Search results for: high%20throughput
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20219

Search results for: high%20throughput

15779 The Effects of Three Months of HIIT on Plasma Adiponectin on Overweight College Men

Authors: M. J. Pourvaghar, M. E. Bahram, M. Sayyah, Sh. Khoshemehry

Abstract:

Adiponectin is a cytokine secreted by the adipose tissue that functions as an anti-inflammatory, antiathrogenic and anti-diabetic substance. Its density is inversely correlated with body mass index. The purpose of this research was to examine the effect of 12 weeks of high intensity interval training (HIIT) with the level of serum adiponectin and some selected adiposity markers in overweight and fat college students. This was a clinical research in which 24 students with BMI between 25 kg/m2 to 30 kg/m2. The sample was purposefully selected and then randomly assigned into two groups of experimental (age =22.7±1.5 yr.; weight = 85.8±3.18 kg and height =178.7±3.29 cm) and control (age =23.1±1.1 yr.; weight = 79.1±2.4 kg and height =181.3±4.6 cm), respectively. The experimental group participated in an aerobic exercise program for 12 weeks, three sessions per weeks at a high intensity between 85% to 95% of maximum heart rate (considering the over load principle). Prior and after the termination of exercise protocol, the level of serum adiponectin, BMI, waist to hip ratio, and body fat percentages were calculated. The data were analyzed by using SPSS: PC 16.0 and statistical procedure such as ANCOVA, was used. The results indicated that 12 weeks of intensive interval training led to the increase of serum adiponectin level and decrease of body weight, body fat percent, body mass index and waist to hip ratio (P < 0.05). Based on the results of this research, it may be concluded that participation in intensive interval training for 12 weeks is a non-invasive treatment to increase the adiponectin level while decreasing some of the anthropometric indices associated with obesity or being overweight.

Keywords: adiponectin, cardiovascular, interval, overweight, training

Procedia PDF Downloads 321
15778 Characterization of the Immune Response of Inactivated RVF Vaccine: A Comparative Study in Sheep and Goats as Experimental Model

Authors: Ahmed Zaghawa

Abstract:

Rift Valley Fever is an economically specific disease of the health and arboviral disease that affects many types of animals, causing significant economic losses in livestock, and it is transmitted to humans and has public health issues. The vaccine program is the backbone for the control of this disease. The goal of this study was to apply a new approach to evaluate the inactivated RVF vaccine developed in Egypt. In this study, the RVF vaccine was evaluated in young puppies and compared with sheep; the findings showed that young puppies were susceptible to infection with the inhibitory RVF virus and had a strong response of antibodies with two doses of the RVF vaccine within the two-week interval. The neutralization indices began to appear to the protective level on the 7th day at 1.35 and steadily elevated at 14,21 and 28 days to 1.35, 1.43, and 1.20, respectively, in comparison to the control group. While in sheep, the neutralization indices began to appear to the protective level on the 7th day at 1.10 and remain strongly at high titer at 14, 21, and 28 days with NI values 1.20, 1.50, and 1.50, respectively. The new approach for comparing the immune response in puppies and sheep via SNT indicated the high response in both species was evident as well as the neutralization indices values in young puppies at different periods after RVF vaccination reported the value of 1.08±0.03, 1.23±0.04, 1.30±0.03, and 1.45±0.02 after 7, 14, 21, and 28 days post-vaccination respectively. On the other side, a nearly similar immune response was noticed in sheep with NI values of 1.15±0.02, 1.27±0.02, 1.42±0.05, and 1.55±0.03 at 7, 14, 21, and 28 days post-vaccination, respectively. In conclusion, young puppies are similar to sheep in developing antibodies after vaccination with the RVF vaccine and can replace sheep for evaluating the efficacy of the RVF vaccine. Further studies are mandatory to assess more recent methods for evaluating inhibition of the RVF vaccine.

