglucoside) (13). All compounds were identified for the first time in F. margarita except compound (8). The major glycosides 5, 6, and 13 and total crude extract showed potential antiviral activity against live Newcastle disease virus vaccine strains (Komarov and LaSota) and live infectious bursitis viruses vaccine strain D78 replication in VERO cell cultures and on specific pathogen-free embryonated chicken eggs. Antiviral inhibitory concentration fifty (IC50), cytotoxic concentration fifty (CC50), and therapeutic index (TI) were calculated. In addition, the extract and compounds 7 and 13 showed marked antimicrobial activity against different strains of fungi, Gram-positive and negative bacteria, including some foodborne pathogens of animal origin, caused human disease. These results suggested that the extract of F. margarita may be considered potentially useful as a source of natural antiviral and antimicrobial agents. It can be used as an ingredient for functional food and/or pharmaceuticals.Keywords: antimicrobial, antiviral, Fortunella margarita, Nagami Kumkuat, phenolic secondary metabolites
Procedia PDF Downloads 2061018 Formulation Development and Characterization of Oligonucleotide Containing Chitosan Nanoparticles
Authors: Gyati Shilakari Asthana, Abhay Asthana
Abstract:
Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1 and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide
Procedia PDF Downloads 4941017 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology
Authors: Mouhamadou Diop, Mohamed I. Hassan
Abstract:
Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field
Procedia PDF Downloads 2451016 Outcome of Bowel Management Program in Patient with Spinal Cord Injury
Authors: Roongtiwa Chobchuen, Angkana Srikhan, Pattra Wattanapan
Abstract:
Background: Neurogenic bowel is common condition after spinal cord injury. Most of spinal cord injured patients have motor weakness, mobility impairment which leads to constipation. Moreover, the neural pathway involving bowel function is interrupted. Therefore, the bowel management program should be implemented in nursing care in the earliest time after the onset of the disease to prevent the morbidity and mortality. Objective: To study the outcome of bowel management program of the patients with spinal cord injury who admitted for rehabilitation program. Study design: Descriptive study. Setting: Rehabilitation ward in Srinagarind Hospital. Populations: patients with subacute to chronic spinal cord injury who admitted at rehabilitation ward, Srinagarind hospital, aged over 18 years old. Instrument: The neurogenic bowel dysfunction score (NBDS) was used to determine the severity of neurogenic bowel. Procedure and statistical analysis: All participants were asked to complete the demographic data; age gender, duration of disease, diagnosis. The individual bowel function was assessed using NBDS at admission. The patients and caregivers were trained by nurses about the bowel management program which consisted of diet modification, abdominal massage, digital stimulation, stool evacuation including medication and physical activity. The outcome of the bowel management program was assessed by NBDS at discharge. The chi-square test was used to detect the difference in severity of neurogenic bowel at admission and discharge. Results: Sixteen spinal cord injured patients were enrolled in the study (age 45 ± 17 years old, 69% were male). Most of them (50%) were tetraplegia. On the admission, 12.5%, 12.5%, 43.75% and 31.25% were categorized as very minor (NBDS 0-6), minor (NBDS 7-9), moderate (NBDS 10-13) and severe (NBDS 14+) respectively. The severity of neurogenic bowel was decreased significantly at discharge (56.25%, 18.755%, 18.75% and 6.25% for very minor, minor, moderate and severe group respectively; p < 0.001) compared with NBDS at admission. Conclusions: Implementation of the effective bowel program decrease the severity of the neurogenic bowel in patient with spinal cord injury.Keywords: neurogenic bowel, NBDS, spinal cord injury, bowel program
Procedia PDF Downloads 2441015 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids
Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao
Abstract:
An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.
