Search results for: form feature
7045 Solid Dosages Form Tablet: A Summary on the Article by Shashank Tiwari
Authors: Shashank Tiwari
Abstract:
The most common method of drug delivery is the oral solid dosage form, of which tablets and capsules are predominant. The tablet is more widely accepted and used compared to capsules for a number of reasons, such as cost/price, tamper resistance, ease of handling and packaging, ease of identification, and manufacturing efficiency. Over the past several years, the issue of tamper resistance has resulted in the conversion of most over-the-counter (OTC) drugs from capsules to predominantly all tablets.Keywords: capsule, drug delivery, dosages, solid, tablet
Procedia PDF Downloads 4387044 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification
Authors: Rujia Chen, Ajit Narayanan
Abstract:
Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels
Procedia PDF Downloads 1867043 Characterization of Polymorphic Forms of Rifaximin
Authors: Ana Carolina Kogawa, Selma Gutierrez Antonio, Hérida Regina Nunes Salgado
Abstract:
Rifaximin is an oral antimicrobial, gut - selective and not systemic with adverse effects compared to placebo. It is used for the treatment of hepatic encephalopathy, travelers diarrhea, irritable bowel syndrome, Clostridium difficile, ulcerative colitis and acute diarrhea. The crystalline form present in the rifaximin with minimal systemic absorption is α, being the amorphous form significantly different. Regulators are increasingly attention to polymorphisms. Polymorphs can change the form by altering the drug characteristics compromising the effectiveness and safety of the finished product. International Conference on Harmonization issued the ICH Guidance Q6A, which aim to improve the control of polymorphism in new and existing pharmaceuticals. The objective of this study was to obtain polymorphic forms of rifaximin employing recrystallization processes and characterize them by thermal analysis (thermogravimetry - TG and differential scanning calorimetry - DSC), X-ray diffraction, scanning electron microscopy and solubility test. Six polymorphic forms of rifaximin, designated I to VI were obtained by the crystallization process by evaporation of the solvent. The profiles of the TG curves obtained from polymorphic forms of rifaximin are similar to rifaximin and each other, however, the DTG are different, indicating different thermal behaviors. Melting temperature values of all the polymorphic forms were greater to that shown by the rifaximin, indicating the higher thermal stability of the obtained forms. The comparison of the diffractograms of the polymorphic forms of rifaximin with rifaximin α, β and γ constant in patent indicate that forms III, V and VI are formed by mixing polymorph β and α and form III is formed by polymorph β. The polymorphic form I is formed by polymorph β, but with a significant amount of amorphous material. Already, the polymorphic form II consists of polymorph γ, amorphous. In scanning electron microscope is possible to observe the heterogeneity of morphological characteristics of crystals of polymorphic forms among themselves and with rifaximin. The solubility of forms I and II was greater than the solubility of rifaximin, already, forms III, IV and V presented lower solubility than of rifaximin. Similarly, the bioavailability of the amorphous form of rifaximin is considered significantly higher than the form α, the polymorphic forms obtained in this work can not guarantee the excellent tolerability of the reference medicine. Therefore, studies like these are extremely important and they point to the need for greater requirements by the regulatory agencies competent about polymorphs analysis of the raw materials used in the manufacture of medicines marketed globally. These analyzes are not required in the majority of official compendia. Partnerships between industries, research centers and universities would be a viable way to consolidate researches in this area and contribute to improving the quality of solid drugs.Keywords: electronic microscopy, polymorphism, rifaximin, solubility, X-ray diffraction
Procedia PDF Downloads 6637042 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 947041 Understanding the 3R's Element in the Creation of Ecological Form That Leads to Ecodesign
Authors: Mohd Hasni Chumiran
Abstract:
The rapid growth of global industrialism over the past few decades has led to various environmental issues and ecological instability, all due to human activity. In order to solve this global issue, the manufacturers alike have begun to embrace the use of ecodesign products. However, when considering a specific field, multiple questions have been raised and industrial designers (the practising designer's R&D group) have been unable to define the ecological cycle methodology. In this paper, we investigate the validation of problematic in the creation of ecodesign products with the 'reduce, reuse and recycle' (3R’s) method, which is an untested product design theory. The aim of this research is to address the 3R’s method can be extracted in order to transmit an ecological form of ecodesign, specifically among Malaysian furniture manufacturers. By operating the Descriptive Study I (DS-I) phase: Design Research Methodology (DRM), the research has applied two research approaches by the methodological triangulation tradition. To achieve the result, this validation of descriptive structure (design theory) shall be matched with the research hypothesis along the use of research questions.Keywords: design research methodology, ecodesign, ecological form, industrial design
Procedia PDF Downloads 2317040 Emerging Film Makers in Tamil Cinema Liberated by Digital Media