Keywords: immune response, puppies, RVF, sheep, vaccine

Procedia PDF Downloads 185
15777 Uniform and Controlled Cooling of a Steel Block by Multiple Jet Impingement and Airflow

Authors: E. K. K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

During the cooling of hot metals by the circulation of water in canals formed by boring holes in the metal, the rapid phase change of the water due to the high initial temperature of the metal leads to a non homogenous distribution of the phases within the canals. The liquid phase dominates towards the entrance of the canal while the gaseous phase dominates towards the exit. As a result of the different thermal properties of both phases, the metal is not uniformly cooled. This poses a problem during the cooling of moulds, where a uniform temperature distribution is needed in order to ensure the integrity of the part being formed. In this study, the simultaneous use of multiple water jets and an airflow for the uniform and controlled cooling of a steel block is investigated. A circular hole is bored at the centre of the steel block along its length and a perforated steel pipe is inserted along the central axis of the hole. Water jets that impact the internal surface of the steel block are generated from the perforations in the steel pipe when the water within it is put under pressure. These jets are oriented in the opposite direction to that of gravity. An intermittent airflow is imposed in the annular space between the steel pipe and the surface of hole bored in the steel block. The evolution of the temperature with respect to time of the external surface of the block is measured with the help of thermocouples and an infrared camera. Due to the high initial temperature of the steel block (350 °C), the water changes phase when it impacts the internal surface of the block. This leads to high heat fluxes. The strategy used to control the cooling speed of the block is the intermittent impingement of its internal surface by the jets. The intervals of impingement and of non impingement are varied in order to achieve the desired result. An airflow is used during the non impingement periods as an additional regulator of the cooling speed and to improve the temperature homogeneity of the impinged surface. After testing different jet positions, jet speeds and impingement intervals, it’s observed that the external surface of the steel block has a uniform temperature distribution along its length. However, the temperature distribution along its width isn’t uniform with the maximum temperature difference being between the centre of the block and its edge. Changing the positions of the jets has no significant effect on the temperature distribution on the external surface of the steel block. It’s also observed that reducing the jet impingement interval and increasing the non impingement interval slows down the cooling of the block and improves upon the temperature homogeneity of its external surface while increasing the duration of jet impingement speeds up the cooling process.

Keywords: cooling speed, homogenous cooling, jet impingement, phase change

Procedia PDF Downloads 129
15776 Probabilistic Models to Evaluate Seismic Liquefaction In Gravelly Soil Using Dynamic Penetration Test and Shear Wave Velocity

Authors: Nima Pirhadi, Shao Yong Bo, Xusheng Wan, Jianguo Lu, Jilei Hu

Abstract:

Although gravels and gravelly soils are assumed to be non-liquefiable because of high conductivity and small modulus; however, the occurrence of this phenomenon in some historical earthquakes, especially recently earthquakes during 2008 Wenchuan, Mw= 7.9, 2014 Cephalonia, Greece, Mw= 6.1 and 2016, Kaikoura, New Zealand, Mw = 7.8, has been promoted the essential consideration to evaluate risk assessment and hazard analysis of seismic gravelly soil liquefaction. Due to the limitation in sampling and laboratory testing of this type of soil, in situ tests and site exploration of case histories are the most accepted procedures. Of all in situ tests, dynamic penetration test (DPT), Which is well known as the Chinese dynamic penetration test, and shear wave velocity (Vs) test, have been demonstrated high performance to evaluate seismic gravelly soil liquefaction. However, the lack of a sufficient number of case histories provides an essential limitation for developing new models. This study at first investigates recent earthquakes that caused liquefaction in gravelly soils to collect new data. Then, it adds these data to the available literature’s dataset to extend them and finally develops new models to assess seismic gravelly soil liquefaction. To validate the presented models, their results are compared to extra available models. The results show the reasonable performance of the proposed models and the critical effect of gravel content (GC)% on the assessment.