Procedia PDF Downloads 1511014 CMPD: Cancer Mutant Proteome Database
Authors: Po-Jung Huang, Chi-Ching Lee, Bertrand Chin-Ming Tan, Yuan-Ming Yeh, Julie Lichieh Chu, Tin-Wen Chen, Cheng-Yang Lee, Ruei-Chi Gan, Hsuan Liu, Petrus Tang
Abstract:
Whole-exome sequencing focuses on the protein coding regions of disease/cancer associated genes based on a priori knowledge is the most cost-effective method to study the association between genetic alterations and disease. Recent advances in high throughput sequencing technologies and proteomic techniques has provided an opportunity to integrate genomics and proteomics, allowing readily detectable mutated peptides corresponding to mutated genes. Since sequence database search is the most widely used method for protein identification using Mass spectrometry (MS)-based proteomics technology, a mutant proteome database is required to better approximate the real protein pool to improve disease-associated mutated protein identification. Large-scale whole exome/genome sequencing studies were launched by National Cancer Institute (NCI), Broad Institute, and The Cancer Genome Atlas (TCGA), which provide not only a comprehensive report on the analysis of coding variants in diverse samples cell lines but a invaluable resource for extensive research community. No existing database is available for the collection of mutant protein sequences related to the identified variants in these studies. CMPD is designed to address this issue, serving as a bridge between genomic data and proteomic studies and focusing on protein sequence-altering variations originated from both germline and cancer-associated somatic variations.Keywords: TCGA, cancer, mutant, proteome
Procedia PDF Downloads 5931013 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 751012 Time's Arrow and Entropy: Violations to the Second Law of Thermodynamics Disrupt Time Perception
Authors: Jason Clarke, Michaela Porubanova, Angela Mazzoli, Gulsah Kut
Abstract:
What accounts for our perception that time inexorably passes in one direction, from the past to the future, the so-called arrow of time, given that the laws of physics permit motion in one temporal direction to also happen in the reverse temporal direction? Modern physics says that the reason for time’s unidirectional physical arrow is the relationship between time and entropy, the degree of disorder in the universe, which is evolving from low entropy (high order; thermal disequilibrium) toward high entropy (high disorder; thermal equilibrium), the second law of thermodynamics. Accordingly, our perception of the direction of time, from past to future, is believed to emanate as a result of the natural evolution of entropy from low to high, with low entropy defining our notion of ‘before’ and high entropy defining our notion of ‘after’. Here we explored this proposed relationship between entropy and the perception of time’s arrow. We predicted that if the brain has some mechanism for detecting entropy, whose output feeds into processes involved in constructing our perception of the direction of time, presentation of violations to the expectation that low entropy defines ‘before’ and high entropy defines ‘after’ would alert this mechanism, leading to measurable behavioral effects, namely a disruption in duration perception. To test this hypothesis, participants were shown briefly-presented (1000 ms or 500 ms) computer-generated visual dynamic events: novel 3D shapes that were seen either to evolve from whole figures into parts (low to high entropy condition) or were seen in the reverse direction: parts that coalesced into whole figures (high to low entropy condition). On each trial, participants were instructed to reproduce the duration of their visual experience of the stimulus by pressing and releasing the space bar. To ensure that attention was being deployed to the stimuli, a secondary task was to report the direction of the visual event (forward or reverse motion). Participants completed 60 trials. As predicted, we found that duration reproduction was significantly longer for the high to low entropy condition compared to the low to high entropy condition (p=.03). This preliminary data suggests the presence of a neural mechanism that detects entropy, which is used by other processes to construct our perception of the direction of time or time’s arrow.Keywords: time perception, entropy, temporal illusions, duration perception
Procedia PDF Downloads 1731011 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder
Authors: Bhuvanesh Baniya
Abstract:
Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation
Procedia PDF Downloads 1021010 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 1071009 Food Supplements and Natural Products to Slow Down Biological Aging
Authors: Coppa Federica, Iannello Giulia, Pennisi Stefania, Giuffrida Graziella, Lo Faro Riccardo, Cartelli Simone, Ferruggia Greta, Brundo Maria Violetta
Abstract:
In recent years, a new field of basic research has emerged: the biology and physiology of extracellular vesicles and their application in diagnostics and therapy. In particular, exosomes attract the scientific community as nanovesicles of endosomal origin, which can be secreted by a variety of cells and are found in all biological fluids. Exosomes have recently gained attention also in the cosmetic field: in fact, they are used in creams, serums and masks for topical use, proving to have a series of therapeutic and anti-aging benefits. To date, the oral administration of exosomes is the subject of attention because it represents a non-invasive and efficient method for delivering bioactive molecules into the intestine. We decided to focus our research on the creation of a food supplement that contains various bioactive factors, vitamins, and a new technology called AMPLEX PLUS, containing a mixture of 20 different biologically active factors (GF20) and exosomes isolated and purified from bovine colostrum. We have demonstrated in vitro that this new supplement acts on telomerase, slowing down cell aging. Amplex plus increased the proliferation rate of cells and the addition of it reduced the rate of telomere shortening. Under oxidative stress conditions (H2O2 – induced), the TSR increased; however, treatment with colostrum appeared to attenuate this increase. In particular, after 2 weeks of treatment, AMPLEX plus increased the proliferation rate of cells and exerted a protective effect on telomere length erosion, reducing the rate of its shortening.Keywords: AMPLEX PLUS, colostrum, exosomes, telomerase
Procedia PDF Downloads 571008 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 891007 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications
Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita
Abstract:
Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution
Procedia PDF Downloads 3871006 Behavioural Studies on Multidirectional Reinforced 4-D Orthogonal Composites on Various Preform Configurations
Authors: Sriram Venkatesh, V. Murali Mohan, T. V. Karthikeyan
Abstract:
The main advantage of multi-directionally reinforced composites is the freedom to orient selected fibre types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D preforms fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.Keywords: multi-directionally reinforced composites, 4-D orthogonal preform, course weave, fine weave, fibre bundle spools, unit cell, fibre architecture, fibre volume fraction, fibre distribution
Procedia PDF Downloads 2341005 A Scoping Study and Stakeholder Consultation on Mental Health Determinants among Arab Immigrants and Refugees in North America
Authors: Sarah Elshahat, Tina Moffat
Abstract:
Suboptimal mental health is a considerable global public health challenge that leads to considerable inequalities worldwide. Newcomers are at elevated risk for developing mental health issues as a result of social exclusion, stigmatization, racism, unequal employment opportunities, and discrimination. The problem can be especially serious amongst Arabic-speaking immigrants and refugees (ASIR) whose mental wellness may have already been affected by exposure to political violence, persecution, hunger or war in their countries of origin. A scoping review was conducted to investigate pre- and post-migration mental health determinants amongst ASIR in North America (the U.S. and Canada), who are a rapidly growing population in both regions. Pertinent peer-reviewed papers and grey literature were located through a systematic search of five electronic databases (Medline, Embase, PsycINFO, Anthropology Plus, and Sociology Database). A stakeholder consultation was implemented to validate the analyzed findings of the included 44 studies. About 80% of the studies were carried out in the US, underscoring a lack of Canadian ASIR-mental health research. A gap in qualitative, mixed-method, and longitudinal research was detected, where approximately two-thirds of the studies adopted a cross-sectional method. Pre-migration determinants of mental health were related to the political unrest, violence and armed conflict in the Arab world, increasing post-traumatic stress disorder and psychological distress levels among ASIR. English language