Search results for: groundwater modeling
4018 Colloids and Heavy Metals in Groundwaters: Tangential Flow Filtration Method for Study of Metal Distribution on Different Sizes of Colloids
Authors: Jiancheng Zheng
Abstract:
When metals are released into water from mining activities, they undergo changes chemically, physically and biologically and then may become more mobile and transportable along the waterway from their original sites. Natural colloids, including both organic and inorganic entities, are naturally occurring in any aquatic environment with sizes in the nanometer range. Natural colloids in a water system play an important role, quite often a key role, in binding and transporting compounds. When assessing and evaluating metals in natural waters, their sources, mobility, fate, and distribution patterns in the system are the major concerns from the point of view of assessing environmental contamination and pollution during resource development. There are a few ways to quantify colloids and accordingly study how metals distribute on different sizes of colloids. Current research results show that the presence of colloids can enhance the transport of some heavy metals in water, while heavy metals may also have an influence on the transport of colloids when cations in the water system change colloids and/or the ion strength of the water system changes. Therefore, studies into the relationship between different sizes of colloids and different metals in a water system are necessary and needed as natural colloids in water systems are complex mixtures of both organic and inorganic as well as biological materials. Their stability could be sensitive to changes in their shapes, phases, hardness and functionalities due to coagulation and deposition et al. and chemical, physical, and biological reactions. Because metal contaminants’ adsorption on surfaces of colloids is closely related to colloid properties, it is desired to fraction water samples as soon as possible after a sample is taken in the natural environment in order to avoid changes to water samples during transportation and storage. For this reason, this study carried out groundwater sample processing in the field, using Prep/Scale tangential flow filtration systems with 3-level cartridges (1 kDa, 10 kDa and 100 kDa). Groundwater samples from seven sites at Fort MacMurray, Alberta, Canada, were fractionated during the 2015 field sampling season. All samples were processed within 3 hours after samples were taken. Preliminary results show that although the distribution pattern of metals on colloids may vary with different samples taken from different sites, some elements often tend to larger colloids (such as Fe and Re), some to finer colloids (such as Sb and Zn), while some of them mainly in the dissolved form (such as Mo and Be). This information is useful to evaluate and project the fate and mobility of different metals in the groundwaters and possibly in environmental water systems.Keywords: metal, colloid, groundwater, mobility, fractionation, sorption
Procedia PDF Downloads 3624017 An Integrated Framework for Engaging Stakeholders in the Circular Economy Processes Using Building Information Modeling and Virtual Reality
Authors: Erisasadat Sahebzamani, Núria Forcada, Francisco Lendinez
Abstract:
Global climate change has become increasingly problematic over the past few decades. The construction industry has contributed to greenhouse gas emissions in recent decades. Considering these issues and the high demand for materials in the construction industry, Circular Economy (CE) is considered necessary to keep materials in the loop and extend their useful lives. By providing tangible benefits, Construction 4.0 facilitates the adoption of CE by reducing waste, updating standard work, sharing knowledge, and increasing transparency and stability. This study aims to present a framework for integrating CE and digital tools like Building Information Modeling (BIM) and Virtual Reality (VR) to examine the impact on the construction industry based on stakeholders' perspectives.Keywords: circular economy, building information modeling, virtual reality, stakeholder engagement
Procedia PDF Downloads 1114016 Modeling and Optimization of Nanogenerator for Energy Harvesting
Authors: Fawzi Srairi, Abderrahmane Dib
Abstract:
Recently, the desire for a self-powered micro and nanodevices has attracted a great interest of using sustainable energy sources. Further, the ultimate goal of nanogenerator is to harvest energy from the ambient environment in which a self-powered device based on these generators is needed. With the development of nanogenerator-based circuits design and optimization, the building of new device simulator is necessary for the study and the synthesis of electromechanical parameters of this type of models. In the present article, both numerical modeling and optimization of piezoelectric nanogenerator based on zinc oxide have been carried out. They aim to improve the electromechanical performances, robustness, and synthesis process for nanogenerator. The proposed model has been developed for a systematic study of the nanowire morphology parameters in stretching mode. In addition, heuristic optimization technique, namely, particle swarm optimization has been implemented for an analytic modeling and an optimization of nanogenerator-based process in stretching mode. Moreover, the obtained results have been tested and compared with conventional model where a good agreement has been obtained for excitation mode. The developed nanogenerator model can be generalized, extended and integrated into simulators devices to study nanogenerator-based circuits.Keywords: electrical potential, heuristic algorithms, numerical modeling, nanogenerator