Keywords: liquefaction, gravel, dynamic penetration test, shear wave velocity

Procedia PDF Downloads 207
15775 Influence of the Molar Concentration and Substrate Temperature on Fluorine-Doped Zinc Oxide Thin Films Chemically Sprayed

Authors: J. Ramirez, A. Maldonado, M. de la L. Olvera

Abstract:

The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates, is analyzed in this work. All the starting solutions employed were aged for ten days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum in films deposited from a 0.4 M solution at 500°C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500°C. The attain of ZnO:F thin films, with a resistivity as low as 7.8×10-3 Ώcm (sheet resistance of 130 Ώ/☐ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.

Keywords: zinc oxide, chemical spray, thin films, TCO

Procedia PDF Downloads 505
15774 Growing Sorghum Varieties with Potential of Fodder and Biofuel Crops, with Potential of Two Harvest in One Year

Authors: Farah Jafarpisheh, John Hutson, Howard Fallowfield

Abstract:

Growing Sorghum varieties, with the potential of the animal food source, by using the treated wastewater from High Rate Algae Ponds (HRAPs) is an attractive subject. For the first time, in South Australia, Sorghum Earthnote variety one (SE1) has been grown using the wastewater from HRAPs. In this study, after the first harvest, the roots left in the soil. After a short period of time, sorghum started to regrow again, which can increase the value of planting sorghum by using the wastewater. This study demonstrates the higher amount of green biomass with the potential of animal food source after the second harvest. Different parameters, including height(mm), number of leaves and tiller, Brix percentage, fresh and dry leaf weight(g), total top fresh weight(g), stem and seed dry and fresh weight(g) have been measured in the field after first and second harvest. The results demonstrated the higher height, number of tiller, and diameter after the second harvest. Number of leaves and leaves fresh weight and total top weight increased by 6 and 10 times, respectively. Brix percentage increased by 2 times. In the first harvest, no seeds harvested, while in the second harvest, 134 g seeds harvested. This sorghum variety (SE1) showed the acceptable green biomass, especially after the second harvest. This property will add to the value of sorghum in this condition, as it will not need extra fertilizer and labor work for seed planting.

Keywords: energy, high rate algae ponds, HRAPs, Sorghum, waste water

Procedia PDF Downloads 119
15773 Intensity Modulated Radiotherapy of Nasopharyngeal Carcinomas: Patterns of Loco Regional Relapse

Authors: Omar Nouri, Wafa Mnejja, Nejla Fourati, Fatma Dhouib, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Jamel Daoud

Abstract:

Background and objective: Induction chemotherapy (IC) followed by concomitant chemo radiotherapy with intensity modulated radiation (IMRT) technique is actually the recommended treatment modality for locally advanced nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the prognostic factors predicting loco regional relapse with this new treatment protocol. Patients and methods: A retrospective study of 52 patients with NPC treated between June 2016 and July 2019. All patients received IC according to the protocol of the Head and Neck Radiotherapy Oncology Group (Gortec) NPC 2006 (3 TPF courses) followed by concomitant chemo radiotherapy with weekly cisplatin (40 mg / m2). Patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. Median age was 49 years (19-69) with a sex ratio of 3.3. Forty five tumors (86.5%) were classified as stages III - IV according to the 2017 UICC TNM classification. Loco regional relapse (LRR) was defined as a local and/or regional progression that occurs at least 6 months after the end of treatment. Survival analysis was performed according to Kaplan-Meier method and Log-rank test was used to compare anatomy clinical and therapeutic factors that may influence loco regional free survival (LRFS). Results: After a median follow up of 42 months, 6 patients (11.5%) experienced LRR. A metastatic relapse was also noted for 3 of these patients (50%). Target volumes coverage was optimal for all patient with LRR. Four relapses (66.6%) were in high-risk target volume and two (33.3%) were borderline. Three years LRFS was 85,9%. Four factors predicted loco regional relapses: histologic type other than undifferentiated (UCNT) (p=0.027), a macroscopic pre chemotherapy tumor volume exceeding 100 cm³ (p=0.005), a reduction in IC doses exceeding 20% (p=0.016) and a total cumulative cisplatin dose less than 380 mg/m² (p=0.0.34). TNM classification and response to IC did not impact loco regional relapses. Conclusion: For nasopharyngeal carcinoma, tumors with initial high volume and/or histologic type other than UCNT, have a higher risk of loco regional relapse. Therefore, they require a more aggressive therapeutic approaches and a suitable monitoring protocol.

