Search results for: adsorption isotherms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 978

Search results for: adsorption isotherms

558 Synthesis, Electrochemical and Theoretical Study of Corrosion Inhibition on Carbon Steel in 1M HCl Medium by 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide)

Authors: Tanghourte Mohamed, Ouassou Nazih, El Mesky Mohammed, Znini Mohamed, Mabrouk El Houssine

Abstract:

In the present study, a distinct organic inhibitor, namely 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide) (PBRA), was synthesized and characterized using ¹H, ¹³C NMR, and IR spectroscopy. Subsequently, the inhibition effect of PBRA on the corrosion of carbon steel in 1 M HCl was studied using electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed that the inhibition efficiency increased with concentration, reaching 87% at 10-³M. Furthermore, PBRA remained effective at temperatures ranging from 298 to 328 K. The adsorption of the inhibitor onto carbon steel was well described by the Langmuir adsorption isotherm. Additionally, a correlation between the molecular structure and quantum chemistry indices was established using density functional theory (DFT).

Keywords: synthesis, corrosion, inhibition, piperazine, efficacy, isotherm, acetamide

Procedia PDF Downloads 10
557 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles

Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab

Abstract:

Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.

Keywords: chitosan, magnetite, water, treatment

Procedia PDF Downloads 405
556 Adsorption and Transformation of Lead in Coimbatore Urban Soils

Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya

Abstract:

Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.

Keywords: lead pollution, adsorption, transformation, heavy metal pollution

Procedia PDF Downloads 323
555 Synthesis and Characterization of Graphene Composites with Application for Sustainable Energy

Authors: Daniel F. Sava, Anton Ficai, Bogdan S. Vasile, Georgeta Voicu, Ecaterina Andronescu

Abstract:

The energy crisis and environmental contamination are very serious problems, therefore searching for better and sustainable renewable energy is a must. It is predicted that the global energy demand will double until 2050. Solar water splitting and photocatalysis are considered as one of the solutions to these issues. The use of oxide semiconductors for solar water splitting and photocatalysis started in 1972 with the experiments of Fujishima and Honda on TiO2 electrodes. Since then, the evolution of nanoscience and characterization methods leads to a better control of size, shape and properties of materials. Although the past decade advancements are astonishing, for these applications the properties have to be controlled at a much finer level, allowing the control of charge-carrier lives, energy level positions, charge trapping centers, etc. Graphene has attracted a lot of attention, since its discovery in 2004, due to the excellent electrical, optical, mechanical and thermal properties that it possesses. These properties make it an ideal support for photocatalysts, thus graphene composites with oxide semiconductors are of great interest. We present in this work the synthesis and characterization of graphene-related materials and oxide semiconductors and their different composites. These materials can be used in constructing devices for different applications (batteries, water splitting devices, solar cells, etc), thus showing their application flexibility. The synthesized materials are different morphologies and sizes of TiO2, ZnO and Fe2O3 that are obtained through hydrothermal, sol-gel methods and graphene oxide which is synthesized through a modified Hummer method and reduced with different agents. Graphene oxide and the reduced form could also be used as a single material for transparent conductive films. The obtained single materials and composites were characterized through several methods: XRD, SEM, TEM, IR spectroscopy, RAMAN, XPS and BET adsorption/desorption isotherms. From the results, we see the variation of the properties with the variation of synthesis parameters, size and morphology of the particles.

Keywords: composites, graphene, hydrothermal, renewable energy

Procedia PDF Downloads 499
554 Use of Diatomite for the Elimination of Chromium Three from Wastewater Annaba, Algeria

Authors: Sabiha Chouchane, Toufik Chouchane, Azzedine Hani

Abstract:

The wastewater was treated with a natural asorbent “Diatomite” to eliminate chromium three. Diatomite is an element that comes from Sig (west of Algeria). The physicochemical characterization revealed that the diatomite is mainly made up of silica, lime and a lower degree of alumina. The process considered in static regime, at 20°C, an ion stirring speed of 150 rpm, a pH = 4 and a grain diameter of between 100 and 150µm, shows that one gram of diatomite purified can fix according to the Langmuir model up to 39.64 mg/g of chromium with pseudo 1st order kinetics. The pseudo-equilibrium time highlighted is 25 minutes. The affinity between the adsorbent and the adsorbate follows the value of the RL ratio indicates us that the solid used has a good adsorption capacity. The external transport of the metal ions from the solution to the adsorbent seems to be a step controlling the speed of the overall process. On the other hand, internal transport in the pores is not the only limiting mechanism of sorption kinetics. Thermodynamic parameters show that chromium sorption is spontaneous and exothermic with negative entropy.

Keywords: adsorption, diatomite, crIII, wastewater

Procedia PDF Downloads 56
553 Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind

Authors: Fidelis Chigondo

Abstract:

This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters.

Keywords: biosorption, phenol, biosorbent, watermelon rind

Procedia PDF Downloads 247
552 Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions

Authors: Jyh-Cherng Chen, Yi-Jie Lin

Abstract:

This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development.

Keywords: alkali fusion, hydrothermal, fly ash, zeolite

Procedia PDF Downloads 176
551 Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition

Authors: Katya Milenova, Penko Nikolov, Irina Stambolova, Plamen Nikolov, Vladimir Blaskov

Abstract:

In the recent article, a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes-in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity.

Keywords: activated carbon, adsorption, copper, ozone decomposition, TiO2

Procedia PDF Downloads 418
550 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater

Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz

Abstract:

Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.

Keywords: adsorption, biochar, modified cellulose, corn stalks

Procedia PDF Downloads 182
549 Role of Biomaterial Surface Nanotopography on Protein Unfolding and Immune Response

Authors: Rahul Madathiparambil Visalakshan, Alex Cavallaro, John Hayball, Krasimir Vasilev

Abstract:

The role of biomaterial surface nanotopograhy on fibrinogen adsorption and unfolding, and the subsequent immune response were studied. Inconsistent topography and varying chemical functionalities along with a lack of reproducibility pose a challenge in determining the specific effects of nanotopography or chemistry on proteins and cells. It is important to have a well-defined nanotopography with a homogeneous chemistry to study the real effect of nanotopography on biological systems. Therefore, we developed a technique that can produce well-defined and highly reproducible topography to identify the role of specific roughness, size, height and density with the presence of homogeneous chemical functionality. Using plasma polymerisation of oxazoline monomers and immobilized gold nanoparticles we created surfaces with an equal number density of nanoparticles of different sizes. This surface was used to study the role of surface nanotopography and the interplay of surface chemistry on proteins and immune cells. The effect of nanotopography on fibrinogen adsorption was investigated using Quartz Cristal Microbalance with Dissipation and micro BCA. The mass of fibrinogen adsorbed on the surface increased with increasing size of nano-topography. Protein structural changes up on adsorption to the nano rough surface was studied using circular dichroism spectroscopy. Fibrinogen unfolding varied depending on the specific nanotopography of the surfaces. It was revealed that the in vitro immune response to the nanotopography surfaces changed due to this protein unfolding.

Keywords: biomaterial inflammation, protein and cell responses, protein unfolding, surface nanotopography

Procedia PDF Downloads 176
548 Usage of Biosorbent Material for the Removal of Nitrate from Wastewater

Authors: M. Abouleish, R. Umer, Z. Sara

Abstract:

Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate.

Keywords: biosorption, nitrates, plant material, water, and wastewater treatment

Procedia PDF Downloads 155
547 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation

Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa

Abstract:

Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.

Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol

Procedia PDF Downloads 187
546 Preparation of Geopolymer Cements from Tunisian Illito-Kaolinitic Clay Mineral

Authors: N. Hamdi, E. Srasra

Abstract:

In this work geopolymer cement are synthesized from Tunisian (illito-kaolinitic) clay. This product can be used as binding material in place of cement Portland. The clay fractions used were characterized with physico-chemical and thermal analyses. The clays materials react with alkaline solution (10, 14 and 18 mol(NaOH)/L) in order to produce geopolymer cements whose pastes were characterized by determining their water adsorption and compressive strength. The compressive strength of the hardened geopolymer cement paste samples aged 28 days attained its highest value (32.3MPa) around 950°C for NaOH concentration of 14M. The water adsorption value of the prepared samples decreased with increasing the calcination temperature of clay fractions. It can be concluded that the most suitable temperature for the calcination of illitio-kaolinitic clays in view of producing geopolymer cements is around 950°C.

Keywords: compressive strength, geopolymer cement, illitio-kaolinitic clay, mineral

Procedia PDF Downloads 252
545 Corrosion Inhibition of Copper in 1M HNO3 Solution by Oleic Acid

Authors: S. Nigri, R. Oumeddour, F. Djazi

Abstract:

The inhibition of the corrosion of copper in 1 M HNO3 solution by oleic acid was investigated by weight loss measurement, potentiodynamic polarization and scanning electron microscope (SEM) studies. The experimental results have showed that this compound revealed a good corrosion inhibition and the inhibition efficiency is increased with the inhibitor concentration to reach 98%. The results obtained revealed that the adsorption of the inhibitor molecule onto metal surface is found to obey Langmuir adsorption isotherm. The temperature effect on the corrosion behavior of copper in 1 M HNO3 without and with inhibitor at different concentration was studied in the temperature range from 303 to 333 K and the kinetic parameters activation such as Ea, ∆Ha and ∆Sa were evaluated. Tafel plot analysis revealed that oleic acid acts as a mixed type inhibitor. SEM analysis substantiated the formation of protective layer over the copper surface.

Keywords: oleic acid, weight loss, electrochemical measurement, SEM analysis

Procedia PDF Downloads 395
544 Molecular Dynamics Simulation Study of the Influence of Potassium Salts on the Adsorption and Surface Hydration Inhibition Performance of Hexane, 1,6 - Diamine Clay Mineral Inhibitor onto Sodium Montmorillonite

Authors: Justine Kiiza, Xu Jiafang

Abstract:

The world’s demand for energy is increasing rapidly due to population growth and a reduction in shallow conventional oil and gas reservoirs, resorting to deeper and mostly unconventional reserves like shale oil and gas. Most shale formations contain a large amount of expansive sodium montmorillonite (Na-Mnt), due to high water adsorption, hydration, and when the drilling fluid filtrate enters the formation with high Mnt content, the wellbore wall can be unstable due to hydration and swelling, resulting to shrinkage, sticking, balling, time wasting etc., and well collapse in extreme cases causing complex downhole accidents and high well costs. Recently, polyamines like 1, 6 – hexane diamine (HEDA) have been used as typical drilling fluid shale inhibitors to minimize and/or cab clay mineral swelling and maintain the wellbore stability. However, their application is limited to shallow drilling due to their sensitivity to elevated temperature and pressure. Inorganic potassium salts i.e., KCl, have long been applied for restriction of shale formation hydration expansion in deep wells, but their use is limited due to toxicity. Understanding the adsorption behaviour of HEDA on Na-Mnt surfaces in present of organo-salts, organic K-salts e.g., HCO₂K - main component of organo-salt drilling fluid, is of great significance in explaining the inhibitory performance of polyamine inhibitors. Molecular dynamic simulations (MD) were applied to investigate the influence of HCO₂K and KCl on the adsorption mechanism of HEDA on the Na-Mnt surface. Simulation results showed that adsorption configurations of HEDA are mainly by terminal amine groups with a flat-lying alkyl hydrophobic chain. Its interaction with the clay surface decreased the H-bond number between H₂O-clay and neutralized the negative charge of the Mnt surface, thus weakening the surface hydration ability of Na-Mnt. The introduction of HCO₂K greatly improved inhibition ability, coordination of interlayer ions with H₂O as they were replaced by K+, and H₂O-HCOO- coordination reduced H₂O-Mnt interactions, mobility and transport capability of H₂O molecules were more decreased. While KCl showed little ability and also caused more hydration with time, HCO₂K can be used as an alternative for offshore drilling instead of toxic KCl, with a maximum concentration noted in this study as 1.65 wt%. This study provides a theoretical elucidation for the inhibition mechanism and adsorption characteristics of HEDA inhibitor on Na-Mnt surfaces in the presence of K+-salts and may provide more insight into the evaluation, selection, and molecular design of new clay-swelling high-performance WBDF systems used in oil and gas complex offshore drilling well sections.

