Search results for: resonant soft X-ray reflectivity
765 Study of Phase Separation Behavior in Flexible Polyurethane Foam
Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim
Abstract:
Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments
Procedia PDF Downloads 164764 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System
Authors: Rajan Goyal, S. Lamba, S. Annapoorni
Abstract:
The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve
Procedia PDF Downloads 190763 Integrated Geotechnical and Geophysical Investigation of a Proposed Construction Site at Mowe, Southwestern Nigeria
Authors: Kayode Festus Oyedele, Sunday Oladele, Adaora Chibundu Nduka
Abstract:
The subsurface of a proposed site for building development in Mowe, Nigeria, using Standard Penetration Test (SPT) and Cone Penetrometer Test (CPT) supplemented with Horizontal Electrical Profiling (HEP) was investigated with the aim of evaluating the suitability of the strata for foundation materials. Four SPT and CPT were implemented using 10 tonnes hammer. HEP utilizing Wenner array were performed with inter-electrode spacing of 10 – 60 m along four traverses coincident with each of the SPT and CPT. The HEP data were processed using DIPRO software and textural filtering of the resulting resistivity sections was implemented to enable delineation of hidden layers. Sandy lateritic clay, silty lateritic clay, clay, clayey sand and sand horizons were delineated. The SPT “N” value defined very soft to soft sandy lateritic (<4), stiff silty lateritic clay (7 – 12), very stiff silty clay (12 - 15), clayey sand (15- 20) and sand (27 – 37). Sandy lateritic clay (5-40 kg/cm2) and silty lateritic clay (25 - 65 kg/cm2) were defined from the CPT response. Sandy lateritic clay (220-750 Ωm), clay (< 50 Ωm) and sand (415-5359 Ωm) were delineated from the resistivity sections with two thin layers of silty lateritic clay and clayey sand defined in the texturally filtered resistivity sections. This study concluded that the presence of incompetent thick clayey materials (18 m) beneath the study area makes it unsuitable for shallow foundation. Deep foundation involving piling through the clayey layers to the competent sand at 20 m depth was recommended.Keywords: cone penetrometer, foundation, lithologic texture, resistivity section, standard penetration test
Procedia PDF Downloads 265762 Design of Broadband W-Slotted Microstrip Patch Antenna
Authors: Neeraj G. Nahata, K. S. Bhagat
Abstract:
Microstrip patch antenna widely used in communication area because it offers low profile, narrow bandwidth, high gain, and compact in size. It has big disadvantage of narrow bandwidth. To improve the bandwidth a W-slot technique is used, it is efficient to enhance the bandwidth of antenna. The feeding point of antenna is very important for efficient operation, so coaxial feeding technique is applied to microstrip patch antenna for impedance matching. A broadband W-slot microstrip patch antenna is designed successfully which attains a bandwidth of 22.74% at 10dB return loss with centre frequency of 4.5GHz and also it attains maximum directivity 8.78dBi. It is designed by cutting a W-slot into the patch of antenna, because of this resonant slot, the antenna gives broad bandwidth. This antenna is best suitable for C-band frequency spectrum. The proposed antenna is designed and simulated using IE3D software.Keywords: broadband, microstrip antenna, VSWR, W-slotted patch
Procedia PDF Downloads 320761 Comparison of the Curvizigzag Incision with Transverse Stewart Incision in Women Undergoing Modified Radical Mastectomy for Carcinoma Breast
Authors: John Joseph S. Martis, Rohanchandra R. Gatty, Aaron Jose Fernandes, Rahul P. Nambiar
Abstract:
Introduction: Surgery for breast cancer is either mastectomy or breast conservation surgery. The most commonly used incision for modified radical mastectomy is the transverse Stewart incision. But this incision may have the disadvantage of causing disparity between the closure lines of superior and inferior skin flaps in mastectomy and can cause overhanging of soft tissue below and behind the axilla. The curvizigzag incision, on principle, may help in this regard and can prevent scar migration beyond the anterior axillary line. This study aims to compare the two incisions in this regard. Methods: 100 patients with cancer of breast were included in the study