Search results for: mineral%20chemistry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 818

Search results for: mineral%20chemistry

398 Mutation of Galp Improved Fermentation of Mixed Sugars to Succinate Using Engineered Escherichia coli As1600a

Authors: Apichai Sawisit, Sirima Suvarnakuta Jantama, Sunthorn Kanchanatawee, Lonnie O. Ingram, Kaemwich Jantama

Abstract:

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain ferments 10% (w/v) xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% (w/v) xylose. Evolved mutants exhibited a similar improvement, co-fermentation of an equal mixture of xylose and glucose. One of these, AS1600a, produced 84.26±1.37 g/L succinate, equivalent to that produced by the parent (KJ122) strain from 10% glucose (85.46±1.78 g/L). AS1600a was sequenced and found to contain a mutation in galactose permease (GalP, G236D). Expressing the galP* mutation gene in KJ122ΔgalP resembled the xylose utilization phenotype of the mutant AS1600a. The strain AS1600a and KJ122ΔgalP (pLOI5746; galP*) also co-fermented a mixture of glucose, xylose, arabinose, and galactose in sugarcane bagasse hydrolysate for succinate production.

Keywords: xylose, furfural, succinat, sugarcane bagasse, E. coli

Procedia PDF Downloads 415
397 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 258
396 Alternative Animal Feed Additive Obtain with Different Drying Methods from Carrot Unsuitable for Human Consumption

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

This study was conducted to determine that carrot powder obtain by different drying methods (oven and vacuum-freeze dryer) of carrot unfit for human consumption that whether feed additives in animal nutrition or not. Carrots randomly divided 2 groups. First group was dried by using oven, second group was by using vacuum freeze dryer methods. Dried carrot prepared from fresh carrot was analysed nutrient matter (energy, crude protein, crude oil, crude ash, beta carotene, mineral concentration and colour). The differences between groups in terms of energy, crude protein, ash, Ca and Mg was not significant (P> 0,05). Crude oil, P, beta carotene content and colour values (L, a, b) with vacuum-freeze dryer group was greater than oven group (P<0,05). Consequently, carrot powder obtained by drying the vacuum-freeze dryer method can be used as a source of carotene.

Keywords: carrot, vacuum freeze dryer, oven, beta carotene

Procedia PDF Downloads 299
395 Assessment of Prevalent Diseases Caused by Mining Activities in the Northern Part of Mindanao Island, Philippines

Authors: Odinah Cuartero-Enteria, Kyla Rita Mercado, Jason Salamanes, Aian Pecasales, Sherwin Sabado

Abstract:

The northern part of Mindanao Island, Philippines has sizable reserve of mineral resources. Years ago, mining activities have been flourishing which resulted to both local economic gain but with environmental concerns. This study investigates the prevalent diseases by mining activities in these areas. The study was done using the secondary data gathered from the Rural Health Units (RHU) of the selected areas. The study further determined the prevalent diseases that existed in the three areas from years 2005, 2010 and 2015 indicating before the mining activities and when mining activities are present. The results show that areas which are far from mining activities have fewer cases of patients suffering from air-borne diseases. The top ten most common diseases such as pneumonia, tuberculosis, influenza, upper respiratory tract infection (URTI) and skin diseases were caused by air-borne due to air pollution. Hence, the places where mining activities are present contribute to the prevalent diseases. Thus, addressing the air pollution caused by mining activities is very important.

Keywords: Philippines, Mindanao Island, mining activities, pollution, prevalent diseases

Procedia PDF Downloads 447
394 Genetic Change in Escherichia coli KJ122 That Improved Succinate Production from an Equal Mixture of Xylose and Glucose

Authors: Apichai Sawisit, Sirima Suvarnakuta Jantama, Sunthorn Kanchanatawee, Lonnie O. Ingram, Kaemwich Jantama

Abstract:

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain ferments 10% (w/v) xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% (w/v) xylose. Evolved mutants exhibited a similar improvement, co-fermentation of an equal mixture of xylose and glucose. One of these, AS1600a, produced 84.26±1.37 g/L succinate, equivalent to that produced by the parent (KJ122) strain from 10% glucose (85.46±1.78 g/L). AS1600a was sequenced and found to contain a mutation in galactose permease (GalP, G236D). Expressing the galP* mutation gene in KJ122ΔgalP resembled the xylose utilization phenotype of the mutant AS1600a. The strain AS1600a and KJ122ΔgalP (pLOI5746; galP*) also co-fermented a mixture of glucose, xylose, arabinose, and galactose in sugarcane bagasse hydrolysate for succinate production.