Authors: Valarmathi Subramaniam
Abstract:
Ever since the first Indian feature film was produced and released by Shri Dada Saheb Phalke in the year 1931, the Indian Film Industry has grown leaps and bounds. The Indian Film Industry stands as the largest film industry in the world, and it produces more than a thousand films every year with investments and revenues worth several billion rupees. As per the official report published by UNESCO in the year 2017 on their website, it states that in the year 2015, India has produced one thousand nine hundred and seven feature films using digital technology. Not only is the cinema adapted to digital technologies, but the digital technologies also opened up avenues for talents to enter the cinema industry. This paper explores such talents who have emerged in the film industry without any background, neither academic nor from their family background, but holding digital media as their weapon. The research involves two variants of filmmaking technology – Celluloid and Digital. The study used a selective sampling of films that were released from the year 2020-to 2022. The sample has been organized, resulting in popular and fresh talents in the editing phase of filmmaking. There were 48 editors, of which 12 editors were not popular and 6 of them were fresh into the film without any background. Interview methods were used to collect data on what helped them to get into the industry straight. The study found that the digital medium and the digital technology enabled them to get into the film industry.Keywords: digital media, digital in cinema, digital era talents, emerging new talents
Procedia PDF Downloads 1177039 Rendering of Indian History: A Study Based on Select Graphic Novels
Authors: Akhila Sara Varughese
Abstract:
In the postmodern society, visual narratives became an emerging genre in the field of literature. Graphic literature focuses on the literal and symbolic layer of interpretation. The most salient feature of graphic literature is its exploration of the public history of events and life narratives. The Indian graphic literature re-interprets the canon, style and the form of texts in Indian Writing in English and it demands a new literacy and the structure of the English literature. With the help of visual-verbal language, the graphic narratives discuss various facets of contemporary India. Graphic novels have firmly identified itself with the art of storytelling because of its capability of expressing human experiences to the most. In the textual novels, the author usually deserts the imagination of the readers, but in the case of graphic narratives, due to the presence of visual elements, the interpretation becomes simpler. India is the second most populous country in the world with a long tradition of history and culture. Indian literature always tries to reconstruct Indian history in various modes of representation. The present paper focuses on the fictional articulation of Indian history through the graphic narratives and analyses how some historical events in India portrays. The paper also traces the differences in rendering the history in graphic novels with that of textual novels. The paper discusses how much the blending of words and images helps in represent the Indian history by analyzing the graphic novels like Kashmir Pending by Naseer Ahmed, Delhi Calm by Vishwajyoti Ghosh and Munnu by Malik Sajad.Keywords: graphic novels, Indian history, representation, visual-verbal literacy
Procedia PDF Downloads 3477038 The Impact of Temperamental Traits of Candidates for Aviation School on Their Strategies for Coping with Stress during Selection Exams in Physical Education
Authors: Robert Jedrys, Zdzislaw Kobos, Justyna Skrzynska, Zbigniew Wochynski
Abstract:
Professions connected to aviation require an assessment of the suitability of health, psychological and psychomotor skills and overall physical fitness of the organism, who applies. Assessment of the physical condition is conducted by the committees consisting of aero-medical specialists in clinical medicine and aviation. In addition, psychological predispositions should be evaluated by specialized psychologists familiar with the specifics of the tasks and requirements for the various positions in aviation. Both, physical abilities and general physical fitness of candidates for aviation shall be assessed during the selection exams, which also test the ability to deal with stress what is very important in aviation. Hence, the mentioned exams in physical education not only help to judge on the ranking in candidates in terms of their efficiency and performance, but also allows to evaluate the functioning under stress measured using psychological tests. Moreover, before-test stress is a predictors of successfulness in the next stages of education and practical training in the aviation. The aim of the study was to evaluate the influence of temperamental traits on strategies used for coping with stress during selection exams in physical education, deciding on admission to aviation school. The study involved 30 candidates for fighter pilot training in aviation school . To evaluate the temperament 'The Formal Characteristics of Behavior-Temperament Inventory' (FCB-TI) by B. Zawadzki and J.Strelau was used. To determine the pattern of coping with stress 'The Coping Inventory for Stressful Situations' (CISS) to N. S. Endler and J. D. A. Parker were engaged. Study of temperament and styles of coping with stress was conducted directly before the exam selection of physical education. The results were analyzed with 'Statistica 9' program. The studies showed that:-There is a negative correlation between such a temperament feature as 'perseverance' and preferred style of coping with stress concentrated on the task (r = -0.590; p < 0.004); -There is a positive correlation between such a feature of temperament as 'emotional reactivity,' and preference to deal with a stressful situation with ‘style centered on emotions’ (r = 0.520; p <0.011); -There is a negative correlation between such a feature of temperament as ‘strength’ and ‘style of coping with stress concentrated on emotions’ (r = -0.580; p < 0.004). Studies indicate that temperament traits determine the perception of stress and preferred coping styles used during the selection, as during the exams in physical education.Keywords: aviation, physical education, stress, temperamental traits