Procedia PDF Downloads 3084015 Variability of Hydrological Modeling of the Blue Nile
Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm
Abstract:
The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.Keywords: Blue Nile Basin, climate change, hydrological modeling, watershed
Procedia PDF Downloads 3664014 Drying Modeling of Banana Using Cellular Automata
Authors: M. Fathi, Z. Farhaninejad, M. Shahedi, M. Sadeghi
Abstract:
Drying is one of the oldest preservation methods for food and agriculture products. Appropriate control of operation can be obtained by modeling. Limitation of continues models for complex boundary condition and non-regular geometries leading to appearance of discrete novel methods such as cellular automata, which provides a platform for obtaining fast predictions by rule-based mathematics. In this research a one D dimensional CA was used for simulating thin layer drying of banana. Banana slices were dried with a convectional air dryer and experimental data were recorded for validating of final model. The model was programmed by MATLAB, run for 70000 iterations and von-Neumann neighborhood. The validation results showed a good accordance between experimental and predicted data (R=0.99). Cellular automata are capable to reproduce the expected pattern of drying and have a powerful potential for solving physical problems with reasonable accuracy and low calculating resources.Keywords: banana, cellular automata, drying, modeling
Procedia PDF Downloads 4384013 Naphtha Catalytic Reform: Modeling and Simulation of Unity
Authors: Leal Leonardo, Pires Carlos Augusto de Moraes, Casiraghi Magela
Abstract:
In this work were realized the modeling and simulation of the catalytic reformer process, of ample form, considering all the equipment that influence the operation performance. Considered it a semi-regenerative reformer, with four reactors in series intercalated with four furnaces, two heat exchanges, one product separator and one recycle compressor. A simplified reactional system was considered, involving only ten chemical compounds related through five reactions. The considered process was the applied to aromatics production (benzene, toluene, and xylene). The models developed to diverse equipment were interconnecting in a simulator that consists of a computer program elaborate in FORTRAN 77. The simulation of the global model representative of reformer unity achieved results that are compatibles with the literature ones. It was then possible to study the effects of operational variables in the products concentration and in the performance of the unity equipment.Keywords: catalytic reforming, modeling, simulation, petrochemical engineering
Procedia PDF Downloads 5154012 Modeling Binomial Dependent Distribution of the Values: Synthesis Tables of Probabilities of Errors of the First and Second Kind of Biometrics-Neural Network Authentication System
Authors: B. S.Akhmetov, S. T. Akhmetova, D. N. Nadeyev, V. Yu. Yegorov, V. V. Smogoonov
Abstract:
Estimated probabilities of errors of the first and second kind for nonideal biometrics-neural transducers 256 outputs, the construction of nomograms based error probability of 'own' and 'alien' from the mathematical expectation and standard deviation of the normalized measures Hamming.Keywords: modeling, errors, probability, biometrics, neural network, authentication
Procedia PDF Downloads 4824011 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments
Authors: Xiaoqin Wang, Li Yin
Abstract:
Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.Keywords: causal effect, point effect, statistical modelling, sequential causal inference
Procedia PDF Downloads 2054010 Benthic Cover in Coral Reef Environments under Influence of Submarine Groundwater Discharges
Authors: Arlett A. Rosado-Torres, Ismael Marino-Tapia
Abstract:
Changes in benthic cover of coral dominated systems to macroalgae dominance are widely studied worldwide. Watershed pollutants are potentially as important as overfishing causing phase shift. In certain regions of the world most of the continental inputs are through submarine groundwater discharges (SGD), which can play a significant ecological role because the concentration of its nutrients is usually greater that the one found in surface seawater. These stressors have adversely affected coral reefs, particularly in the Caribbean. Measurements of benthic cover (with video tracing, through a Go Pro camera), reef roughness (acoustic estimates with an Acoustic Doppler Current Velocity profiler and a differential GPS), thermohaline conditions (conductivity-temperature-depth (CTD) instrument) and nutrient measurements were taken in different sites in the reef lagoon of Puerto Morelos, Q. Roo, Mexico including those with influence of SGD and without it. The results suggest a link between SGD, macroalgae cover and structural complexity. Punctual water samples and data series from a CTD Diver confirm the presence of the SGD. On the site where the SGD is, the macroalgae cover is larger than in the other sites. To establish a causal link between this phase shift and SGD, the DELFT 3D hydrodynamic model (FLOW and WAVE modules) was performed under different environmental conditions and discharge magnitudes. The model was validated using measurements of oceanographic instruments anchored in the lagoon and forereef. The SGD is consistently favoring macroalgae populations and affecting structural complexity of the reef.Keywords: hydrodynamic model, macroalgae, nutrients, phase shift
Procedia PDF Downloads 1524009 Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia
Authors: Etienne Mfoumou, Mo Shamma, Martin Tango, Michael Locke
Abstract:
Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS.Keywords: water education, water literacy, water management, water systems, Southwest Nova Scotia
Procedia PDF Downloads 314008 Stochastic Richelieu River Flood Modeling and Comparison of Flood Propagation Models: WMS (1D) and SRH (2D)
Authors: Maryam Safrai, Tewfik Mahdi
Abstract:
This article presents the stochastic modeling of the Richelieu River flood in Quebec, Canada, occurred in the spring of 2011. With the aid of the one-dimensional Watershed Modeling System (WMS (v.10.1) and HEC-RAS (v.4.1) as a flood simulator, the delineation of the probabilistic flooded areas was considered. Based on the Monte Carlo method, WMS (v.10.1) delineated the probabilistic flooded areas with corresponding occurrence percentages. Furthermore, results of this one-dimensional model were compared with the results of two-dimensional model (SRH-2D) for the evaluation of efficiency and precision of each applied model. Based on this comparison, computational process in two-dimensional model is longer and more complicated versus brief one-dimensional one. Although, two-dimensional models are more accurate than one-dimensional method, but according to existing modellers, delineation of probabilistic flooded areas based on Monte Carlo method is achievable via one-dimensional modeler. The applied software in this case study greatly responded to verify the research objectives. As a result, flood risk maps of the Richelieu River with the two applied models (1d, 2d) could elucidate the flood risk factors in hydrological, hydraulic, and managerial terms.Keywords: flood modeling, HEC-RAS, model comparison, Monte Carlo simulation, probabilistic flooded area, SRH-2D, WMS
Procedia PDF Downloads 1404007 Primary School Students’ Modeling Processes: Crime Problem
Authors: Neslihan Sahin Celik, Ali Eraslan
Abstract:
As a result of PISA (Program for International Student Assessments) survey that tests how well students can apply the knowledge and skills they have learned at school to real-life challenges, the new and redesigned mathematics education programs in many countries emphasize the necessity for the students to face complex and multifaceted problem situations and gain experience in this sense allowing them to develop new skills and mathematical thinking to prepare them for their future life after school. At this point, mathematical models and modeling approaches can be utilized in the analysis of complex problems which represent real-life situations in which students can actively participate. In particular, model eliciting activities that bring about situations which allow the students to create solutions to problems and which involve mathematical modeling must be used right from primary school years, allowing them to face such complex, real-life situations from early childhood period. A qualitative study was conducted in a university foundation primary school in the city center of a big province in 2013-2014 academic years. The participants were 4th grade students in a primary school. After a four-week preliminary study applied to a fourth-grade classroom, three students included in the focus group were selected using criterion sampling technique. A focus group of three students was videotaped as they worked on the Crime Problem. The conversation of the group was transcribed, examined with students’ written work and then analyzed through the lens of Blum and Ferri’s modeling processing cycle. The results showed that primary fourth-grade students can successfully work with model eliciting problem while they encounter some difficulties in the modeling processes. In particular, they developed new ideas based on different assumptions, identified the patterns among variables and established a variety of models. On the other hand, they had trouble focusing on problems and occasionally had breaks in the process.Keywords: primary school, modeling, mathematical modeling, crime problem