illiteracy and generational variations in acculturation patterns were major post-migration mental health triggering factors. Exposure to domestic violence, stigmatization, poverty, racialization, and harassment were significant post-migration mental health determinants that stem from social inequalities, triggering depression, and distress amongst ASIR. Family conflicts linked to child-rearing and gendered norms were considered as both pre- and post-migration mental health triggering factors. Most post-migration mental health protective factors were socio-culturally related and included the maintenance of positive ethnic identity, faith, family support, and community cohesion. Individual resilience, articulated as self-esteem and hope, was a significant negative predictor of depression and psychological distress among ASIR. Community-engaged, mixed-methods, and longitudinal studies are required to address the current gap in mental health research among ASIR in North America. A more thorough determination of potential mental health triggers and protective factors would help inform the development of mental wellness and resilience-promoting programs that are culturally sensitive to ASIR. On the policy level, the Health in All Policies framework of the World Health Organization can be potentially useful for addressing social and health inequalities among ASIR, reducing mental health challenges.Keywords: depression, post-traumatic stress disorder, psychological distress, resilience
Procedia PDF Downloads 1381004 Electrochemical Recovery of Lithium from Geothermal Brines
Authors: Sanaz Mosadeghsedghi, Mathew Hudder, Mohammad Ali Baghbanzadeh, Charbel Atallah, Seyedeh Laleh Dashtban Kenari, Konstantin Volchek
Abstract:
Lithium has recently been extensively used in lithium-ion batteries (LIBs) for electric vehicles and portable electronic devices. The conventional evaporative approach to recover and concentrate lithium is extremely slow and may take 10-24 months to concentrate lithium from dilute sources, such as geothermal brines. To response to the increasing industrial lithium demand, alternative extraction and concentration technologies should be developed to recover lithium from brines with low concentrations. In this study, a combination of electrocoagulation (EC) and electrodialysis (ED) was evaluated for the recovery of lithium from geothermal brines. The brine samples in this study, collected in Western Canada, had lithium concentrations of 50-75 mg/L on a background of much higher (over 10,000 times) concentrations of sodium. This very high sodium-to-lithium ratio poses challenges to the conventional direct-lithium extraction processes which employ lithium-selective adsorbents. EC was used to co-precipitate lithium using a sacrificial aluminium electrode. The precipitate was then dissolved, and the leachate was treated using ED to separate and concentrate lithium from other ions. The focus of this paper is on the study of ED, including a two-step ED process that included a mono-valent selective stage to separate lithium from multi-valent cations followed by a bipolar ED stage to convert lithium chloride (LiCl) to LiOH product. Eventually, the ED cell was reconfigured using mono-valent cation exchange with the bipolar membranes to combine the two ED steps in one. Using this process at optimum conditions, over 95% of the co-existing cations were removed and the purity of lithium increased to over 90% in the final product.Keywords: electrochemical separation, electrocoagulation, electrodialysis, lithium extraction
Procedia PDF Downloads 941003 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots
Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He
Abstract:
Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.Keywords: microbial identification, laser scattering, peak identification, binned plots classification
Procedia PDF Downloads 1501002 The Role of Hypothalamus Mediators in Energy Imbalance
Authors: Maftunakhon Latipova, Feruza Khaydarova
Abstract:
Obesity is considered a chronic metabolic disease that occurs at any age. Regulation of body weight in the body is carried out through complex interaction of a complex of interrelated systems that control the body's energy system. Energy imbalance is the cause of obesity and overweight, in which the supply of energy from food exceeds the energy needs of the body. Obesity is closely related to impaired appetite regulation, and a hypothalamus is a key place for neural regulation of food consumption. The nucleus of the hypothalamus is connected and interdependent on receiving, integrating and sending hunger signals to regulate appetite. Purpose of the study: to identify markers of food behavior. Materials and methods: The screening was carried out to identify eating disorders in 200 men and women aged 18 to 35 years with overweight and obesity and to check the effects of Orexin A and Neuropeptide Y markers. A questionnaire and questionnaires were conducted with over 200 people aged 18 to 35 years. Questionnaires were for eating disorders and hidden depression (on the Zang scale). Anthropometry is measured by OT, OB, BMI, Weight, and Height. Based on the results of the collected data, 3 groups were divided: People with obesity, People with overweight, Control Group of Healthy People. Results: Of the 200 analysed persons, 86% had eating disorders. Of these, 60% of eating disorders were associated with childhood. According to the Zang test result: Normal condition was about 37%, mild depressive disorder 20%, moderate depressive disorder 25% and 18% of people suffered from severe depressive disorder without knowing it. One group of people with obesity had eating disorders and moderate and severe depressive disorder, and group 2 was overweight with mild depressive disorder. According to laboratory data, the first group had the lowest concentration of Orexin A and Neuropeptide U in blood serum. Conclusions: Being overweight and obese are the first signal of many diseases, and prevention and detection of these disorders will prevent various diseases, including type 2 diabetes. Obesity etiology is associated with eating disorders and signal transmission of the orexinorghetic system of the hypothalamus.Keywords: obesity, endocrinology, hypothalamus, overweight
Procedia PDF Downloads 761001 Synthesis, Characterization and Catecholase Study of Novel Bidentate Schiff Base Derived from Dehydroacetic Acid
Authors: Salima Tabti, Chaima Maouche, Tinhinene Louaileche, Amel Djedouani, Ismail Warad
Abstract:
Novel Schiff base ligand HL has been synthesized by condensation of aromatic amine and DHA. It was characterized by UV-Vis, FT-IR, SM, NMR (1H, 13C) and also by single-crystal X-ray diffraction. The crystal structure shows that compound crystallized in a triclinic system in P-1 space group and with a two unit per cell (Z = 2).The asymmetric unit, contains one independent molecules, the conformation is determined by an intermolecular N-H…O hydrogen bond with an S(6) ring motif. The molecule have an (E) conformation about the C=N bond. The dihedral angles between the phenyl and pyran ring planes is 89.37 (1), the two plans are approximately perpendicular. The catecholase activity of is situ copper complexes of this ligand has been investigated against catechol. The progress of the oxidation reactions was closely monitored over time following the strong peak of catechol using UV-Vis. Oxidation rates were determined from the initial slope of absorbance. time plots, then analyzed by Michaelis-Menten equations. Catechol oxidation reactions were realized using different concentrations of copper acetate and ligand (L/Cu: 1/1, 1/2, 2/1). The results show that all complexes were able to catalyze the oxidation of catechol. Acetate complexes have the highest activity. Catalysis is a branch of chemical kinetics that, more generally, studies the influence of all physical or chemical factors determining reaction rates. It solves a lot of problems in the chemistry reaction process, especially for a green, economic and less polluting chemistry. For this reason, the search for new catalysts for known organic reactions, occupies a very advanced place in the themes proposed by the chemists.Keywords: dehydroacetic acid, catechol, copper, catecholase activity, x-ray
Procedia PDF Downloads 1111000 Determination of Medians of Biochemical Maternal Serum Markers in Healthy Women Giving Birth to Normal Babies
Authors: Noreen Noreen, Aamir Ijaz, Hamza Akhtar
Abstract:
Background: Screening plays a major role to detect chromosomal abnormalities, Down syndrome, neural tube defects and other inborn diseases of the newborn. Serum biomarkers in the second trimester are useful in determining risk of most common chromosomal anomalies; these test include Alpha-fetoprotein (AFP), Human chorionic gonadotropin (hCG), Unconjugated Oestriol (UEȝ)and inhibin-A. Quadruple biomarkers are worth test in diagnosing the congenital pathology during pregnancy, these procedures does not form a part of routine health care of pregnant women in Pakistan, so the median value is lacking for population in Pakistan. Objective: To determine median values of biochemical maternal serum markers in local