Keywords: xylose, furfural, succinate, sugarcane bagasse, E. coli

Procedia PDF Downloads 364
393 'Sea Power: Concept, Influence and Securitization'; the Nigerian Navy's Role in a Developing State like Nigeria

Authors: William Abiodun Duyile

Abstract:

It is common knowledge that marine food has always been found from the sea, energy can also be found underneath and, to a growing extent; other mineral resources have come from the sea spaces. It is the importance of the sea and the sea lines of communication to littoral nations that has made concepts such as sea power, naval power, etc., significant to them. The study relied on documentary data. The documentary data were sourced from government annual departmental reports, newspapers and correspondence. The secondary sources used were subjected to internal and external criticism for authentication, and then to textual and contextual analyses. The study found that the differential level of seamanship amongst states defined their relationship. It was sea power that gave some states an edge over the others. The study proves that over the ages sea power has been core to the development of States or Empires. The study found that the Nigerian Navy was centre to Nigeria’s conquest of the littoral areas of Biafra, like Bonny, Port-Harcourt, and Calabar; it was also an important turning point of the Nigerian civil war since by it Biafra became landlocked. The research was able to identify succinctly the Nigerian Navy’s contribution to the security and development of the Nigerian State.

Keywords: sea power, naval power, land locked states, warship

Procedia PDF Downloads 115
392 Effect of Ultrasonic Treatment on the Suspension Stability, Zeta Potential and Contact Angle of Celestite

Authors: Kiraz Esmeli, Alper Ozkan

Abstract:

In this study, firstly, the effect of ultrasonic treatment on the stability of celestite suspension was investigated. In this context, the variations of the suspension stability with ultrasonic power, treatment time, immersion depth of ultrasonic probe, and treatment regime (batch and continuous) were determined. The experimental results showed that the suspension stability and zeta potential of celestite decreased with ultrasonic treatment. Also, the treatment time, immersion depth of probe, and treatment regime affected the stability of celestite suspension. Secondly, the effect of pre-treatment of the suspension with the ultrasonic process on the shear flocculation of celestite using sodium dodecyl sulfate (SDS) was studied and the variations of the flocculation, zeta potential, and contact angle of the mineral with SDS concentration were presented. It was found that the ultrasonic pre-treatment slightly improved the shear flocculation of celestite particles in accordance with the increase in the contact angles. In addition, the ultrasonic process again relatively reduced the magnitude of the negative potential of celestite particles in the presence of SDS.

Keywords: celestite, contact angle, suspension stability, ultrasonic treatment, zeta potential

Procedia PDF Downloads 204
391 Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete

Authors: Ali A. Sayadi, Thomas R. Neitzert, G. Charles Clifton

Abstract:

Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete.

Keywords: perlite concrete, poly-lactic acid (pla), expanded polystyrene (eps), concrete

Procedia PDF Downloads 284
390 Recovery of Dredged Sediments With Lime or Cement as Platform Materials for Use in a Roadway

Authors: Abriak Yassine, Zri Abdeljalil, Benzerzour Mahfoud., Hadj Sadok Rachid, Abriak Nor-Edine

Abstract:

In this study, firstly, the study of the capacity reuse of dredged sediments and treated sediments with lime or cement were used in an establishment layer and the base layer of the roadway. Also, the analysis of mineral changes caused by the addition of lime or cement on the way as described in the mechanical results of stabilised sediments. After determining the quantity of lime and cement required to stabilise the sediment, the compaction characteristics were studied using the modified Proctor method. Then the evolution of the three parameters, that is, ideal water content and maximum dry density had been determined. Mechanical exhibitions can be assessed across the resistance to compression, flexibility modulus and the resistance under traction. The resistance of the formulation treated with cement addition (ROLAC®645) increase with the quantity of ROLAC®645. Traction resistances and the elastic modulus were utilized to assess the potential of the formulation as road construction materials utilizing classification diagram. The results show the various formulations with ROLAC® 645may be employed in subgrades and foundation layers for roads.

Keywords: cement, dredged, sediment, foundation layer, resistance

Procedia PDF Downloads 71
389 The Influence of Mineraliser Granulometry on Dense Silica Brick Microstructure

Authors: L. Nevrivova, K. Lang, M. Kotoucek, D. Vsiansky

Abstract:

This entry concerned with dense silica microstructure was produced as a part of a project within the Technology Agency of the Czech Republic which is being implemented in cooperation of the biggest producer of refractories the P-D Refractories CZ company with the research organisation Brno University of Technology. The paper is focused on the influence of mixture homogenisation and the influence of grain size of the mineraliser on the resulting utility properties of the material as well as its microstructure. It has a decisive influence on the durability of the material in a building structure. This paper is a continuation of a previously published study dealing with the suitability of various types of mineralising agents in terms of density, strength and mineral composition of silica. The entry describes the influence of the method of mixture homogenisation and the influence of granulometry of the applied Fe-mineralising agent on the resulting silica microstructure. Porosity, density, phase composition and microstructure of the experimentally prepared silica samples were examined and the results were discussed in context with the technology of homogenisation and firing temperature used. The properties of silica brick samples were compared to the sample without any Fe-mineraliser.