Keywords: shale, hydration, inhibition, polyamines, organo-salts, simulation

Procedia PDF Downloads 50
543 Impact of Syngenetic Elements on the Physico-Chemical Properties of Lignocellulosic Biochar

Authors: Edita Baltrėnaitė, Pranas Baltrėnas, Eglė MarčIulaitienė, Mantas PranskevičIus, Valeriia Chemerys

Abstract:

The growing demand for organic products in the market promotes their use in various fields. One of such products is biochar. Among the innovative environmental applications, biochar has the potential as an adsorbent for retaining contaminants in environmental engineering and agrotechnical systems. Artificial modification of biochar can improve its adsorption capacity. However, indirect/natural change of biochar composition (e.g., contaminated biomass) based on syngenetic elements provides prospects for new applications of biochar as well as decreases the modification costs. Natural lignocellulosic and biochar composition variations would lead to a new field of application of biochar and reduce resources for biochar modifications. The aim of this study was to determine the influence of syngenetic elements of biochar’s feedstock on the physicochemical properties of lignocellulosic biochar. Syngenetic elements (e.g., Zn, Cu, Ni, Pb, Mg) and other intrinsic properties (e.g., lignin, COHN, moisture, ash) of indifferent types of lignocellulosic feedstock on the physicochemical characteristics of biochar are discussed.

Keywords: adsorption, lignocellulosic biochar, instrinsic properties, syngenetic elements

Procedia PDF Downloads 200
542 Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR

Authors: Hyung T. Kwak, Jun Gao, Yao An, Alfred Kleinhammes, Yue Wu

Abstract:

Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.

Keywords: Wettability, NMR, Gas Isotherm, Hydrophilicity, adsorption

Procedia PDF Downloads 179
541 Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands

Authors: Hongtao Zhu, Dezhi Sun

Abstract:

Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal.

Keywords: ammonium nitrogen, constructed wetlands, steel slag, zeolite

Procedia PDF Downloads 255
540 Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study

Authors: B. Guezzen, M. A. Didi, B. Medjahed

Abstract:

An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA+) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software.

Keywords: adsorption, dye, factorial design, kinetic, organo-bentonite

Procedia PDF Downloads 200
539 FT-IR Investigation of the Influence of Acid-Base Sites on Cr-Incorporated MCM-41 Nanoparticle in C-C Bond Formation

Authors: Dilip K. Paul

Abstract:

The most popular mesoporous molecular sieves, Mobil Composition of Matter (MCM) are keenly studied by researchers because of these materials possess amorphous silica wall and have a long range of ordered framework with uniform mesopores. These materials also possess large surface area, which can be up to more than 1000 m2g−1. Herein the investigation is focused upon the synthesis and characterization of chromium and aluminum doped MCM-41 using XRD and FTIR. Acid-base properties of Cr-Al-MCM 41 was investigated by molecularly sensitive transmission FT-IR spectroscopy by adsorbing pyridine. In addition, these MCM nanomaterial was used to catalyze C-C bond formation from acetaldehyde adsorption. The assignment of all infrared peaks during adsorption of pyridine provided detail information on the presence of acid-base sites which in turn helped us to explain the roles of these in the condensation reaction of aldehyde. Reaction mechanisms of C-C bond formation is therefore explored to shed some light on this elusive reaction detail.