population during second trimester maternal screening. Study settings: Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology (AFIP) Rawalpindi. Methods: Cross-Sectional study for estimation of reference values. Non-probability consecutive sampling, 155 healthy pregnant women, of 30-40 years of age, will be included. As non-parametric statistics will be used, the minimum sample size is 120. Result: Total 155 women were enrolled into this study. The age of all women enrolled ranged from 30 to39 yrs. Among them, 39 per cent of women were less than 34 years. Mean maternal age 33.46±2.35 SD and maternal body weight were 54.98±2.88. Median value of quadruple markers calculated from 15-18th week of gestation that will be used for calculation of MOM for screening of trisomy21 in this gestational age. Median value at 15 week of gestation were observed hCG 36650 mIU/ml, AFP 23.3 IU/ml, UEȝ 3.5 nmol/L, InhibinA 198 ng/L, at 16 week of gestation hCG 29050 mIU/ml, AFP 35.4 IU/ml, UEȝ 4.1 nmol/L, InhibinA 179 ng/L, at 17 week of gestation hCG 28450 mIU/ml, AFP 36.0 IU/ml, UEȝ 6.7 nmol/L, InhibinA 176 ng/L and at 18 week of gestation hCG 25200 mIU/ml, AFP 38.2 IU/ml, UEȝ 8.2 nmol/L, InhibinA 190 ng/L respectively.All the comparisons were significant (p-Value <0.005) with 95% confidence Interval (CI) and level of significance of study set by going through literature and set at 5%. Conclusion: The median values for these four biomarkers in Pakistani pregnant women can be used to calculate MoM.Keywords: screening, down syndrome, quadruple test, second trimester, serum biomarkers
Procedia PDF Downloads 180999 South-Mediterranean Oaks Forests Management in Changing Climate Case of the National Park of Tlemcen-Algeria
Authors: K. Bencherif, M. Bellifa
Abstract:
The expected climatic changes in North Africa are the increase of both intensity and frequencies of the summer droughts and a reduction in water availability during growing season. The exiting coppices and forest formations in the national park of Tlemcen are dominated by holm oak, zen oak and cork oak. These opened-fragmented structures don’t seem enough strong so to hope durable protection against climate change. According to the observed climatic tendency, the objective is to analyze the climatic context and its evolution taking into account the eventual behaving of the oak species during the next 20-30 years on one side and the landscaped context in relation with the most adequate sylvicultural models to choose and especially in relation with human activities on another side. The study methodology is based on Climatic synthesis and Floristic and spatial analysis. Meteorological data of the decade 1989-2009 are used to characterize the current climate. An another approach, based on dendrochronological analysis of a 120 years sample Aleppo pine stem growing in the park, is used so to analyze the climate evolution during one century. Results on the climate evolution during the 50 years obtained through climatic predictive models are exploited so to predict the climate tendency in the park. Spatially, in each forest unit of the Park, stratified sampling is achieved so to reduce the degree of heterogeneity and to easily delineate different stands using the GPS. Results from precedent study are used to analyze the anthropogenic factor considering the forecasts for the period 2025-2100, the number of warm days with a temperature over 25°C would increase from 30 to 70. The monthly mean temperatures of the maxima’s (M) and the minima’s (m) would pass respectively from 30.5°C to 33°C and from 2.3°C to 4.8°C. With an average drop of 25%, precipitations will be reduced to 411.37 mm. These new data highlight the importance of the risk fire and the water stress witch would affect the vegetation and the regeneration process. Spatial analysis highlights the forest and the agricultural dimensions of the park compared to the urban habitat and bare soils. Maps show both fragmentation state and forest surface regression (50% of total surface). At the level of the park, fires affected already all types of covers creating low structures with various densities. On the silvi cultural plan, Zen oak form in some places pure stands and this invasion must be considered as a natural tendency where Zen oak becomes the structuring specie. Climate-related changes have nothing to do with the real impact that South-Mediterranean forests are undergoing because human constraints they support. Nevertheless, hardwoods stand of oak in the national park of Tlemcen will face up to unexpected climate changes such as changing rainfall regime associated with a lengthening of the period of water stress, to heavy rainfall and/or to sudden cold snaps. Faced with these new conditions, management based on mixed uneven aged high forest method promoting the more dynamic specie could be an appropriate measure.Keywords: global warming, mediterranean forest, oak shrub-lands, Tlemcen