Keywords: silica bricks, Fe-mineraliser, mineralogical composition, new developed silica material

Procedia PDF Downloads 308
388 Biosorption of Gold from Chloride Media in a Simultaneous Adsorption-Reduction Process

Authors: Shafiq Alam, Yen Ning Lee

Abstract:

Conventional hydrometallurgical processing of metals involves the use of large quantities of toxic chemicals. Realizing a need to develop sustainable technologies, extensive research studies are being carried out to recover and recycle base, precious and rare earth metals from their pregnant leach solutions (PLS) using green chemicals/biomaterials prepared from biomass wastes derived from agriculture, marine and forest resources. Our innovative research showed that bio-adsorbents prepared from such biomass wastes can effectively adsorb precious metals, especially gold after conversion of their functional groups in a very simple process. The highly effective ‘Adsorption-coupled-Reduction’ phenomenon witnessed appears promising for the potential use of this gold biosorption process in the mining industry. Proper management and effective use of biomass wastes as value added green chemicals will not only reduce the volume of wastes being generated every day in our society, but will also have a high-end value to the mining and mineral processing industries as those biomaterials would be cheap, but very selective for gold recovery/recycling from low grade ore, leach residue or e-wastes.

Keywords: biosorption, hydrometallurgy, gold, adsorption, reduction, biomass, sustainability

Procedia PDF Downloads 356
387 Grape Seed Extract and Zinc Containing Multivitamin-Mineral Nutritional Food Supplement Protects Heart against Myocardial Ischemic-Reperfusion Injury in Wistar Rats

Authors: S. M. Satyam, K. L. Bairy, R. Pirasanthan, R. L. Vaishnav

Abstract:

Zincovit tablets have been used as nutritional food supplement over a prolonged period of time. The aim of the present study was to investigate the cardio-protective effect of combined formulation of grape seed extract and Zincovit tablets (40, 80 and 160 mg/kg) using a Langendorff model of ischemia-reperfusion in Wistar rats. Following 21 days of pre-treatment, combined formulation of grape seed extract and Zincovit tablets significantly attenuated ischemia-reperfusion induced cardiac injury in terms of increased coronary flow rate (p < 0.01), decreased creatine kinase activity in coronary effluent (p < 0.05), decreased MDA (p < 0.001), 4-HNE (p < 0.001) and increased protein thiol content (p < 0.01) in comparison with the untreated (control) group. This study opens an avenue to clinical studies to demonstrate the validity of this paradigm as a nutritional food supplement, which could improve the clinical outcome of patients subjected to percutaneous angioplasty.

Keywords: grape seed extract, myocardial ischemia-reperfusion injury, oxidative stress, Zincovit tablets

Procedia PDF Downloads 353
386 The Effect of Double Fortification of Iron and Zinc of Synbiotic Fermented Milk on Growth of Rat

Authors: Endri Yuliati, Siti Helmyati, Narendra Yoga Hendarta, Moh. Darussalam, Maharani Jibbriella, Fauziah Oktavira Hayati Fakhruddin, Faisal Hanin

Abstract:

Background: Both of iron and zinc has vital role in growth. The prebiotics fermentation by probiotics lower the acidity of intestine thus increase mineral absorption. Objective: To know the effect of double fortification of synbiotic fermented milk on growth. Methods: An Indonesian local isolate, Lactobacillus plantarum Dad-13 and Fructo-oligosaccharides (FOS) were used in making synbiotic fermented milk. It, then was double fortified with 100 ppm Fe and 50 ppm Zn. A total of 15 Wistar rats were divided into 3 groups and given: synbiotic fermented milk (CO), synbiotic fermented milk with NaFeEDTA and Zn acetate (NZ) and synbiotic fermented milk with Fe gluconate and Zn acetate (FZ) every day for one month. Body weight and body length were measured before, every week and after intervention. Results: Body weight and body length were similar at baseline among three groups (p > 0.05). All groups showed similar growth after intervention, from 62,40 + 6,1 to 109,0 + 9,0; 62,0 + 7,9 to 110,3 + 14,2; and 64,40 + 4,7 to 115,1 + 7,7 g for CO, NZ, and FZ, respectively (p > 0.05). The body length after intervention was also similar (p > 0.05). Conclusion: Fortification of iron and zinc did not modify effect of synbiotic fermented milk on growth.

Keywords: probiotics, prebiotics, iron, zinc, growth

Procedia PDF Downloads 436
385 Effects of Medium Composition on the Production of Biomass and a Carbohydrate Isomerase by a Novel Strain of Lactobacillus

Authors: M. Miriam Hernández-Arroyo, Ivonne Caro-Gonzales, Miguel Ángel Plascencia-Espinosa, Sergio R. Trejo-Estrada

Abstract:

A large biodiversity of Lactobacillus strains has been detected in traditional foods and beverages from Mexico. A selected strain of Lactobacillus sp - PODI-20, used for the obtained from an artisanal fermented beverage was cultivated in different carbon sources in a complex medium, in order to define which carbon sourced induced more effectively the isomerization of arabinose by cell fractions obtained by fermentation. Four different carbon sources were tested in a medium containing peptone and yeast extract and mineral salts. Glucose, galactose, arabinose, and lactose were tested individually at three different concentrations: 3.5, 6, and 10% w/v. The biomass yield ranged from 1.72 to 17.6 g/L. The cell pellet was processed by mechanical homogenization. Both fractions, the cellular debris, and the lysis supernatant were tested for their ability to isomerize arabinose into ribulose. The highest yield of isomer was 12 % of isomerization in the supernatant fractions; whereas up to 9.3% was obtained by the use of cell debris. The isomerization of arabinose has great significance in the production of lactic acid by fermentation of complex carbohydrate hydrolysates.