Procedia PDF Downloads 4044006 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes
Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales
Abstract:
In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.Keywords: calibration, data modeling, industrial processes, machine learning
Procedia PDF Downloads 2974005 Fault Ride Through Management in Renewable Power Park
Authors: Mohd Zamri Che Wanik
Abstract:
This paper presents the management of the Fault Ride Through event within a Solar Farm during a grid fault. The modeling and simulation of a photovoltaic (PV) with battery energy storage connected to the power network will be described. The modeling approach and the study analysis performed are described. The model and operation scenarios are simulated using a digital simulator for different scenarios. The dynamic response of the system when subjected to sudden self-clearance temporary fault is presented. The capability of the PV system and battery storage riding through the power system fault and, at the same time, supporting the local grid by injecting fault current is demonstrated. For each case, the different control methods to achieve the objective of supporting the grid according to grid code requirements are presented and explained. The inverter modeling approach is presented and described.Keywords: faut ride through, solar farm, grid code, power network
Procedia PDF Downloads 514004 Turbulence Modeling and Wave-Current Interactions
Authors: A. C. Bennis, F. Dumas, F. Ardhuin, B. Blanke
Abstract:
The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.Keywords: numerical modeling, wave-current interactions, turbulence modeling, rip currents
Procedia PDF Downloads 4664003 A Stock Exchange Analysis in Turkish Logistics Sector: Modeling, Forecasting, and Comparison with Logistics Indices
Authors: Eti Mizrahi, Gizem İntepe
Abstract:
The geographical location of Turkey that stretches from Asia to Europe and Russia to Africa makes it an important logistics hub in the region. Although logistics is a developing sector in Turkey, the stock market representation is still low with only two companies listed in Turkey’s stock exchange since 2010. In this paper, we use the daily values of these two listed stocks as a benchmark for the logistics sector. After modeling logistics stock prices, an empirical examination is conducted between the existing logistics indices and these stock prices. The paper investigates whether the measures of logistics stocks are correlated with newly available logistics indices. It also shows the reflection of the economic activity in the logistics sector on the stock exchange market. The results presented in this paper are the first analysis of the behavior of logistics indices and logistics stock prices for Turkey.Keywords: forecasting, logistic stock exchange, modeling, Africa
Procedia PDF Downloads 5414002 Development of Building Information Modeling for Cultural Heritage: The Case of West Theater in Gadara (Umm Qais), Jordan
Authors: Amal Alatar
Abstract:
The architectural legacy is considered a significant factor, which left its features on the shape of buildings and historical and archaeological sites all over the world. In this framework, this paper focuses on Umm Qais town, located in Northern Jordan, which includes archaeological remains of the ancient Decapolis city of Gadara, still the witness of the originality and architectural identity of the city. 3D modeling is a public asset and a valuable resource for cultural heritage. This technique allows the possibility to make accurate representations of objects, structures, and surfaces. Hence, these representations increase valuable assets when thinking about cultural heritage. The Heritage Building Information Modeling (HBIM) is considered an effective tool to represent information on Cultural Heritage (CH) which can be used for documentation, restoration, conservation, presentation, and research purposes. Therefore, this paper focus on the interdisciplinary project of the virtualization of the West Theater in Gadara (Umm Qais) for 3D documentation and structural studies. The derived 3D model of the cultural heritage is the basis for further archaeological studies; the challenges of the work stay in the acquisition, processing, and integration of the multi-resolution data as well as their interactive visualization.Keywords: archaeology, 3D modeling, Umm Qais, culture heritage, Jordan
Procedia PDF Downloads 1014001 A Method for Modeling Flexible Manipulators: Transfer Matrix Method with Finite Segments
Authors: Haijie Li, Xuping Zhang
Abstract:
This paper presents a computationally efficient method for the modeling of robot manipulators with flexible links and joints. This approach combines the Discrete Time Transfer Matrix Method with the Finite Segment Method, in which the flexible links are discretized by a number of rigid segments connected by torsion springs; and the flexibility of joints are modeled by torsion springs. The proposed method avoids the global dynamics and has the advantage of modeling non-uniform manipulators. Experiments and simulations of a single-link flexible manipulator are conducted for verifying the proposed methodologies. The simulations of a three-link robot arm with links and joints flexibility are also performed.Keywords: flexible manipulator, transfer matrix method, linearization, finite segment method
Procedia PDF Downloads 4284000 Analysis of School Burnout and Academic Motivation through Structural Equation Modeling
Authors: Ismail Seçer
Abstract:
The purpose of this study is to analyze the relationship between school burnout and academic motivation in high school students. The working group of the study consists of 455 students from the high schools in Erzurum city center, selected with appropriate sampling method. School Burnout Scale and Academic Motivation Scale were used in the study to collect data. Correlation analysis and structural equation modeling were used in the analysis of the data collected through the study. As a result of the study, it was determined that there are significant and negative relations between school burnout and academic motivation, and the school burnout has direct and indirect significant effects on the getting over himself, using knowledge and exploration dimension through the latent variable of academic motivation. Lastly, it was determined that school burnout is a significant predictor of academic motivation.Keywords: school burnout, motivation, structural equation modeling, university
Procedia PDF Downloads 3243999 An Extension of the Generalized Extreme Value Distribution
Authors: Serge Provost, Abdous Saboor
Abstract:
A q-analogue of the generalized extreme value distribution which includes the Gumbel distribution is introduced. The additional parameter q allows for increased modeling flexibility. The resulting distribution can have a finite, semi-infinite or infinite support. It can also produce several types of hazard rate functions. The model parameters are determined by making use of the method of maximum likelihood. It will be shown that it compares favourably to three related distributions in connection with the modeling of a certain hydrological data set.Keywords: extreme value theory, generalized extreme value distribution, goodness-of-fit statistics, Gumbel distribution
Procedia PDF Downloads 3493998 Mathematical Modeling of Carotenoids and Polyphenols Content of Faba Beans (Vicia faba L.) during Microwave Treatments
Authors: Ridha Fethi Mechlouch, Ahlem Ayadi, Ammar Ben Brahim
Abstract:
Given the importance of the preservation of polyphenols and carotenoids during thermal processing, we attempted in this study to investigate the variation of these two parameters in faba beans during microwave treatment using different power densities (1; 2; and 3W/g), then to perform a mathematical modeling by using non-linear regression analysis to evaluate the models constants. The variation of the carotenoids and polyphenols ratio of faba beans and the models are tested to validate the experimental results. Exponential models were found to be suitable to describe the variation of caratenoid ratio (R²= 0.945, 0.927 and 0.946) for power densities (1; 2; and 3W/g) respectively, and polyphenol ratio (R²= 0.931, 0.989 and 0.982) for power densities (1; 2; and 3W/g) respectively. The effect of microwave power density Pd(W/g) on the coefficient k of models were also investigated. The coefficient is highly correlated (R² = 1) and can be expressed as a polynomial function.Keywords: microwave treatment, power density, carotenoid, polyphenol, modeling
Procedia PDF Downloads 2593997 Dynamic Modeling of a Robot for Playing a Curved 3D Percussion Instrument Utilizing a Finite Element Method
Authors: Prakash Persad, Kelvin Loutan, Trichelle Seepersad
Abstract:
The Finite Element Method is commonly used in the analysis of flexible manipulators to predict elastic displacements and develop joint control schemes for reducing positioning error. In order to preserve simplicity, regular geometries, ideal joints and connections are assumed. This paper presents the dynamic FE analysis of a 4- degrees of freedom open chain manipulator, intended for striking a curved 3D surface percussion musical instrument. This was done utilizing the new MultiBody Dynamics Module in COMSOL, capable of modeling the elastic behavior of a body undergoing rigid body type motion.Keywords: dynamic modeling, entertainment robots, finite element method, flexible robot manipulators, multibody dynamics, musical robots
Procedia PDF Downloads 3363996 Model Based Development of a Processing Map for Friction Stir Welding of AA7075
Authors: Elizabeth Hoyos, Hernán Alvarez, Diana Lopez, Yesid Montoya
Abstract:
The main goal of this research relates to the modeling of FSW from a different or unusual perspective coming from mechanical engineering, particularly looking for a way to establish process windows by assessing soundness of the joints as a priority and with the added advantage of lower computational time. This paper presents the use of a previously developed model applied to specific aspects of soundness evaluation of AA7075 FSW welds. EMSO software (Environment for Modeling, Simulation, and Optimization) was used for simulation and an adapted CNC machine was used for actual welding. This model based approach showed good agreement with the experimental data, from which it is possible to set a window of operation for commercial aluminum alloy AA7075, all with low computational costs and employing simple quality indicators that can be used by non-specialized users in process modeling.Keywords: aluminum AA7075, friction stir welding, phenomenological based semiphysical model, processing map
Procedia PDF Downloads 2603995 Public Transport Assignment at Adama City
Authors: Selamawit Mulubrhan Gidey
Abstract:
Adama city, having an area of 29.86 km2, is one of the main cities in Ethiopia experiencing rapid growth in business and construction activities which in turn with an increasing number of vehicles at an alarming rate. For this reason, currently, there is an attempt to develop public transport assignment modeling in the city. Still, there is a huge gap in developing public transport assignments along the road segments of the city with operational and safety performance due to high traffic volume. Thus, the introduction of public transport assignment modeling in Adama City can have a massive impact on the road safety and capacity problem in the city. City transport modeling is important in city transportation planning, particularly in overcoming existing transportation problems such as traffic congestion. In this study, the Adama City transportation model was developed using the PTV VISUM software, whose transportation modeling is based on the four-step model of transportation. Based on the traffic volume data fed and simulated, the result of the study shows that the developed model has better reliability in representing the traffic congestion conditions in Adama city, and the simulation clearly indicates the level of congestion of each route selected and thus, the city road administrative office can take managerial decisions on public transport assignment so as to overcome traffic congestion executed along the selected routes.Keywords: trip modelling, PTV VISUM, public transport assignment, congestion
Procedia PDF Downloads 433994 Assessment of Drinking Water Quality in Relation to Arsenic Contamination in Drinking Water in Liberia: Achieving the Sustainable Development Goal of Ensuring Clean Water and Sanitation
Authors: Victor Emery David Jr., Jiang Wenchao, Daniel Mmereki, Yasinta John
Abstract:
The fundamentals of public health are access to safe and clean drinking water. The presence of arsenic and other contaminants in drinking water leads to the potential risk to public health and the environment particularly in most developing countries where there’s inadequate access to safe and clean water and adequate sanitation. Liberia has taken steps to improve its drinking water status so as to achieve the Sustainable Development Goals (SDGs) target of ensuring clean water and effective sanitation but there is still a lot to be done. The Sustainable Development Goals are a United Nation initiative also known as transforming our world: The 2030 agenda for sustainable development. It contains seventeen goals with 169 targets to be met by respective countries. Liberia is situated within in the gold belt region where there exist the presence of arsenic and other contaminants in the underground water due to mining and other related activities. While there are limited or no epidemiological studies conducted in Liberia to confirm illness or death as a result of arsenic contamination in Liberia, it remains a public health concern. This paper assesses the drinking water quality, the presence of arsenic in groundwater/drinking water in Liberia, and proposes strategies for mitigating contaminants in drinking water and suggests options for improvement with regards to achieving the Sustainable Development Goals of ensuring clean water and effective sanitation in Liberia by 2030.Keywords: arsenic, action plan, contaminants, environment, groundwater, sustainable development goals (SDGs), Monrovia, Liberia, public health, drinking water
Procedia PDF Downloads 2613993 Presentation of the Model of Reliability of the Signaling System with Emphasis on Determining Best Time Schedule for Repairments and Preventive Maintenance in the Iranian Railway
Authors: Maziar Yazdani, Ahmad Khodaee, Fatemeh Hajizadeh
Abstract:
The purpose of this research was analysis of the reliability of the signaling system in the railway and planning repair and maintenance of its subsystems. For this purpose, it will be endeavored to introduce practical strategies for activities control and appropriate planning for repair and preventive maintenance by statistical modeling of reliability. Therefore, modeling, evaluation, and promotion of reliability of the signaling system appear very critical. Among the key goals of the railway is provision of quality service for passengers and this purpose is gained by increasing reliability, availability, maintainability and safety of (RAMS). In this research, data were analyzed, and the reliability of the subsystems and entire system was calculated and with emphasis on preservation of performance of each of the subsystems with a reliability of 80%, a plan for repair and preventive maintenance of the subsystems of the signaling system was introduced.Keywords: reliability, modeling reliability, plan for repair and preventive maintenance, signaling system
Procedia PDF Downloads 1833992 Comparative Analysis on the Evolution of Chlorinated Solvents Pollution in Granular Aquifers and Transition Zones to Aquitards
Authors: José M. Carmona, Diana Puigserver, Jofre Herrero
Abstract:
Chlorinated solvents belong to the group of nonaqueous phase liquids (DNAPL) and have been involved in many contamination episodes. They are carcinogenic and recalcitrant pollutants that may be found in granular aquifers as: i) pools accumulated on low hydraulic conductivity layers; ii) immobile residual phase retained at the pore-scale by capillary forces; iii) dissolved phase in groundwater; iv) sorbed by particulate organic matter; and v) stored into the matrix of low hydraulic conductivity layers where they penetrated by molecular diffusion. The transition zone between granular aquifers and basal aquitards constitute the lowermost part of the aquifer and presents numerous fine-grained interbedded layers that give rise to significant textural contrasts. These layers condition the transport and fate of contaminants and lead to differences from the rest of the aquifer, given that: i) hydraulic conductivity of these layers is lower; ii) DNAPL tends to accumulate on them; iii) groundwater flow is slower in the transition zone and consequently pool dissolution is much slower; iv) sorbed concentrations are higher in the fine-grained layers because of their higher content in organic matter; v) a significant mass of pollutant penetrates into the matrix of these layers; and vi) this contaminant mass back-diffuses after remediation and the aquifer becomes contaminated again. Thus, contamination sources of chlorinated solvents are extremely more recalcitrant in transition zones, which has far-reaching implications for the environment. The aim of this study is to analyze the spatial and temporal differences in the evolution of biogeochemical processes in the transition zone and in the rest of the aquifer. For this, an unconfined aquifer with a transition zone in the lower part was selected at Vilafant (NE Spain). This aquifer was contaminated by perchloroethylene (PCE) in the 80’s. Distribution of PCE and other chloroethenes in groundwater and porewater was analyzed in: a) conventional piezometers along the plume and in two multilevel wells at the source of contamination; and b) porewater of fine grained materials from cores recovered when drilled the two multilevel wells. Currently, the highest concentrations continue to be recorded in the source area in the transition zone. By contrast, the lowest concentrations in this area correspond to the central part of the aquifer, where flow velocities are higher and a greater washing of the residual phase initially retained has occurred. The major findings of the study were: i) PCE metabolites were detected in the transition zone, where conditions were more reducing than in the rest of the aquifer; ii) however, reductive dechlorination was partial since only the formation of cis-dicholoroethylene (DCE) was reached; iii) In the central part of the aquifer, where conditions were predominantly oxidizing, the presence of nitrate significantly hindered the reductive declination of PCE. The remediation strategies to be implemented should be directed to enhance dissolution of the source, especially in the transition zone, where it is more recalcitrant. For example, by combining chemical and bioremediation methods, already tested at the laboratory scale with groundwater and sediments of this site.Keywords: chlorinated solvents, chloroethenes, DNAPL, partial reductive dechlorination, PCE, transition zone to basal aquitard
Procedia PDF Downloads 1473991 Multiscale Modeling of Damage in Textile Composites
Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese
Abstract:
Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites
Procedia PDF Downloads 3543990 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer
Authors: Fouzieh Rouzmehr, Mehdi Mousavi
Abstract:
Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results.Keywords: flexible pavement, asphalt, FEM, viscoelastic, elastic, ANSYS, modeling
Procedia PDF Downloads 1313989 Modeling and Simulation Methods Using MATLAB/Simulink
Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,
Abstract:
This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)
Procedia PDF Downloads 342