Procedia PDF Downloads 389998 Quantitative Proteome Analysis and Bioactivity Testing of New Zealand Honeybee Venom
Authors: Maryam Ghamsari, Mitchell Nye-Wood, Kelvin Wang, Angela Juhasz, Michelle Colgrave, Don Otter, Jun Lu, Nazimah Hamid, Thao T. Le
Abstract:
Bee venom, a complex mixture of peptides, proteins, enzymes, and other bioactive compounds, has been widely studied for its therapeutic application. This study investigated the proteins present in New Zealand (NZ) honeybee venom (BV) using bottom-up proteomics. Two sample digestion techniques, in-solution digestion and filter-aided sample preparation (FASP), were employed to obtain the optimal method for protein digestion. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH–MS) analysis was conducted to quantify the protein compositions of NZ BV and investigate variations in collection years. Our results revealed high protein content (158.12 µg/mL), with the FASP method yielding a larger number of identified proteins (125) than in-solution digestion (95). SWATH–MS indicated melittin and phospholipase A2 as the most abundant proteins. Significant variations in protein compositions across samples from different years (2018, 2019, 2021) were observed, with implications for venom's bioactivity. In vitro testing demonstrated immunomodulatory and antioxidant activities, with a viable range for cell growth established at 1.5-5 µg/mL. The study underscores the value of proteomic tools in characterizing bioactive compounds in bee venom, paving the way for deeper exploration into their therapeutic potentials. Further research is needed to fractionate the venom and elucidate the mechanisms of action for the identified bioactive components.Keywords: honeybee venom, proteomics, bioactivity, fractionation, swath-ms, melittin, phospholipase a2, new zealand, immunomodulatory, antioxidant
Procedia PDF Downloads 42997 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
Authors: Fahad Almehmadi, Abdullah Alrajhi, Bader K. Alaslab, Abdullah A. Al Qurashi, Hattan A. Hassani
Abstract:
Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.Keywords: ARVD/C, cardiology, interventional cardiology, cardiac electrophysiology
Procedia PDF Downloads 65996 Evaluation of Electro-Flocculation for Biomass Production of Marine Microalgae Phaodactylum tricornutum
Authors: Luciana C. Ramos, Leandro J. Sousa, Antônio Ferreira da Silva, Valéria Gomes Oliveira Falcão, Suzana T. Cunha Lima
Abstract:
The commercial production of biodiesel using microalgae demands a high-energy input for harvesting biomass, making production economically unfeasible. Methods currently used involve mechanical, chemical, and biological procedures. In this work, a flocculation system is presented as a cost and energy effective process to increase biomass production of Phaeodactylum tricornutum. This diatom is the only species of the genus that present fast growth and lipid accumulation ability that are of great interest for biofuel production. The algae, selected from the Bank of Microalgae, Institute of Biology, Federal University of Bahia (Brazil), have been bred in tubular reactor with photoperiod of 12 h (clear/dark), providing luminance of about 35 μmol photons m-2s-1, and temperature of 22 °C. The medium used for growing cells was the Conway medium, with addition of silica. The seaweed growth curve was accompanied by cell count in Neubauer camera and by optical density in spectrophotometer, at 680 nm. The precipitation occurred at the end of the stationary phase of growth, 21 days after inoculation, using two methods: centrifugation at 5000 rpm for 5 min, and electro-flocculation at 19 EPD and 95 W. After precipitation, cells were frozen at -20 °C and, subsequently, lyophilized. Biomass obtained by electro-flocculation was approximately four times greater than the one achieved by centrifugation. The benefits of this method are that no addition of chemical flocculants is necessary and similar cultivation conditions can be used for the biodiesel production and pharmacological purposes. The results may contribute to improve biodiesel production costs using marine microalgae.Keywords: biomass, diatom, flocculation, microalgae
Procedia PDF Downloads 330995 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 19