Keywords: isomerase, tagatose, aguamiel, isomerization

Procedia PDF Downloads 318
384 Production of Poly-β-Hydroxybutyrate (PHB) by a Thermophilic Strain of Bacillus and Pseudomonas Species

Authors: Patience Orobosa Olajide

Abstract:

Five hydrocarbon degrading bacterial strains isolated from contaminated environment were investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Screening for bioplastic production was done on assay mineral salts agar medium containing 0.2% poly (3-hydroxybutyrate) as the sole carbon source. Two of the test bacteria were positive for PHB biosynthesis and were identified based on gram staining, biochemical tests, 16S rRNA gene sequence analysis as Pseudomonas aeruginosa and Bacillus licheniformis which grew at 37 and up to 65 °C respectively, thus suggesting the later to be thermotolerant. In this study, the effects of different carbon and nitrogen sources on PHB production in these strains were investigated. Maximum PHB production was obtained in 48 hr for the two strains and amounted to yields of 72.86 and 62.22 percentages for Bacillus licheniformis and Pseudomonas aeruginosa respectively. In these strains, glycine was the most efficient carbon sources for the production of PHB compared with other carbon (glucose, lactose, sucrose, Arabinose) and nitrogen (L- glycine, L-cysteine, DL-Tryptophan, and Potassium Nitrate) sources. The screening of microbial strains for industrial PHB production should be based on several factors including the cell’s capability to mineralize an inexpensive substrate, rate of growth and the extent of polymer accumulation.

Keywords: bacteria, poly-3-hydroxybutyrate (PHB), hydrocarbon, thermotolerant

Procedia PDF Downloads 173
383 Comparison of Non-Organic (Suspended and Solved) Solids Removal with and without Sediments in Treatment of an Industrial Wastewater with and without Ozonation

Authors: Amir Hajiali, Gevorg P. Pirumyan

Abstract:

In this research, removal of Non-Organic Suspended Solids and Non-Organic Solved Solids with and without sediment in treatment of an industrial wastewater system before and after ozonation was studied and compared. The most hazardous part of these substances is monomers of chlorophenolic combinations which in biological reactors in a liquid phase could be absorbed much easier and with a high velocity. These monomers and particularly monomers with high molecular weights are seen a lot in such wastewater treatment systems. After the treatment, the measured non-organic solved and suspended solids contents in the cyclic ozonation-biotreatment system compared to the non-organic solved and suspended solids values in the treatment method without ozonation. Sedimentation was the other factor which was considered in this experiment.The solids removals were measured with and without sediments. The comparison revealed that the remarkable efficiency of the cyclic ozonation-biotreatment system in removing the non-organic solids both with and without sediments is extremely considerable. Results of the experiments showed that ozone can be dramatically effective for solving most organic materials in activated sludge in such a wastewater or for making them mineral. Moreover, bio dissolubility increase related to the solved materials was reported.

Keywords: non-organic solids, ozonation, sediment, wastewater treatment

Procedia PDF Downloads 160
382 Effect of Nano-Alumina on the Mechanical Properties of Cold Recycled Asphalt

Authors: Shahab Hasani Nasab, Aran Aeini, Navid Kermanshahi

Abstract:

In order to reduce road building costs and reduce environmental damage, recycled materials can be used instead of mineral materials in the production of asphalt mixtures. Today, in most parts of the world, cold recycled asphalt with bitumen emulsion, has acceptable results. However, Cold Recycled Asphalt have some deficiency such as stripping, thermal cracking, and rutting. This requires the addition of additives to reduce this deficiency of recycled pavement with emulsified asphalt. In this research, nano-alumina and emulsified asphalt were used to modify the properties of recycled asphalt mixtures according to the technical specifications and the operation of cold recycling. Marshall test methods, dynamic creep test, and resiliency modulus test has been used to obtain the nano-alumina’s effects on asphalt mixture properties. The results show that the addition of nano-alumina would reduce the Marshall stability in samples but increases the rutting resistance. The resiliency modulus increases significantly with this additive.

Keywords: cold asphalt, cold recycling, nano-alumina, dynamic creep, bitumen emulsion

Procedia PDF Downloads 140
381 An Experimental Study of the Influence of Flow Rate on Formation Damage at Different pH

Authors: Khabat M. Ahmad

Abstract:

This experiment focuses on the reduction of permeability (formation damage) as a result of fines migration by changing pH and flow rate on core plugs selected from sandstone reservoir of Pannonian basin (Upper Miocene, East Hungary). The main objective of coreflooding experiments was to investigate the influence of both high and low pH fluids and the flow rate on stability of clay minerals. The selected core samples were examined by X-ray powder diffraction (XRD) for bulk mineralogical and clay mineral composition. The shape, position, distribution and type of clay minerals within the core samples were diagnosed by scanning electron microscopy and energy dispersive spectroscopy (SEM- EDS). The basic petrophysical properties such as porosity and initial permeability were determined prior to experiments. The special core analysis (influence of pH and flow rate) on permeability reduction was examined through a series of laboratory coreflooding experiments, testing for acidic (3) and alkaline (11) solutions at different flow rates (50, 100 and 200 ml/h). Permeability in continuously reduced for pH 11 to more than 50 % of initial permeability. However, at pH 3 after a slow decrease, a significant increase is observed, to more than 40 % of initial permeability. The variation is also influenced by flow rate.