after satisfying inclusion and exclusion criteria. They underwent surgery at Father Muller Medical College, Mangalore, India, between November 2019 to September 2021. The patients were divided into two groups. Group A patients were subjected to modified radical mastectomy with curvizigzag incision and group B patients with transverse Stewart incision. Results: Seroma on postoperative day1, day 2 was 0% in both the groups. Seroma on postoperative day 30 was present in 14% of patients in group B. 60% of patients in group B had sag of soft tissue below and behind the axilla, and none of the patients in group A had this problem. In 64% of the patients in group B, the incision crossed the anterior axillary fold, 64% of the patients in group B had tension in the incision site while approximation of the skin flaps. Conclusion: Curvizigzag incision is statistically better with lesser complications when compared to the transverse Stewart incision for modified radical mastectomy for carcinoma breast.Keywords: breast cancer, curvizigzag incision, transverse Stewart incision, seroma, modified radical mastectomy
Procedia PDF Downloads 95760 Evaluation of Pile Performance in Different Layers of Soil
Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri
Abstract:
The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. Pile foundations during earthquake excitation indicate that piles are subject to damage by affecting the superstructure integrity and serviceability. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. However, the large cracks reason have been listed such as liquefaction, lateral spreading, and inertial load. In the field of designing, elastic response of piles is always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. In addition, emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.Keywords: pile, earthquake, liquefaction, non-liquefiable, damage
Procedia PDF Downloads 301759 Genetic Algorithm Optimization of Microcantilever Based Resonator
Authors: Manjula Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti
Abstract:
Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency.Keywords: MEMS resonator, genetic algorithm, modelling and simulation, optimization
Procedia PDF Downloads 550758 Effects of Polydispersity on the Glass Transition Dynamics of Aqueous Suspensions of Soft Spherical Colloidal Particles
Authors: Sanjay K. Behera, Debasish Saha, Paramesh Gadige, Ranjini Bandyopadhyay
Abstract:
The zero shear viscosity (η₀) of a suspension of hard sphere colloids characterized by a significant polydispersity (≈10%) increases with increase in volume fraction (ϕ) and shows a dramatic increase at ϕ=ϕg with the system entering a colloidal glassy state. Fragility which is the measure of the rapidity of approach of these suspensions towards the glassy state is sensitive to its size polydispersity and stiffness of the particles. Soft poly(N-isopropylacrylamide) (PNIPAM) particles deform in the presence of neighboring particles at volume fraction above the random close packing volume fraction of undeformed monodisperse spheres. Softness, therefore, enhances the packing efficiency of these particles. In this study PNIPAM particles of a nearly constant swelling ratio and with polydispersities varying over a wide range (7.4%-48.9%) are synthesized to study the effects of polydispersity on the dynamics of suspensions of soft PNIPAM colloidal particles. The size and polydispersity of these particles are characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). As these particles are deformable, their packing in aqueous suspensions is quantified in terms of effective volume fraction (ϕeff). The zero shear viscosity (η₀) data of these colloidal suspensions, estimated from rheometric experiments as a function of the effective volume fraction ϕeff of the suspensions, increases with increase in ϕeff and shows a dramatic increase at ϕeff = ϕ₀. The data for η₀ as a function of ϕeff fits well to the Vogel-Fulcher-Tammann equation. It is observed that increasing polydispersity results in increasingly fragile supercooled liquid-like behavior, with the parameter ϕ₀, extracted from the fits to the VFT equation shifting towards higher ϕeff. The observed increase in fragility is attributed to the prevalence of dynamical heterogeneities (DHs) in these polydisperse suspensions, while the simultaneous shift in ϕ₀ is ascribed