Procedia PDF Downloads 2577037 Surface Flattening Assisted with 3D Mannequin Based on Minimum Energy
Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin
Abstract:
The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.Keywords: surface flattening, strain energy, minimum energy, approximate implicit method, fashion design
Procedia PDF Downloads 3347036 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines
Authors: Shahrokh Barati, Reza Ramezani
Abstract:
Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy
Procedia PDF Downloads 4007035 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: classification, singing, spectral analysis, vocal emission, vocal register
Procedia PDF Downloads 3047034 Alternative Dispute Resolution Procedures for International Conflicts about Industrial Design
Authors: Moreno Liso Lourdes
Abstract:
The industrial design protects the appearance of part or all of a product resulting from the features of, in particular, the lines, contours, colors, shape, texture or materials of the product itself or its ornamentation. The industrial property offers a different answer depending on the characteristics of the shape object of protection possible, including the trademark and industrial design. There are certain cases where the trademark right invalidate the exclusive right of the industrial design. This can occur in the following situations: 1st) collected as a sign design and trademarked; and 2nd) you want to trademark and protected as a form design (either registered or unregistered). You can either get a trade mark or design right in the same sign or form, provided it meets the legal definition of brand and design and meets the requirements imposed for the protection of each of them, even able to produce an overlap of protection. However, this double protection does not have many advantages. It is, therefore, necessary to choose the best form of legal protection according to the most adequate ratios. The diversity of rights that can use the creator of an industrial design to protect your job requires you to make a proper selection to prevent others, especially their competitors, taking advantage of the exclusivity that guarantees the law. It is necessary to choose between defending the interests of the parties through a judicial or extrajudicial procedure when the conflict arises. In this paper, we opted for the defense through mediation.Keywords: industrial design, ADR, Law, EUIPO
Procedia PDF Downloads 2417033 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance
Authors: Yash Bingi, Yiqiao Yin
Abstract:
Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations
Procedia PDF Downloads 1447032 Verbal Prefix Selection in Old Japanese: A Corpus-Based Study
Authors: Zixi You
Abstract:
There are a number of verbal prefixes in Old Japanese. However, the selection or the compatibility of verbs and verbal prefixes is among the least investigated topics on Old Japanese language. Unlike other types of prefixes, verbal prefixes in dictionaries are more often than not listed with very brief information such as ‘unknown meaning’ or ‘rhythmic function only’. To fill in a part of this knowledge gap, this paper presents an exhaustive investigation based on the newly developed ‘Oxford Corpus of Old Japanese’ (OCOJ), which included nearly all existing resource of Old Japanese language, with detailed linguistics information in TEI-XML tags. In this paper, we propose the possibility that the following three prefixes, i-, sa-, ta- (with ta- being considered as a variation of sa-), are relevant to split intransitivity in Old Japanese, with evidence that unergative verbs favor i- and that unergative verbs favor sa-(ta-). This might be undermined by the fact that transitives are also found to follow i-. However, with several manifestations of split intransitivity in Old Japanese discussed, the behavior of transitives in verbal prefix selection is no longer as surprising as it may seem to be when one look at the selection of verbal prefix in isolation. It is possible that there are one or more features that played essential roles in determining the selection of i-, and the attested transitive verbs happen to have these features. The data suggest that this feature is a sense of ‘change’ of location or state involved in the event donated by the verb, which is a feature of typical unaccusatives. This is further discussed in the ‘affectedness’ hierarchy. The presentation of this paper, which includes a brief demonstration of the OCOJ, is expected to be of the interest of both specialists and general audiences.Keywords: old Japanese, split intransitivity, unaccusatives, unergatives, verbal prefix selection
Procedia PDF Downloads 4157031 Methods of Livable Goal-Oriented Master Urban Design: A Case Study on Zibo City
Authors: Xiaoping Zhang, Fengying Yan
Abstract:
The implementation of the 'Urban Design Management Measures' requires that the master urban design should aim at creating a livable urban space. However, to our best knowledge, the existing researches and practices of master urban design not only focus less on the livable space but also face a number of problems such as paying more attention to the image of the city, ignoring the people-oriented and lacking dynamic continuity. In order to make the master urban design can better guide the construction of city. Firstly, the paper proposes the livable city hierarchy system to meet the needs of different groups of people and then constructs the framework of livable goal-oriented master urban design based on the theory of livable content and the ideological origin of people-oriented. Secondly, the paper takes the master urban design practice of Zibo as a sample and puts forward the design strategy of strengthening the pattern, improve the quality of space, shape the feature, and establish a series of action plans based on the strategy of urban space development. Finally, the paper explores the method system of livable goal-oriented master urban design from the aspects of safety pattern, morphology pattern, neighborhood scale, open space, street space, public interface, style feature, public participation and action plans.Keywords: livable, master urban design, public participation, zibo city
Procedia PDF Downloads 3167030 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children
Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura
Abstract:
Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification
Procedia PDF Downloads 3017029 Clarifier Dialogue Interface to resolve linguistic ambiguities in E-Learning Environment
Authors: Dalila Souilem, Salma Boumiza, Abdelkarim Abdelkader
Abstract:
The Clarifier Dialogue Interface (CDI) is a part of an online teaching system based on human-machine communication in learning situation. This interface used in the system during the learning action specifically in the evaluation step, to clarify ambiguities in the learner's response. The CDI can generate patterns allowing access to an information system, using the selectors associated with lexical units. To instantiate these patterns, the user request (especially learner’s response), must be analyzed and interpreted to deduce the canonical form, the semantic form and the subject of the sentence. For the efficiency of this interface at the interpretation level, a set of substitution operators is carried out in order to extend the possibilities of manipulation with a natural language. A second approach that will be presented in this paper focuses on the object languages with new prospects such as combination of natural language with techniques of handling information system in the area of online education. So all operators, the CDI and other interfaces associated to the domain expertise and teaching strategies will be unified using FRAME representation form.Keywords: dialogue, e-learning, FRAME, information system, natural language
Procedia PDF Downloads 3777028 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM
Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen
Abstract:
Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.Keywords: fatigue damage, FORM, monopile, Monte Carlo, simulation, wind turbine
Procedia PDF Downloads 2607027 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 1577026 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1887025 Effect of Functional Group Position in Co-Formers and Solvent on Cocrystal Polymorphism/Stoichiomorphism: A Case Study
Authors: Luguang Qi, Chuang Xie
Abstract:
In recent years, there has been an increase in the number of reports on cocrystal polymorphism and stoichiomorphism. However, the research on the factors that influence these phenomena is limited. Herein, picolinamide (PAM), nicotinamide (NAM), and isonicotinamide (INA) were selected as co-formers to form multicomponent solids with 4-chloro-3-sulfamoylbenzoic acid (CSBA). Six new cocrystal forms of CSBA were discovered, and their crystal structures were determined. It was found that PAM and NAM can only form one cocrystal with CSBA, while INA can form up to four cocrystals, including both cocrystal polymorphism and stoichiomorphism. Molecular electrostatic potential analysis and crystal structure analysis showed that the functional group position of PAM limited the diversity of cocrystal synthons, while the lattice energy limited the diversity of cocrystal synthons when NAM acted as a co-former. Only INA was not subject to these restrictions when forming cocrystals. Finally, the influence of solvents on cocrystals was illustrated by determining the ternary phase diagrams. The mechanism of two similar solvents, ethyl acetate, and acetone, controlling the crystallization of cocrystal polymorphism was analyzed by molecular simulations.Keywords: cocrystal polymorphism, cocrystal stoichiomorphism, phase diagram, molecular simulation
Procedia PDF Downloads 737024 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks
Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE
Abstract:
Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network
Procedia PDF Downloads 1217023 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4037022 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 1237021 Classroom Management Practices of Hotel, Restaurant, and Institution Management Instructors
Authors: Diana Ruth Caga-Anan
Abstract:
Classroom management is a critical skill but the styles are constantly evolving. It is constantly under pressure particularly in the college education level due to diversity in student profiles, modes of delivery, and marketization of higher education. This study sought to analyze the extent of implementation of classroom management practices (CMPs) of the college instructors of the Hotel, Restaurant, and Institution Management of a premier university in the Philippines. It was also determined if their length of teaching affects their classroom management style. A questionnaire with sixteen 'evidenced-based' CMPs grouped into five critical features of classroom management, adopted from the literature search of Simonsen et al. (2008), was administered to 4 instructor-respondents and to their 88 students. Weighted mean scores of each of the CMPs revealed that there were differences between the instructors’ self-scores and their students’ ratings on their implementation of CMPs. The critical feature of classroom management 'actively engage students in observable ways' got the highest mean score, corresponding to 'always' from the instructors’ self-rating and 'frequently' from their students’ ratings. However, 'use a continuum of strategies to respond to inappropriate behaviors' got the lowest scores from both the instructors and their students corresponding only to 'occasionally'. Analysis of variance showed that the only CMP affected by the length of teaching is the practice of 'prompting students to respond'. Based on the findings, some recommendations for the instructors to improve on the critical feature where they scored low are discussed and suggestions are included for future research.Keywords: classroom management, CMPs, critical features, evidence-based classroom management practices
Procedia PDF Downloads 1727020 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1257019 Efficient Estimation for the Cox Proportional Hazards Cure Model
Authors: Khandoker Akib Mohammad
Abstract:
While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood
Procedia PDF Downloads 1437018 Finite Element Modeling of Influence of Roll Form of Vertical Scale Breaker on Decreased Formation of Surface Defects during Roughing Hot Rolling
Authors: A. Pesin, D. Pustovoytov, M. Sverdlik
Abstract:
During production of rolled steel strips the quality of the surface of finished strips influences steel consumption considerably. The most critical areas for crack formation during rolling are lateral sides of slabs. Deformation behaviors of the slab edge in roughing rolling process were analyzed by the finite element method with Deform-3D. In this study our focus is the analysis of the influence of edger’s form on the possibility to decrease surface cracking during roughing hot rolling.Keywords: roughing hot rolling, FEM, crack, bulging
Procedia PDF Downloads 3797017 Empowering Leadership and Constructive Voice: A Sequential Mediation Analysis
Authors: Umamaheswara Rao Jada, Susmita Mukhopadhyay
Abstract:
In the present highly complex, dynamic and interdependent organizational environment, employees' ideas, opinions and suggestions which is technically referred to as ‘constructive employee voice’ is increasingly being recognized and valued. Literature has consistently demonstrated the relevance of leadership in employee voicing behavior, however the new form of leadership, ‘empowering leadership’ has not been given much attention. The study, therefore, devotes itself to the effort to explore the impact of this new form of leadership on employee voice behavior and the interplay with leader member exchange (LMX) and psychological safety as mediators in the same. The study utilizes structural equation modeling for analyzing the data collected from 310 Indian service industry employees through the questionnaire developed for the study. The findings of the study demonstrate the significant impact of empowering form of leadership on employees’ constructive voice behavior. Additionally, supporting results were observed for the mediating impact of leader member exchange (LMX) and psychological safety between empowering leadership and employees’ constructive voice behavior. The results of this study provide insights into the intervening mechanisms by linking leaders’ empowering behavior with employees’ constructive voice, while also highlighting the potential importance of LMX relationship in organizations and psychological safety in the context of constructive voice behavior. The study brings forth the relevance of the new form of leadership, ‘empowering leadership’ for fostering the better exchange of ideas, opinions, and suggestions between leaders and followers which tend to benefit the organization, providing empirical evidence of the sequential mediation of LMX and psychological safety. The piece of work is assumed to benefit the leaders in organizations by providing them the basis for adopting empowering form of leadership in light of results displayed.Keywords: constructive voice, empowering leadership, leader member exchange (LMX), psychological safety, sequential mediation, structural equation modeling
Procedia PDF Downloads 3047016 Tectonic Movements and Ecosystems
Authors: Arvind Kumar Trivedi
Abstract:
Our Earth is dynamic in nature and its structure behaves like a puzzle because the interior of the Earth is in both gaseous as well as molten (liquid) form and the crust i.e. the outermost surface is in solid form. This Earth was one landmass known as ‘Pangaea’ in the beginning. With time due to complex phenomena of tectonic movements, it was broken into various landmasses along with water bodies. This Pangaea was in direct contact with the atmosphere playing dominant role in creating various ecosystems on the Earth. Ecosystems mean: Eco (environment body) and systems (interdependent complex of all the organisms interacting with each other). This paper provides an in-depth discussion on tectonic movements as well as ecosystems & how these two affect each other and in the end, we will enlist various methods on how to preserve our ‘Mother Earth’.Keywords: tectonic movements, ecosystems, plate tectonics, impact
Procedia PDF Downloads 48