Keywords: flow rate, pH, permeability, fine migration, formation damage, XRD, SEM- EDS

Procedia PDF Downloads 31
380 Target Drug Delivery of Pamidronate Nanoparticles for Enhancing Osteoblastic Activity in Osteoporosis

Authors: Purnima Rawat, Divya Vohora, Sarika Gupta, Farhan J. Ahmad, Sushama Talegaonkar

Abstract:

Nanoparticles (NPs) that target bone tissue were developed using PLGA–mPEG (poly(lactic-co-glycolic-acid)–polyethylene glycol) diblock copolymers by using pamidronate as a bone-targeting moieties. These NPs are expected to enable the transport of hydrophilic drugs. The NP was prepared by in situ polymerization method, and their in- vitro characteristics were evaluated using dynamic light scattering, transmission electron microscopy (TEM) and in phosphate-buffered solution. The bone targeting potential of the NP was also evaluated on in-vitro pre-osteoblast MCT3E1 cell line using ALP activity, degree of mineralization and RT-PCR assay. The average particle size of the NP was 101.6 ± 3.7nm, zeta potential values were negative (-25±0.34mV) of the formulations and the entrapment efficiency was 93± 3.1 % obtained. The moiety of the PLGA–mPEG–pamidronate NPs exhibited the best apatite mineral binding ability in-vitro MCT3E1 pre-osteoblast cell line. Our results suggested that the developed nanoparticles may use as a delivery system for Pamidronate in bone repair and regeneration, warranting further evaluation of the treatment of bone disease.

Keywords: nanoparticle, pamidronate, in-situ polymerization, osteoblast

Procedia PDF Downloads 461
379 Trace Element Compositions of Placer Gold Samples: Implication for Gold Exploration in Northern Cameroon

Authors: Yanick Blaise Ketchaya, Taofa Zhou

Abstract:

The type of primary source of gold deposit can be explored by using the study of trace element analysis of placer gold which is a valuable exploration tool. Au-bearing deposits are investigated through the placer gold, which is an important indicator mineral. The hydrothermal fluid interacting with diverse geological settings exerts an important function on the chemical composition of gold. Consequently, alluvial gold particles from the placer deposits within the Gamba district in northern Cameroon were examined by an electron probe microanalyzer (EPMA) to show discriminant chemical signatures. The gold grains from a different locality show the same trace element composition, which appears to be in a solid solution in Au. These trace element compositions, contained in gold grains, indicate a homogeneous source. The placer gold particles have significant chemical characteristics (low Ag content), consistent with a mesothermal source. The gold particle signatures in the Gamba district, with high Te and Bi contents, reflect the chemical characteristics of the felsic host rock superimposed on the chemical signature of the hydrothermal fluid.

Keywords: hypogene source, Northern Cameroon, placer gold, trace element

Procedia PDF Downloads 85
378 Influence of Thermal Annealing on Phase Composition and Structure of Quartz-Sericite Minerale

Authors: Atabaev I. G., Fayziev Sh. A., Irmatova Sh. K.

Abstract:

Raw materials with high content of Kalium oxide widely used in ceramic technology for prevention or decreasing of deformation of ceramic goods during drying process and under thermal annealing. Becouse to low melting temperature it is also used to decreasing of the temperature of thermal annealing during fabrication of ceramic goods [1,2]. So called “Porceline or China stones” - quartz-sericite (muscovite) minerals is also can be used for prevention of deformation as the content of Kalium oxide in muscovite is rather high (SiO2, + KAl2[AlSi3O10](OH)2). [3] . To estimation of possibility of use of this mineral for ceramic manufacture, in the presented article the influence of thermal processing on phase and a chemical content of this raw material is investigated. As well as to other ceramic raw materials (kaoline, white burning clays) the basic requirements of the industry to quality of "a porcelain stone» are following: small size of particles, relative high uniformity of disrtribution of components and phase, white color after burning, small content of colorant oxides or chromophores (Fe2O3, FeO, TiO2, etc) [4,5]. In the presented work natural minerale from the Boynaksay deposit (Uzbekistan) is investigated. The samples was mechanically polished for investigation by Scanning Electron Microscope. Powder with size of particle up to 63 μm was used to X-ray diffractometry and chemical analysis. The annealing of samples was performed at 900, 1120, 1350oC during 1 hour. Chemical composition of Boynaksay raw material according to chemical analysis presented in the table 1. For comparison the composition of raw materials from Russia and USA are also presented. In the Boynaksay quartz – sericite the average parity of quartz and sericite makes 55-60 and 30-35 % accordingly. The distribution of quartz and sericite phases in raw material was investigated using electron probe scanning electronic microscope «JEOL» JXA-8800R. In the figure 1 the scanning electron microscope (SEM) micrograps of the surface and the distributions of Al, Si and K atoms in the sample are presented. As it seen small granular, white and dense mineral includes quartz, sericite and small content of impurity minerals. Basically, crystals of quartz have the sizes from 80 up to 500 μm. Between quartz crystals the sericite inclusions having a tablet form with radiant structure are located. The size of sericite crystals is ~ 40-250 μm. Using data on interplanar distance [6,7] and ASTM Powder X-ray Diffraction Data it is shown that natural «a porcelain stone» quartz – sericite consists the quartz SiO2, sericite (muscovite type) KAl2[AlSi3O10](OH)2 and kaolinite Al203SiO22Н2О (See Figure 2 and Table 2). As it seen in the figure 3 and table 3a after annealing at 900oC the quartz – sericite contains quartz – SiO2 and muscovite - KAl2[AlSi3O10](OH)2, the peaks related with Kaolinite are absent. After annealing at 1120oC the full disintegration of muscovite and formation of mullite phase Al203 SiO2 is observed (the weak peaks of mullite appears in fig 3b and table 3b). After annealing at 1350oC the samples contains crystal phase of quartz and mullite (figure 3c and table 3с). Well known Mullite gives to ceramics high density, abrasive and chemical stability. Thus the obtained experimental data on formation of various phases during thermal annealing can be used for development of fabrication technology of advanced materials. Conclusion: The influence of thermal annealing in the interval 900-1350oC on phase composition and structure of quartz-sericite minerale is investigated. It is shown that during annealing the phase content of raw material is changed. After annealing at 1350oC the samples contains crystal phase of quartz and mullite (which gives gives to ceramics high density, abrasive and chemical stability).