Keywords: loco regional relapse, modulation intensity radiotherapy, nasopharyngeal carcinoma, prognostic factors

Procedia PDF Downloads 131
15772 Spectral Quasi Linearization Techniques for the Solution of Time Fractional Diffusion Wave Equations in Boundary Value Problems

Authors: Kizito Ugochukwu Nwajeria

Abstract:

This paper presents a spectral quasi-linearization technique (SQLT) for solving time fractional diffusion wave equations in boundary value problems. The proposed method integrates spectral approximations for spatial derivatives with a quasi-linearization approach to address the nonlinearity introduced by fractional time derivatives. Time fractional differential equations typically formulated using Caputo or Riemann-Liouville derivatives, model complex phenomena such as anomalous diffusion and wave propagation, which are not captured by classical integer-order models. The SQLT method iteratively linearizes the nonlinear terms at each time step, transforming the original problem into a series of linear subproblems, which can be efficiently solved. Using high-order spectral methods such as Chebyshev or Legendre polynomials for spatial discretization, the technique achieves high accuracy in approximating the solution. A convergence analysis is provided, demonstrating the method's efficiency and establishing error bounds. Numerical experiments on a range of test problems confirm the effectiveness of SQLT in solving fractional diffusion wave equations with various boundary conditions. The method offers a robust framework for addressing time fractional differential equations in diverse fields, including materials science, bioengineering, and anomalous transport phenomena.

Keywords: spectral methods, quasilinearization, time-fractional diffusion-wave equations, boundary value problems, fractional calculus

Procedia PDF Downloads 17
15771 Portable Water Treatment for Flood Resilience

Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed

Abstract:

Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.

Keywords: flood resilience, membrane desalination, portable water treatment, solar energy

Procedia PDF Downloads 292
15770 Depositional Environment and Source Potential of Devonian Source Rock, Ghadames Basin, Southern Tunisia

Authors: S. Mahmoudi, A. Belhaj Mohamed, M. Saidi, F. Rezgui

Abstract:

Depositional environment and source potential of the different organic rich levels of Devonian age (up to 990m thick) from the onshore EC-1 well (Southern Tunisia) were investigated using different geochemical techniques (Rock-Eval pyrolysis, GC-MS) of over than 130 cutting samples. The obtained results including Rock Eval Pyrolysis data and biomarker distribution (terpanes, steranes and aromatics) have been used to describe the depositional environment and to assess the thermal maturity of the Devonian organic matter. These results show that the Emsian deposits exhibit poor to fair TOC contents. The associated organic matter is composed of mixed kerogen (type II/III), as indicated by the predominance of C29 steranes over C27 and C28 homologous, that was deposited in a slightly reduced environment favoring organic matter preservation. Thermal maturity assessed from Tmax, TNR and MPI-1 values shows a mature stage of organic matter. The Middle Devonian (Eifelian) shales are rich in type II organic matter that was deposited in an open marine depositional environment. The TOC values are high and vary between 2 and 7 % indicating good to excellent source rock. The relatively high IH values (reaching 547 mg HC/g TOC) and the low values of t19/t23 ratio (down to 0.2) confirm the marine origin of the organic matter (type II). During the Upper Devonian, the organic matter was deposited under variable redox conditions, oxic to suboxic which is clearly indicated by the low C35/C34 hopanes ratio, immature to marginally mature with the vitrinite reflectance ranging from 0.5 to 0.7 Ro and Tmax value of 426°C-436 °C and the TOC values range between 0.8% to 4%.