to the decoupling of the dynamics of the smallest and largest particles. Finally, it is observed that the intrinsic nonlinearity of these suspensions, estimated at the third harmonic near ϕ₀ in Fourier transform oscillatory rheological experiments, increases with increase in polydispersity. These results are in agreement with theoretical predictions and simulation results for polydisperse hard sphere colloidal glasses and clearly demonstrate that jammed suspensions of polydisperse colloidal particles can be effectively fluidized with increasing polydispersity. Suspensions of these particles are therefore excellent candidates for detailed experimental studies of the effects of polydispersity on the dynamics of glass formation.Keywords: dynamical heterogeneity, effective volume fraction, fragility, intrinsic nonlinearity
Procedia PDF Downloads 165757 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 205756 Streptococcus anginosus Infections; Clinical and Bacteriologic Characteristics: A 6-Year Retrospective Study of Adult Patients in Qatar
Authors: Adila Shaukat, Hussam Al Soub, Muna Al Maslamani, Abdullatif Al Khal
Abstract:
Background: The aim of this study was to assess clinical presentation and antimicrobial susceptibility of Streptococcus (S.) anginosus group infections in Hamad General Hospital, a tertiary care hospital in the state of Qatar, which is a multinational community. The S. anginosus group is a subgroup of viridans streptococci that consist of 3 different species: S. anginosus, S. constellatus, and S. intermedius. Although a part of the human bacteria flora, they have potential to cause suppurative infections. Method: We studied a total of 101 patients with S. anginosus group infections from January 2006 until March 2012 by reviewing medical records and identification of organisms by VITEK 2 and MALDI-TOF. Results: The most common sites of infection were skin and soft tissue, intra-abdominal, and bacteremia (28.7%, 24.8%, and 22.7%, respectively). Abscess formation was seen in approximately 30% of patients. Streptococcus constellatus was the most common isolated species (40%) followed by S. anginosus(30%) and S. intermedius(7%). In 23% of specimens, the species was unidentified. The most common type of specimen for organism isolation was blood followed by pus and tissue (50%, 22%, and 8%, respectively). Streptococcus constellatus was more frequently associated with abdominal and skin and soft tissue infections than the other 2 species, whereas S. anginosus was isolated more frequently from blood. All isolates were susceptible to penicillin, ceftriaxone, and vancomycin. Susceptibility to erythromycin and clindamycin was also good, reaching 91% and 95%, respectively. Forty percent of patients needed surgical drainage along with antibiotic therapy. Conclusions: Identification of S. anginosus group to species level is helpful in clinical practice because different species exhibit different pathogenic potentials.Keywords: abscess, bacterial infection, bacteremia, Streptococcus anginosus
Procedia PDF Downloads 143755 Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles
Authors: Yassine Ait-El-Aoud, Michael Okomoto, Andrew M. Luce, Alkim Akyurtlu, Richard M. Osgood III
Abstract:
Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography.Keywords: dip coating, light-scattering, metal nanoparticles, nanosphere lithography
Procedia PDF Downloads 328754 A Cephalometric Superimposition of a Skeletal Class III Orthognathic Patient on Nasion-Sella Line
Authors: Albert Suryaprawira
Abstract:
The Nasion-Sella Line (NSL) has been used for several years as a reference line in longitudinal growth study. Therefore this line is considered to be stable not only to evaluate treatment outcome and to predict relapse possibility but also to manage prognosis. This is a radiographic superimposition of an adult male aged 19 years who complained of difficulty in aesthetic, talking and chewing. Patient has a midface hypoplasia profile (concave). He was diagnosed to have a severe Skeletal Class III with Class III malocclusion, increased lower vertical height, and an anterior open bite. A pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. A panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, a pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, a post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition using NSL as a reference line between those radiographs was performed to analyse the outcome. It is important to describe the amount of hard and soft tissue movement and to predict the possibility of relapse after the surgery. The patient also needs to understand all the surgical plan, outcome and relapse prevention. The surgical management included maxillary impaction and advancement of Le Fort I osteotomy. The evaluation using NSL as a reference was a very useful method in determining the outcome and prognosis.Keywords: Nasion-Sella Line, midface hypoplasia, Le Fort 1, maxillary advancement