Keywords: quartz-sericite, kaolinite, mullite, thermal processing

Procedia PDF Downloads 387
377 LCA/CFD Studies of Artisanal Brick Manufacture in Mexico

Authors: H. A. Lopez-Aguilar, E. A. Huerta-Reynoso, J. A. Gomez, J. A. Duarte-Moller, A. Perez-Hernandez

Abstract:

Environmental performance of artisanal brick manufacture was studied by Lifecycle Assessment (LCA) methodology and Computational Fluid Dynamics (CFD) analysis in Mexico. The main objective of this paper is to evaluate the environmental impact during artisanal brick manufacture. LCA cradle-to-gate approach was complemented with CFD analysis to carry out an Environmental Impact Assessment (EIA). The lifecycle includes the stages of extraction, baking and transportation to the gate. The functional unit of this study was the production of a single brick in Chihuahua, Mexico and the impact categories studied were carcinogens, respiratory organics and inorganics, climate change radiation, ozone layer depletion, ecotoxicity, acidification/ eutrophication, land use, mineral use and fossil fuels. Laboratory techniques for fuel characterization, gas measurements in situ, and AP42 emission factors were employed in order to calculate gas emissions for inventory data. The results revealed that the categories with greater impacts are ecotoxicity and carcinogens. The CFD analysis is helpful in predicting the thermal diffusion and contaminants from a defined source. LCA-CFD synergy complemented the EIA and allowed us to identify the problem of thermal efficiency within the system.

Keywords: LCA, CFD, brick, artisanal

Procedia PDF Downloads 370
376 Role of Arbuscular Mycorrhiza in Heavy Metal Tolerance in Sweet Basil Plants

Authors: Aboul-Nasr Amal, Sabry Soraya, Sabra Mayada

Abstract:

The effects of phosphorus amendments and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the sweet basil (Ocimum basilicum L.), chemical composition and percent of volatile oil, and metal accumulation in plants and its availability in soil were investigated in field experiment at two seasons 2012 and 2013 under contaminated soil with Pb and Cu. The content of essential oil and shoot and root dry weights of sweet basil was increased by the application of mineral phosphorus as compared to control. Inoculation with AM fungi reduced the metal concentration in shoot, recording a lowest value of (33.24, 18.60 mg/kg) compared to the control (46.49, 23.46 mg/kg) for Pb and Cu, respectively. Availability of Pb and Cu in soil were decreased after cultivation in all treatments compared to control. However, metal root concentration increased with the inoculation, with highest values of (30.15, 39.25 mg/kg)compared to control (22.01, 33.57mg/kg) for Pb and Cu, respectively. The content of linalool and methyl chavicol in basil oil was significantly increased in all treatments compared to control. We can thus conclude that the AM-sweet basil symbiosis could be employed as an approach to bioremediate polluted soils and enhance the yield and maintain the quality of volatile oil of sweet basil plants.