Keywords: biomarker, depositional environment, devonian, source rock

Procedia PDF Downloads 479
15769 Exceptionally Glauconite-Rich Strata from the Miocene Bejaoua Facies of Northern Tunisia: Origin, Composition, and Depositional Conditions

Authors: Abdelbasset Tounekti, Kamel Boukhalfa, Tathagata Roy Choudhury, Mohamed Soussi, Santanu Banerjee

Abstract:

The exceptionally glauconite-rich Miocene strata are superbly exposed throughout the front of the nappes zone of northern Tunisia. Each of the glauconitic fine-grained intervals coincide with the peak rise of third order sea-level cycles during the Burdigalian-Langhiantime. These deposits show coarsening- and thickening-upward glauconitic shale and sandstone, recording a shallowing upward progression across offshore-shoreface settings. Petrographic investigation reveals that the glauconite was originated from the alteration of fecal pellets, and lithoclast including feldspar, volcanic particle, and quartz and infillings with intraparticle pores. Mineralogical analysis of both randomly oriented and air-dried, ethylene-glycolate, and heated glauconite pellets show the low intensity of (002) reflection peaks, indicating high iron substitution for aluminum in octahedral sites. Geochemical characterization of the Miocene glauconite reveals a high K2O and variable Fe2O3 (total) content. A combination of layer lattice and divertissement theories explains the origin of glauconite. The formation of glauconite was facilitated by the abundant supply of Fe through contemporaneous volcanism in Algeria and surrounding areas, which accompanied the African-European plate convergence. Therefore, the occurrence of glauconite in the Miocene succession of Tunisia is influenced by the combination of eustacy and volcanism.

Keywords: glauconite, autogenic, volcanism, geochemistry, chamosite, northern Tunisia, miocene

Procedia PDF Downloads 295
15768 Development of Antimicrobial Properties Nutraceuticals: Gummy Candies with Addition of Bovine Colostrum, Essential Oils and Probiotics

Authors: E. Bartkiene, M. Ruzauskas, V. Lele, P. Zavistanaviciute, J. Bernatoniene, V. Jakstas, L. Ivanauskas, D. Zadeike, D. Klupsaite, P. Viskelis, J. Bendoraitiene, V. Navikaite-Snipaitiene, G. Juodeikiene

Abstract:

In this study, antimicrobial nutraceuticals; gummy candies (GC) from bovine colostrum (BC), essential oils (EOs), probiotic lactic acid bacteria (PLAB), and their combinations, were developed. For antimicrobial GC preparation, heteropolysaccharide (agar) was used. The antimicrobial properties of EOs (Eugenia caryophyllata, Thymus vulgaris, Citrus reticulata L., Citrus paradisi L.), BC, L. paracasei LUHS244, L. plantarum LUHS135, and their combinations against pathogenic bacteria strains (Streptococcus mutans, Enterococcus faecalis, Staphylococcus aureus, Salmonella enterica, Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa) were evaluated. The highest antimicrobial properties by EO’s (Eugenia caryophyllata and Thymus vulgaris) were established. The optimal ingredients composition for antimicrobial GC preparation was established, which incorporate the BC fermented with L. paracasei LUHS244 in combination with Thymus vulgaris or Eugenia caryophyllata. These ingredients showed high inhibition properties of all tested pathogenic strains (except Pseudomonas aeruginosa). Antimicrobial GC formula consisting of thyme EO (up to 0.2%) and fermented BC (up to 3%), and for taste masking, mandarin or grapefruit EOs (up to 0.2%) was used. Developed GC high overall acceptability and antimicrobial properties, thus, antimicrobial GC could be a preferred form of nutraceuticals. This study was fulfilled with the support of the LSMU-KTU joint project.