Procedia PDF Downloads 142753 A Rationale to Describe Ambident Reactivity
Authors: David Ryan, Martin Breugst, Turlough Downes, Peter A. Byrne, Gerard P. McGlacken
Abstract:
An ambident nucleophile is a nucleophile that possesses two or more distinct nucleophilic sites that are linked through resonance and are effectively “in competition” for reaction with an electrophile. Examples include enolates, pyridone anions, and nitrite anions, among many others. Reactions of ambident nucleophiles and electrophiles are extremely prevalent at all levels of organic synthesis. The principle of hard and soft acids and bases (the “HSAB principle”) is most commonly cited in the explanation of selectivities in such reactions. Although this rationale is pervasive in any discussion on ambident reactivity, the HSAB principle has received considerable criticism. As a result, the principle’s supplantation has become an area of active interest in recent years. This project focuses on developing a model for rationalizing ambident reactivity. Presented here is an approach that incorporates computational calculations and experimental kinetic data to construct Gibbs energy profile diagrams. The preferred site of alkylation of nitrite anion with a range of ‘hard’ and ‘soft’ alkylating agents was established by ¹H NMR spectroscopy. Pseudo-first-order rate constants were measured directly by ¹H NMR reaction monitoring, and the corresponding second-order constants and Gibbs energies of activation were derived. These, in combination with computationally derived standard Gibbs energies of reaction, were sufficient to construct Gibbs energy wells. By representing the ambident system as a series of overlapping Gibbs energy wells, a more intuitive picture of ambident reactivity emerges. Here, previously unexplained switches in reactivity in reactions involving closely related electrophiles are elucidated.Keywords: ambident, Gibbs, nucleophile, rates
Procedia PDF Downloads 84752 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance
Authors: Xiaoyong He
Abstract:
The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.Keywords: graphene, metamaterials, terahertz, tunable
Procedia PDF Downloads 344751 New Neuroplasmonic Sensor Based on Soft Nanolithography
Authors: Seyedeh Mehri Hamidi, Nasrin Asgari, Foozieh Sohrabi, Mohammad Ali Ansari
Abstract:
New neuro plasmonic sensor based on one dimensional plasmonic nano-grating has been prepared. To record neural activity, the sample has been exposed under different infrared laser and then has been calculated by ellipsometry parameters. Our results show that we have efficient sensitivity to different laser excitation.Keywords: neural activity, Plasmonic sensor, Nanograting, Gold thin film
Procedia PDF Downloads 399750 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia
Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia
Abstract:
In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.Keywords: magnetic cilia, particle separation, tunable separation, soft actutors
Procedia PDF Downloads 199749 Numerical Simulation of Footing on Reinforced Loose Sand
Authors: M. L. Burnwal, P. Raychowdhury
Abstract:
Earthquake leads to adverse effects on buildings resting on soft soils. Mitigating the response of shallow foundations on soft soil with different methods reduces settlement and provides foundation stability. Few methods such as the rocking foundation (used in Performance-based design), deep foundation, prefabricated drain, grouting, and Vibro-compaction are used to control the pore pressure and enhance the strength of the loose soils. One of the problems with these methods is that the settlement is uncontrollable, leading to differential settlement of the footings, further leading to the collapse of buildings. The present study investigates the utility of geosynthetics as a potential improvement of the subsoil to reduce the earthquake-induced settlement of structures. A steel moment-resisting frame building resting on loose liquefiable dry soil, subjected to Uttarkashi 1991 and Chamba 1995 earthquakes, is used for the soil-structure interaction (SSI) analysis. The continuum model can simultaneously simulate structure, soil, interfaces, and geogrids in the OpenSees framework. Soil is modeled with PressureDependentMultiYield (PDMY) material models with Quad element that provides stress-strain at gauss points and is calibrated to predict the behavior of Ganga sand. The model analyzed with a tied degree of freedom contact reveals that the system responses align with the shake table experimental results. An attempt is made to study the responses of footing structure and geosynthetics with unreinforced and reinforced bases with varying parameters. The result shows that geogrid reinforces shallow foundation effectively reduces the settlement by 60%.Keywords: settlement, shallow foundation, SSI, continuum FEM
Procedia PDF Downloads 194748 Parametric Analysis of Water Lily Shaped Split Ring Resonator Loaded Fractal Monopole Antenna for Multiband Applications
Authors: C. Elavarasi, T. Shanmuganantham
Abstract:
A coplanar waveguide (CPW) feed is presented, and comprising a split ring resonator (SRR) loaded fractal with water lily shape is used for multi band applications. The impedance matching of the antenna is determined by the number of Koch curve fractal unit cells. The antenna is designed on a FR4 substrate with a permittivity of εr = 4.4 and size of 14 x 16 x 1.6 mm3 to generate multi resonant mode at 3.8 GHz covering S band, 8.68 GHz at X band, 13.96 GHz at Ku band, and 19.74 GHz at K band with reflection coefficient better than -10 dB. Simulation results show that the antenna exhibits the desired voltage standing wave ratio (VSWR) level and radiation patterns across the wide frequency range. The fundamental parameters of the antenna such as return loss, VSWR, good radiation pattern with reasonable gain across the operating bands are obtained.Keywords: fractal, metamaterial, split ring resonator, waterlily shape
Procedia PDF Downloads 274747 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal
Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen
Abstract:
In this study, we demonstrate a high-resolution refractive index sensor based on a magnetic photonic crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.Keywords: magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution
Procedia PDF Downloads 591746 Evaluation of Anti-Pruritus Effect of Melatonin on Hemodialysis Patients with Uremic Pruritus: A Randomized Clinical Trial
Authors: Paria Baharvand, Mohammad Reza Abbasi, Soha Namazi
Abstract:
Introduction: Uremic pruritus (UP) is one of the major complaints in hemodialysis patients. The aim of this randomized clinical trial study was the evaluation of the anti-pruritus effect of Melatonin on hemodialysis patients with UP. Methods: This multi-centered double, blinded randomized clinical trial study was conducted on hemodialysis patients with UP that referred to the dialysis department of Imam Khomeini Hospital, Labbafinezhad Hospital and Ghiasi Hospital in Tehran, Iran, in 2018. Forty participants were enrolled and block randomization was performed by using a randomized list and divided into 2 groups of twenty patients. Evaluation of the 12-Item Pruritus Severity Scale (12-PSS), Visual analog scale (VAS), and Calculation of the affected body surface area for pruritus extent (BSA %) was performed every week. The Melatonin group received a 10 mg soft gel capsule, and the placebo group received a soft gel capsule placebo after dinner. For statistical analysis used by SPSS version 21(IRCT20180714040462N1). Results: 38 hemodialysis patients enrolled in this study. The mean age in the placebo group and in the Melatonin group was 55.88 ± 11.70 and 54.52 ± 13.00 years (p> 0.05). Also, 46% of all participants were female. Aspartate transaminase, alanine transaminase and C-reactive protein have significant differences between the two groups (p< 0.05). VAS score reduction in the two groups had a statistically significant (CI 95% = -1.71, P= 0.015(.The results of BSA% showed Melatonin had a significant effect on the decrease of the pruritus extent compared to placebo (CI 95% = -22.82, P= 0.001(. Conclusion: According to the results of this study and the preliminary effects of Melatonin on uremic pruritus, we suggest performing advanced clinical trials studies.Keywords: Melatonin, Uremic Pruritus, hemodialysis, anti-pruritus