Keywords: mesoporous nanomaterial, MCM 41, FTIR studies, acid-base studies

Procedia PDF Downloads 445
538 Adsorption of Reactive Dye Using Entrapped nZVI

Authors: P. Gomathi Priya, M. E. Thenmozhi

Abstract:

Iron nanoparticles were used to cleanup effluents. This paper involves synthesis of iron nanoparticles chemically by sodium borohydride reduction of ammonium ferrous sulfate solution (FAS). Iron oxide nanoparticles have lesser efficiency of adsorption than Zero Valent Iron nanoparticles (nZVI). Glucosamine acts as a stabilizing agent and chelating agent to prevent Iron nanoparticles from oxidation. nZVI particles were characterized using Scanning Electron Microscopy (SEM). Thus, the synthesized nZVI was subjected to entrapment in biopolymer, viz. barium (Ba)-alginate beads. The beads were characterized using SEM. Batch dye degradation studies were conducted using Reactive black Water soluble Nontoxic Natural substances (WNN) dye which is one of the most hazardous dyes used in textile industries. Effect of contact time, effect of pH, initial dye concentration, adsorbent dosage, isotherm and kinetic studies were carried out.

Keywords: ammonium ferrous sulfate solution, barium, alginate beads, reactive black WNN dye, zero valent iron nanoparticles

Procedia PDF Downloads 331
537 Identification and Correlation of Structural Parameters and Gas Accumulation Capacity of Shales From Poland

Authors: Anna Pajdak, Mateusz Kudasik, Aleksandra Gajda, Katarzyna Kozieł

Abstract:

Shales are a type of fine-grained sedimentary rocks, which are composed of small grains of several to several dozen μm in size and consist of a variable mixture of clay minerals, quartz, feldspars, carbonates, sulphides, amorphous material and organic matter. The study involved an analysis of the basic physical properties of shale rocks from several research wells in Poland. The structural, sorption and seepage parameters of these rocks were determined. The total porosity of granular rock samples reached several percent, including the share of closed pores up to half a percent. The volume and distribution of pores, which are of significant importance in the context of the mechanisms of methane binding to the rock matrix and methods of stimulating its desorption and the possibility of CO₂ storage, were determined. The BET surface area of the samples ranged from a few to a dozen or so m²/g, and the share of micropores was dominant. In order to determine the interaction of rocks with gases, the sorption capacity in relation to CO₂ and CH₄ was determined at a pressure of 0-1.4 MPa. Sorption capacities, sorption isotherms and diffusion coefficients were also determined. Studies of competitive sorption of CO₂/CH₄ on shales showed a preference for CO₂ sorption over CH₄, and the selectivity of CO₂/CH₄ sorption decreased with increasing pressure. In addition to the pore structure, the adsorption capacity of gases in shale rocks is significantly influenced by the carbon content in their organic matter. The sorbed gas can constitute from 20% to 80% of the total gas contained in the shales. With the increasing depth of shale gas occurrence, the share of free gas to sorbed gas increases, among others, due to the increase in temperature and surrounding pressure. Determining the share of free gas to sorbed gas in shale, depending on the depth of its deposition, is one of the key elements of recognizing the gas/sorption exchange processes of CO₂/CH₄, which are the basis of CO₂-ESGR technology. The main objective of the work was to identify the correlation between different forms of gas occurrence in rocks and the parameters describing the pore space of shales.

Keywords: shale, CH₄, CO₂, shale gas, CO₂ -ESGR, pores structure

Procedia PDF Downloads 16
536 Design of Organic Inhibitors from Quantum Chemistry

Authors: Rahma Tibigui, Ikram Hadj Said, Rachid Belkada, Dalila Hammoutene

Abstract:

The vulnerability of industrial facilities is highly concerned with multiple risks from corrosion. The commonly adopted solution is based on the use of organic inhibitors, which are gradually being replaced by environmentally friendly organic inhibitors. In our work, we carried out a quantum chemical study based on the Density Functional Theory (DFT) method at the B3LYP/6-311G (d,p) level of theory. The inhibitory performance of a derivative of the tetrazole molecule has been investigated and reported as a carbon steel-friendly corrosion inhibitor in hydrochloric acid (HCl) medium. The relationship is likely to exist between the molecular structure of this compound as well as its various global reactivity descriptors, and its corrosion inhibition efficiency, which was examined and then discussed. The results show low values of ΔE, which represent strong adsorption of the inhibitor on the steel surface. Moreover, the flat adsorption orientation confirmed the great ability to donate (accept) electrons to (from) steel, fabricating an anchored barrier to prevent steel from corrosion.