Keywords: antimicrobial activity, bovine colostrum, essential oil, gummy candy, probiotic

Procedia PDF Downloads 178
15767 Brand Creation for Community Product: A Case Study at Samut Songkram, Thailand

Authors: Cholpassorn Sitthiwarongchai

Abstract:

The purposes of this paper were to search for the uniqueness of community products from Bang Khonthi District, Samut Songkram Province, Thailand and to create a proper brand for the community products. Four important questions were asked to identify the uniqueness of the community products. The first question: What is the brand of coconut sugar that community wants to imply? The answer was 100 percent authentic coconut sugar. The second question: What is the nature of this product? The answer was that it is a natural product without any harmful chemical. The third question is: Who are the target customers? The answer was that homemakers and tourists are target customers. The fourth question: What is the brand guarantee to customers? The answer was that the brand guarantees that the product is 100 percent natural process with a high quality and it is a community production. The findings revealed that in terms of product, customers rated quality and package as the two most important factors. In terms of price, customers rated lower price and a visible label as the two most important factors. In terms of place, customer rated layout and the cleanliness of the place as the two most important factors. In terms of promotion, customer rated public relations and brochure at the store as the most important factors. From the group discussion, the local community agreed that the brand for the community coconut sugar of Salapi community should be a picture of a green coconut tree and yellow color background. This brand implies the strength of community and authentic of the high quality natural product.

Keywords: coconut sugar, community brand, Samut Songkram, natural product

Procedia PDF Downloads 399
15766 Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions

Authors: Jean-Philippe Gagnon, Benjamin Saute, Stéphane Boubanga-Tombet

Abstract:

Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution.

Keywords: infrared, multispectral, fire, broadband, gas temperature, IR camera

Procedia PDF Downloads 150
15765 Screening Microalgae Strains Which Were Isolated from Agriculture and Municipal Wastewater Drain, Reno, Nevada and Reuse of Effluent Water from Municipal Wastewater Treatment Plant in Microalgae Cultivation for Biofuel Feedstock

Authors: Nita Rukminasari

Abstract:

The aim of this study is to select microalgae strains, which were isolated from agriculture and municipal wastewater drain, Reno, Nevada that has highest growth rate and lipid contents. The experiments in this study were carried out in two consecutive stages. The first stage is aimed at testing the survival capability of all isolated microalgae strains and determining the best candidates to grow in centrate cultivation system. The second stage was targeted at determination the highest growth rate and highest lipid content of the selected top performing algae strain when cultivated on centrate wastewater. 26 microalgae strains, which were isolated from municipal and agriculture waste water, were analyzed using Flow cytometer for FACS of lipid with BODIPY and Nile Red as a lipid dyes and they grew on 96 wells plate for 31 days to determine growth rate as a based line data for growth rate. The result showed that microalgae strains which showed a high mean of fluorescence for BODIPY and Nile Red were F3.BP.1, F3.LV.1, T1.3.1, and T1.3.3. Five microalgae strains which have high growth rate were T1.3.3, T2.4.1. F3.LV.1, T2.12.1 and T3.3.1. In conclusion, microalgae strain which showed the highest starch content was F3.LV.1. T1.3.1 had the highest mean of fluorescence for Nile Red and BODIPY. Microalgae strains were potential for biofuel feedstock such as F3.LV.1 and T1.3.1, those microalgae strains showed a positive correlation between growth rate at stationary phase, biomass and meant of fluorescence for Nile Red and BODIPY.