Procedia PDF Downloads 80745 The Use of STIMULAN Resorbable Antibiotic Beads in Conjunction with Autologous Tissue Transfer to Treat Recalcitrant Infections and Osteomyelitis in Diabetic Foot Wounds
Authors: Hayden R Schott, John M Felder III
Abstract:
Introduction: Chronic lower extremity wounds in the diabetic and vasculopathic populations are associated with a high degree of morbidity.When wounds require more extensive treatment than can be offered by wound care centers, more aggressive solutions involve local tissue transfer and microsurgical free tissue transfer for achieving definitive soft tissue coverage. These procedures of autologous tissue transfer (ATT) offer resilient, soft tissue coverage of limb-threatening wounds and confer promising limb salvage rates. However, chronic osteomyelitis and recalcitrant soft tissue infections are common in severe diabetic foot wounds and serve to significantly complicate ATT procedures. Stimulan is a resorbable calcium sulfate antibiotic carrier. The use of stimulan antibiotic beads to treat chronic osteomyelitis is well established in the orthopedic and plastic surgery literature. In these procedures, the beads are placed beneath the skin flap to directly deliver antibiotics to the infection site. The purpose of this study was to quantify the success of Stimulan antibiotic beads in treating recalcitrant infections in patients with diabetic foot wounds receiving ATT. Methods: A retrospective review of clinical and demographic information was performed on patients who underwent ATT with the placement of Stimulan antibiotic beads for attempted limb salvage from 2018-21. Patients were analyzed for preoperative wound characteristics, demographics, infection recurrence, and adverse outcomes as a result of product use. The primary endpoint was 90 day infection recurrence, with secondary endpoints including 90 day complications. Outcomes were compared using basic statistics and Fisher’s exact tests. Results: In this time span, 14 patients were identified. At the time of surgery, all patients exhibited clinical signs of active infection, including positive cultures and erythema. 57% of patients (n=8) exhibited chronic osteomyelitis prior to surgery, and 71% (n=10) had exposed bone at the wound base. In 57% of patients (n=8), Stimulan beads were placed beneath a free tissue flap and beneath a pedicle tissue flap in 42% of patients (n=6). In all patients, Stimulan beads were only applied once. Recurrent infections were observed in 28% of patients (n=4) at 90 days post-op, and flap nonadherence was observed in 7% (n=1). These were the only Stimulan related complications observed. Ultimately, lower limb salvage was successful in 85% of patients (n=12). Notably, there was no significant association between the preoperative presence of osteomyelitis and recurrent infections. Conclusions: The use of Stimulanantiobiotic beads to treat recalcitrant infections in patients receiving definitive skin coverage of diabetic foot wounds does not appear to demonstrate unnecessary risk. Furthermore, the lack of significance between the preoperative presence of osteomyelitis and recurrent infections indicates the successful use of Stimulan to dampen infection in patients with osteomyelitis, as is consistent with the literature. Further research is needed to identify Stimulan as the significant contributor to infection treatment using future cohort and case control studies with more patients. Nonetheless, the use of Stimulan antibiotic beads in patients with diabetic foot wounds demonstrates successful infection suppression and maintenance of definitive soft tissue coverage.Keywords: wound care, stimulan antibiotic beads, free tissue transfer, plastic surgery, wound, infection
Procedia PDF Downloads 90744 Two-Photon Ionization of Silver Clusters
Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian
Abstract:
Resonant two-photon ionization (TPI) is a valuable technique for the study of clusters due to its ultrahigh sensitivity. The comparison of the observed TPI spectra with results of calculations allows to deduce important information on the shape, rotational and vibrational temperatures of the clusters with high accuracy. In this communication we calculate the TPI cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is chosen to be close to the surface plasmon (SP) energy of cluster in dielectric media. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows to take into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.Keywords: resonance enhancement, silver clusters, surface plasmon, two-photon ionization
Procedia PDF Downloads 427743 Further Evidence for the Existence of Broiler Chicken PFN (Pale, Firm and Non-Exudative Meat) and PSE (Pale, Soft and Exudative) in Brazilian Commercial Flocks
Authors: Leila M. Carvalho, Maria Erica S. Oliveira, Arnoud C. Neto, Elza I. Ida, Massami Shimokomaki, Marta S. Madruga
Abstract:
The quality of broiler breast meat is changing as a result of the continuing emphasis on genetic selection for a more efficient meat production. Breast meat has been classified as PSE (pale, soft, exudative), DFD (dark, firm, dry) and normal color meat, and recently a third group has emerged: the so-called PFN (pale, firm, non-exudative) meat. This classification was based on pH, color and functional properties. The aim of this work was to confirm the existence of PFN and PSE meat by biochemical characterization and functional properties. Twenty four hours of refrigerated fillet, Pectoralis major, m. samples (n= 838) were taken from Cobb flocks 42-48 days old, obtained in Northeastern Brazil tropical region, the Northeastern, considered to have only dry and wet seasons. Color (L*), pH, water holding capacity (WHC), values were evaluated and compared with PSE group samples. These samples were classified as Normal (46Keywords: broiler breast meat, funcional properties, PFN, PSE
Procedia PDF Downloads 249742 Design and Analysis of Proximity Fed Single Band Microstrip Patch Antenna with Parasitic Lines
Authors: Inderpreet Kaur, Sukhjit Kaur, Balwinder Singh Sohi
Abstract:
The design proposed in this paper mainly focuses on implementation of a single feed compact rectangular microstrip patch antenna (MSA) for single band application. The antenna presented here also works in dual band but its best performance has been obtained when optimised to work in single band mode. In this paper, a new feeding structure is applied in the patch antenna design to overcome undesirable features of the earlier multilayer feeding structures while maintaining their interesting features.To make the proposed antenna more efficient the optimization of the antenna design parameters have been done using HFSS’s optometric. For the proposed antenna one resonant frequency has been obtained at 6.03GHz, with Bandwidth of 167MHz and return loss of -33.82db. The characteristics of the designed structure are investigated by using FEM based electromagnetic solver.Keywords: bandwidth, retun loss, parasitic lines, microstrip antenna
Procedia PDF Downloads 463741 Static and Dynamic Analysis of Timoshenko Microcantilever Using the Finite Element Method
Authors: Mohammad Tahmasebipour, Hosein Salarpour
Abstract:
Micro cantilevers are one of the components used in the manufacture of micro-electromechanical systems. Epoxy microcantilevers have a variety of applications in the manufacture of micro-sensors and micro-actuators. In this paper, the Timoshenko Micro cantilever was statically and dynamically analyzed using the finite element method. First, all boundary conditions and initial conditions governing micro cantilevers were considered. The effect of size on the deflection, angle of rotation, natural frequencies, and mode shapes were then analyzed and evaluated under different frequencies. It was observed that an increased micro cantilever thickness reduces the deflection, rotation, and resonant frequency. A good agreement was observed between our results and those obtained by the couple stress theory, the classical theory, and the strain gradient elasticity theory.Keywords: microcantilever, microsensor; epoxy, dynamic behavior, static behavior, finite element method
Procedia PDF Downloads 416740 Case Study of High-Resolution Marine Seismic Survey in Shallow Water, Arabian Gulf, Saudi Arabia
Authors: Almalki M., Alajmi M., Qadrouh Y., Alzahrani E., Sulaiman A., Aleid M., Albaiji A., Alfaifi H., Alhadadi A., Almotairy H., Alrasheed R., Alhafedh Y.