Keywords: eco-friendly, corrosion inhibitors, tetrazole, DFT

Procedia PDF Downloads 234
535 Influence of CA, SR and BA Substitution on lafeo3Performances During Chemical Looping Processes

Authors: Rong Sun, Laihong Shen

Abstract:

La-based perovskite oxygen carriers, especially the doped-La(M)FeO₃, showed excellent performances during chemical looping processes. However, the mechanisms of the undoped and doped La(M)FeO₃ are not clear at present, making the mechanisms clear may help the development of chemical looping technologies. In this paper, the method based on the density function theory (DFT) was used to analysis the influence of Ca, Sr, and Ba doping of La on the electronic structure, while the CO oxidation mechanisms on the surface of LaFeO₃ and Ca-doped LaFeO₃ oxygen carriers were also analyzed. The results showed that the band gap was decreased by the doping of low valence. While the doping of low valence element Ca, Sr, and Ba at La site simultaneously resulted to the moving of the valence band toward high energy and made the valence band cross the Fermi energy level. This was resulted from the holes generated by divalent ion substitution. The holes can change the total magnetization from antiferromagnet to weakly ferromagnetism. The calculation results about the formation of oxygen vacancy showed that substitutions of Ca, Sr, and Ba caused a large drop in oxygen vacancy formation energy, indicating that the bulk oxygen transport was improved. Based on the optimized bulk of the undoped and Ca-doped LaFeO₃(010) surface, the CO adsorption was analyzed. The results indicated that the adsorption energy increased by divalent ion substitution, meaning that the adsorption stability decreased. The results can provide a certain theoretical basis for the development of perovskite oxides in chemical looping technologies.

Keywords: chemical looping technologies, lanthanum ferrate (LaFeO₃), divalent ion substitution, CO oxidation

Procedia PDF Downloads 103
534 Silver Nanoparticles Impregnated Zeolitic Composites: Effect of the Silver Loading on Adsorption of Mercury (II)

Authors: Zhandos Tauanov, Dhawal Shah, Grigorios Itskos, Vasileios Inglezakis

Abstract:

Removal of mercury (II) from aqueous phase is of utmost importance, as it is highly toxic and hazardous to the environment and human health. One way of removal of mercury (II) ions from aqueous solutions is by using adsorbents derived from coal fly ash (CFA), such as synthetic zeolites. In this work, we present the hydrothermal production of synthetic zeolites from CFA with conversion rate of 75%. In order to produce silver containing nanocomposites, synthetic zeolites are subsequently impregnated with various amounts of silver nanoparticles, from 0.2 to 2wt.%. All produced zeolites and parent materials are characterized by XRD, XRF, BET, SEM, and TEM to obtain morphological and microstructural data. Moreover, mercury (II) ions removal from aqueous solutions with initial concentration of 10 ppm is studied. According to results, zeolites and Ag-nanocomposites demonstrate much higher removal than parent CFA (up to 98%). In addition to this, we could observe a distinct adsorption behavior depending on the loading of Ag NPs in nanocomposites. A possible reaction mechanism for both zeolites and Ag-nanocomposites is discussed.

Keywords: coal fly ash, mercury (II) removal, nanocomposites, silver nanoparticles, synthetic zeolite

Procedia PDF Downloads 277
533 Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon

Authors: Hanane Belayachi, Sarra Bourahla, Amel Belayachi, Fadela Nemchi, Mostefa Belhakem

Abstract:

The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater.