Keywords: arbuscular mycorrhizal fungus, heavy metals, sweet basil, oil composition

Procedia PDF Downloads 223
375 Screening, Selection and Optimization of Extracellular Methanol and Ethanol Tolerant Lipase from Acinetobacter sp. K5B4

Authors: Khaled M. Khleifat

Abstract:

An extracellular methanol and ethanol tolerant lipase producing bacterial strain K5b4 was isolated from soil samples contaminated with hydrocarbon residues. It was identified by using morphological and biochemical characteristics and 16srRNA technique as Acinetobacter species. The immobilized lipase from Acinetobacter sp. K5b4 retained more than 98% of its residual activity after incubation with pure methanol and ethanol for 24 hours. The highest hydrolytic activity of the immobilized enzyme was obtained in the presence of 75% (v/v) methanol in the assay solution. In contrary, the enzyme was able to maintain its original activity up to only 25% (v/v) ethanol whereas at elevated concentrations of 50 and 75% (v/v) the enzyme activity was reduced to 10 and 40%, respectively. Maximum lipase activity of 31.5 mU/mL was achieved after 48 hr cultivation when the optimized medium (pH 7.0) that composed of 1.0% (w/v) olive oil, 0.2% (w/v) glycerol, 0.15% (w/v) yeast extract, and 0.05% (w/v) NaCl was inoculated with 0.4% (v/v) seed culture and incubated at 30°C and 150 rpm agitation speed. However, the presence of CaCl2 in the growth media did not show any inhibitory or stimulatory effect on the enzyme production as it compared to the control experiment. Meanwhile, the other mineral salts MgCl2, MnCl2, KCl and CoCl2 were negatively affected the production of lipase enzyme. The inhibition of lipase production from Acinetobacter sp. K5b4 in presence of glucose suggesting that lipase gene expression is prone to catabolic repression.

Keywords: K5B4, methanol and ethanol, acinetobacter, morphological

Procedia PDF Downloads 295
374 Effect of Wettability Alteration in Low Salt Water Injection Modeling

Authors: H. Vahdani

Abstract:

By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest.

Keywords: low salt water injection, wettability alteration, modelling, relative permeability

Procedia PDF Downloads 470
373 Increasing Yam Production as a Means of Solving the Problem of Hunger in Nigeria

Authors: Samual Ayeni, A. S. Akinbani

Abstract:

At present when the price of petroleum is going down beyond bearable level, there is a need to diversify the economy towards arable crop production since Nigeria is an agrarian country. Yam plays prominent role in solving the problem of hunger in Nigeria. There is scarcity of information on the effect of fertilizers in increasing the yield of yam and maintaining soil properties in South Western Nigeria. This study was therefore set up to determine fertilizer effect on properties and yield of yam. The experiment was conducted at Adeyemi College of Education Teaching and Research Farm to compare the effect of organic, Organomineral and mineral fertilizers on yield of yam. Ten treatments were used 10t/ha Wood Ash, 10t/ha Cattle Dung, 10t/ha Poultry Manure, 10t/ha Manufactured Organic, 10t/ha Organomineral Fertilizer, 400kg/ha NPK, 400kg/ha SSP, 400kg/ha Urea and control with treatment. The treatments were laid out in a Randomized Complete Block Design (RCBD) and replicated three times. Compared with control, Organomineral fertilizer significantly (P < 0.05) increased the soil moisture content, poultry manure, wood ash significantly decreased (< 0.05) the bulk density. Application of 10t/ha Organomineral fertilizer recorded the highest increase in the yield of yam among the treatments.

Keywords: organomineral fertilizer, organic fertilizer, SSP, bulk density

Procedia PDF Downloads 272
372 Phytochemicals and Photosynthesis of Grape Berry Exocarp and Seed (Vitis vinifera, cv. Alvarinho): Effects of Foliar Kaolin and Irrigation

Authors: Andreia Garrido, Artur Conde, Ana Cunha, Ric De Vos

Abstract:

Climate changes predictions point to increases in abiotic stress for crop plants in Portugal, like pronounced temperature variation and decreased precipitation, which will have negative impact on grapevine physiology and consequently, on grape berry and wine quality. Short-term mitigation strategies have, therefore, been implemented to alleviate the impacts caused by adverse climatic periods. These strategies include foliar application of kaolin, an inert mineral, which has radiation reflection proprieties that decreases stress from excessive heat/radiation absorbed by its leaves, as well as smart irrigation strategies to avoid water stress. However, little is known about the influence of these mitigation measures on grape berries, neither on the photosynthetic activity nor on the photosynthesis-related metabolic profiles of its various tissues. Moreover, the role of fruit photosynthesis on berry quality is poorly understood. The main objective of our work was to assess the effects of kaolin and irrigation treatments on the photosynthetic activity of grape berry tissues (exocarp and seeds) and on their global metabolic profile, also investigating their possible relationship. We therefore collected berries of field-grown plants of the white grape variety Alvarinho from two distinct microclimates, i.e. from clusters exposed to high light (HL, 150 µmol photons m⁻² s⁻¹) and low light (LL, 50 µmol photons m⁻² s⁻¹), from both kaolin and non-kaolin (control) treated plants at three fruit developmental stages (green, véraison and mature). Plant irrigation was applied after harvesting the green berries, which also enabled comparison of véraison and mature berries from irrigated and non-irrigated growth conditions. Photosynthesis was assessed by pulse amplitude modulated chlorophyll fluorescence imaging analysis, and the metabolite profile of both tissues was assessed by complementary metabolomics approaches. Foliar kaolin application resulted in, for instance, an increased photosynthetic activity of the exocarp of LL-grown berries at green developmental stage, as compared to the control non-kaolin treatment, with a concomitant increase in the levels of several lipid-soluble isoprenoids (chlorophylls, carotenoids, and tocopherols). The exocarp of mature berries grown at HL microclimate on kaolin-sprayed non-irrigated plants had higher total sugar levels content than all other treatments, suggesting that foliar application of this mineral results in an increased accumulation of photoassimilates in mature berries. Unbiased liquid chromatography-mass spectrometry-based profiling of semi-polar compounds followed by ASCA (ANOVA simultaneous component analysis) and ANOVA statistical analysis indicated that kaolin had no or inconsistent effect on the flavonoid and phenylpropanoid composition in both seed and exocarp at any developmental stage; in contrast, both microclimate and irrigation influenced the level of several of these compounds depending on berry ripening stage. Overall, our study provides more insight into the effects of mitigation strategies on berry tissue photosynthesis and phytochemistry, under contrasting conditions of cluster light microclimate. We hope that this may contribute to develop sustainable management in vineyards and to maintain grape berries and wines with high quality even at increasing abiotic stress challenges.