Abstract:
High-resolution marine seismic survey is a well-established technique that commonly used to characterize near-surface sediments and geological structures at shallow water. We conduct single channel seismic survey to provide high quality seismic images for near-surface sediments upto 100m depth at Jubal costal area, Arabian Gulf. Eight hydrophones streamer has been used to collect stacked seismic traces alone 5km seismic line. To reach the required depth, we have used spark system that discharges energies above 5000 J with expected frequency output span the range from 200 to 2000 Hz. A suitable processing flow implemented to enhance the signal-to-noise ratio of the seismic profile. We have found that shallow sedimentary layers at the study site have complex pattern of reflectivity, which decay significantly due to amount of source energy used as well as the multiples associated to seafloor. In fact, the results reveal that single channel marine seismic at shallow water is a cost-effective technique that can be easily repeated to observe any possibly changes in the wave physical properties at the near surface layersKeywords: shallow marine single-channel data, high resolution, frequency filtering, shallow water
Procedia PDF Downloads 72739 12x12 MIMO Terminal Antennas Covering the Whole LTE and WiFi Spectrum
Authors: Mohamed Sanad, Noha Hassan
Abstract:
A broadband resonant terminal antenna has been developed. It can be used in different MIMO arrangements such as 2x2, 4x4, 8x8, or even 12x12 MIMO configurations. The antenna covers the whole LTE and WiFi bands besides the existing 2G/3G bands (700-5800 MHz), without using any matching/tuning circuits. Matching circuits significantly reduce the efficiency of any antenna and reduce the battery life. They also reduce the bandwidth because they are frequency dependent. The antenna can be implemented in smartphone handsets, tablets, laptops, notebooks or any other terminal. It is also suitable for different IoT and vehicle applications. The antenna is manufactured from a flexible material and can be bent or folded and shaped in any form to fit any available space in any terminal. It is self-contained and does not need to use the ground plane, the chassis or any other component of the terminal. Hence, it can be mounted on any terminal at different positions and configurations. Its performance does not get affected by the terminal, regardless of its type, shape or size. Moreover, its performance does not get affected by the human body of the terminal’s users. Because of all these unique features of the antenna, multiples of them can be simultaneously used for MIMO diversity coverage in any terminal device with a high isolation and a low correlation factor between them.Keywords: IOT, LTE, MIMO, terminal antenna, WiFi
Procedia PDF Downloads 186738 YOLO-IR: Infrared Small Object Detection in High Noise Images
Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long
Abstract:
Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion
Procedia PDF Downloads 73737 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis
Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas
Abstract:
Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum
Procedia PDF Downloads 161736 Periodontal Soft Tissue Sculpturing and Use of Interim Appliance for Rehabilitation of Anterior Edentulousness: Case Report
Authors: Hande Yesil, Seda Aycan Altan, M. Vehbi Bal, Alper Uyar, O. Cumhur Sipahi
Abstract:
Purpose: Fixed partial dentures (FPDs) must fulfill functional requirements such as phonetics, chewing efficiency and esthetics especially in the anterior region. A convex type tissue surface is usually recommended for pontics of FPDs. That pontic design also provides suitable oral hygiene and ease of cleaning. However, high esthetic requirements and correct emergence profile are not always achievable because of the convex shape of adjacent soft tissues. Therefore, the ovate type pontic which fulfills the high esthetic demands of the patients may be a good alternative to the modified ridge lap pontic design. Clinical Report: A female patient referred with the complaint of anterior upper edentulousness. In the oral examination it was determined that teeth 11, 12, 21, 22 were deficient. A thick and convex gingival tissue that may cause aesthetic problems was also observed.. Periodontal augmentation surgery was performed to ensure proper papillary configuration and gingival contour. An interim removable partial denture (IRPD) which applied pressure to operated gingival tissues was fabricated postoperatively. The IRPD was used for 4 weeks and after completion of tissue sculpting, the permanent FPD with an ovate pontic was fabricated and cemented. After a follow-up period of 6 months, not any esthetical and hygienic problem was detected and the patient was satisfied with her prosthesis. Conclusion: It was concluded that shaping of gingival contours with IRPD and use of a FPD with ovate pontic fulfills all esthetic and hygienic requirements.Keywords: interim appliance, ovate pontic, tissue sculpturing, fixed partial denture
Procedia PDF Downloads 281