Keywords: activated carbon, pollutant, catalysis, TiO₂

Procedia PDF Downloads 56
532 Ceramic Composites and Its Applications for Pb Adsorption

Authors: C. L. Popa, S. L. Iconaru, A. Costescu, C. S. Ciobanu, M. Motelica Heino, R. Guegan, D. Predoi

Abstract:

Surface functionalization of ceramic composites with a special focus on tetraethyl orthosilicate (TEOS) and hydroxyapatite (HAp) is discoursed. Mesoporous ceramic HAp-TEOS composites were prepared by the incorporation of hydroxyapatite into tetraethyl orthosilicate by sol-gel method. The resulting samples were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy and nitrogen physisorption. The removal of Pb2+ ions from aqueous solutions was evaluated using Atomic Absorbtion Spectroscopy (AAS). Removal experiments of Pb2+ ions were carried out in aqueous solutions with controlled Pb2+ at pH ~ 3 and pH ~ 5. After removal experiment of Pb2+ at pH 3 and pH 5, porous hydroxyapatite nanoparticles is transformed into PbHAp_3 and PbHAp_5 via the adsorption of Pb2+ ions followed by the cation exchange reaction. The diffraction patterns show that THAp nanoparticles were successfully coated with teos without any structural changes. On the other, the AAS analysis showed that THAp can be useful in the removal Pb2+ from water contaminated.

Keywords: teos, hydroxyapatite, environment applications, biosystems engineering

Procedia PDF Downloads 385
531 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies

Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru

Abstract:

Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.

Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil

Procedia PDF Downloads 375
530 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton

Authors: komal verma, V. S. Moholkar

Abstract:

In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity

Procedia PDF Downloads 72
529 Efficiently Dispersed MnOx on Mesoporous 3D Cubic Support for Cyclohexene Epoxidation

Authors: G. Imran, A. Pandurangan

Abstract:

Epoxides constitute important intermediates for the production of fine and bulk chemicals as well as valuable building blocks for the synthesis of a variety of bioactive molecules. Manganese oxides are used as selective catalyst for various redox type reactions and also effectively used in the field of catalytic disposal of pollutants. Non-toxic, cost efficient factor and more over existence of wide range of oxidation state (+2 to +7) makes catalyst more interesting for both academic research and industrial applications. However, the serious drawback lying is the lower surface area. Exceedingly dispersed manganese oxide grafted over mesoporous solid material KIT-6 through ALD (Atomic Layer Deposition) technique effectively catalyze cyclohexene with H2O2 (30% in water) to corresponding epoxides. Highly selective epoxide >99% with 55.7% conversion of cyclohexene was achieved using huge dispersed active sites of MnOx species containing catalysts. Various weight percent such as (1, 3, 5, 7 & 10 wt %) of manganese (II) acetylacetonate complex was employed as Mn source to post-graft via active silanol groups of KIT-6 and are designated as (Mn-G-KIT-6). XRD, N2 sorption, HR-TEM, DRS-UV-VIS, EPR and H2-TPR were employed for structural and textural properties. Immense Mn species of about 95% proportion on silica matrix obtained was evident from ICP-OES.The resulting materials exhibited Type IV adsorption isotherms indiacting mesopore in nanorange. Si-KIT-6 and Mn-G-KIT-6 materials exhibited surface area of 519-289 m2/g and with decrease in pore volume of 0.96-0.49 cm3/g with pore diameter ranging 7.9- 7.2 with increase in wt%. DRS-UV-VIS spectroscopy and EPR studies reveal that manganese coexists as Mn2+/3+ species as extra-framework sites and frame-work sites that result in dispersion on surface of silica matrix of KIT-6 and incorporated manganese sites with silanol groups along with small sized MnO cluster, evident from HR-TEM which increase with Mn content. Conventional production of epoxides by the intramolecular etherification of chlorohydrins formed by the reaction of alkenes with hypochlorous acid is the major drawbacks obtained recently. The most efficient synthesis of oxiranes (epoxides) is obtained by mesoporous catalysts (Mn-G-KIT-6) are presented here and discussed.

Keywords: ALD, epoxidation, mesoporous, MnOx

Procedia PDF Downloads 184