Keywords: climate change, grape berry tissues, metabolomics, mitigation strategies

Procedia PDF Downloads 92
371 Evaluation of the Quality of Groundwater in the Zone of the Irrigated Perimeter Guelma-Bouchegouf, Northeast of Algeria

Authors: M. Benhamza, M. Touati, M. Aissaoui

Abstract:

The Guelma-Bouchegouf irrigated area is located in the north-east of the country; it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, physico-chemical and organic analyzes were carried out during the low water period in November 2017, at the level of fourteen wells in the Guelma-Bouchegouf irrigation area. The interpretation of the results of the chemical analyzes shows that the waters of the study area belong to two dominant chemical facies: sulphated-chlorinated-calcium and Sulfated-chlorinated-sodium. The mineral quality of the groundwater in the study area shows that Ca²⁺, Cl⁻ and SO₄²⁻ indicate little to significant pollution, Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. NO₃⁻ and NH⁴⁺ show little to significant pollution throughout the study area. Phosphate represents a significant pollution, with excessive values exceeding the allowable standard. Phosphate concentrations indicate pollution caused by agricultural practices in the irrigated area, following the use of phosphates in the form of chemical fertilizers or pesticides.

Keywords: Algeria, groundwater, irrigated perimeter, pollution

Procedia PDF Downloads 106
370 Microanalysis of a New Cementitious System Containing High Calcium Fly Ash and Waste Material by Scanning Electron Microscopy (SEM)

Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton

Abstract:

Fast-curing cold bituminous emulsion mixture (CBEM) including active filler from high calcium fly ash (HCFA) and waste material (LJMU-A2) has been developed in this study. This will overcome the difficulties related with the use of hot mix asphalt such as greenhouse gases emissions and problems in keeping the temperature when transporting long distance. The aim of this study is to employ petrographic examinations using scanning electron microscopy (SEM) for characterizing the hydrates microstructure, in a new binary blended cement filler (BBCF) system. The new BBCF has been used as a replacement to traditional mineral filler in cold bituminous emulsion mixtures (CBEMs), comprises supplementary cementitious materials containing high calcium fly ash (HCFA) and a waste material (LJMU-A2). SEM analysis demonstrated the formation of hydrates after varying curing ages within the BBCF. The accelerated activation of HCFA by LJMU-A2 within the BBCF was revealed and as a consequence early and later stiffness was developed in novel CBEM.

Keywords: cold bituminous emulsion mixtures, indirect tensile stiffness modulus, scanning electron microscopy (SEM), and high calcium fly ash

Procedia PDF Downloads 252
369 Push-Out Bond Strength of Two Root-End Filling Materials in Root-End Cavities Prepared by Er,Cr: YSGG Laser or Ultrasonic Technique

Authors: Noushin Shokouhinejad, Hasan Razmi, Reza Fekrazad, Saeed Asgary, Ammar Neshati, Hadi Assadian, Sanam Kheirieh

Abstract:

This study compared the push-out bond strength of mineral trioxide aggregate (MTA) and a new endodontic cement (NEC) as root-end filling materials in root-end cavities prepared by ultrasonic technique (US) or Er,Cr:YSGG laser (L). Eighty single-rooted extracted human teeth were endodontically treated, apicectomised and randomly divided into four following groups (n = 20): US/MTA, US/NEC, L/MTA and L/NEC. In US/MTA and US/NEC groups, rooted cavities were prepared with ultrasonic retrotip and filled with MTA and NEC, respectively. In L/MTA and L/NEC groups, root-end cavities were prepared using Er, Cr:YSGG laser and filled with MTA and NEC, respectively. Each root was cut apically to create a 2 mm-thick root slice for measurement of bond strength using a universal testing machine. Then, all slices were examined to determine the mode of bond failure. Data were analysed using two-way ANOVA. Root-end filling materials showed significantly higher bond strength in root-end cavities prepared using the ultrasonic technique (US/MTA and US/NEC) (P < 0.001). The bond strengths of MTA and NEC did not differ significantly. The failure modes were mainly adhesive for MTA, but cohesive for NEC. In conclusion, bond strengths of MTA and NEC to root-end cavities were comparable and higher in ultrasonically prepared cavities.

Keywords: bond strength, Er, Cr:YSGG laser, MTA, NEC, root-end cavity

Procedia PDF Downloads 314