Keywords: agriculture and municipal wastewater, biofuel, centrate, microalgae

Procedia PDF Downloads 321
15764 Different Processing Methods to Obtain a Carbon Composite Element for Cycling

Authors: Maria Fonseca, Ana Branco, Joao Graca, Rui Mendes, Pedro Mimoso

Abstract:

The present work is focused on the production of a carbon composite element for cycling through different techniques, namely, blow-molding and high-pressure resin transfer injection (HP-RTM). The main objective of this work is to compare both processes to produce carbon composite elements for the cycling industry. It is well known that the carbon composite components for cycling are produced mainly through blow-molding; however, this technique depends strongly on manual labour, resulting in a time-consuming production process. Comparatively, HP-RTM offers a more automated process which should lead to higher production rates. Nevertheless, a comparison of the elements produced through both techniques must be done, in order to assess if the final products comply with the required standards of the industry. The main difference between said techniques lies in the used material. Blow-moulding uses carbon prepreg (carbon fibres pre-impregnated with a resin system), and the material is laid up by hand, piece by piece, on a mould or on a hard male. After that, the material is cured at a high temperature. On the other hand, in the HP-RTM technique, dry carbon fibres are placed on a mould, and then resin is injected at high pressure. After some research regarding the best material systems (prepregs and braids) and suppliers, an element was designed (similar to a handlebar) to be constructed. The next step was to perform FEM simulations in order to determine what the best layup of the composite material was. The simulations were done for the prepreg material, and the obtained layup was transposed to the braids. The selected material was a prepreg with T700 carbon fibre (24K) and an epoxy resin system, for the blow-molding technique. For HP-RTM, carbon fibre elastic UD tubes and ± 45º braids were used, with both 3K and 6K filaments per tow, and the resin system was an epoxy as well. After the simulations for the prepreg material, the optimized layup was: [45°, -45°,45°, -45°,0°,0°]. For HP-RTM, the transposed layup was [ ± 45° (6k); 0° (6k); partial ± 45° (6k); partial ± 45° (6k); ± 45° (3k); ± 45° (3k)]. The mechanical tests showed that both elements can withstand the maximum load (in this case, 1000 N); however, the one produced through blow-molding can support higher loads (≈1300N against 1100N from HP-RTM). In what concerns to the fibre volume fraction (FVF), the HP-RTM element has a slightly higher value ( > 61% compared to 59% of the blow-molding technique). The optical microscopy has shown that both elements have a low void content. In conclusion, the elements produced using HP-RTM can compare to the ones produced through blow-molding, both in mechanical testing and in the visual aspect. Nevertheless, there is still space for improvement in the HP-RTM elements since the layup of the braids, and UD tubes could be optimized.

Keywords: HP-RTM, carbon composites, cycling, FEM

Procedia PDF Downloads 137
15763 Wear Resistance and Mechanical Performance of Ultra-High Molecular Weight Polyethylene Influenced by Temperature Change

Authors: Juan Carlos Baena, Zhongxiao Peng

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in industrial and biomedical fields. The slippery nature of UHMWPE makes this material suitable for surface bearing applications, however, the operational conditions limit the lubrication efficiency, inducing boundary and mixed lubrication in the tribological system. The lack of lubrication in a tribological system intensifies friction, contact stress and consequently, operating temperature. With temperature increase, the material’s mechanical properties are affected, and the lifespan of the component is reduced. The understanding of how mechanical properties and wear performance of UHMWPE change when the temperature is increased has not been clearly identified. The understanding of the wear and mechanical performance of UHMWPE at different temperature is important to predict and further improve the lifespan of these components. This study evaluates the effects of temperature variation in a range of 20 °C to 60 °C on the hardness and the wear resistance of UHMWPE. A reduction of the hardness and wear resistance was observed with the increase in temperature. The variation of the wear rate increased 94.8% when the temperature changed from 20 °C to 50 °C. Although hardness is regarded to be an indicator of the material wear resistance, this study found that wear resistance decreased more rapidly than hardness with the temperature increase, evidencing a low material stability of this component in a short temperature interval. The reduction of the hardness was reflected by the plastic deformation and abrasion intensity, resulting in a significant wear rate increase.

Keywords: hardness, surface bearing, tribological system, UHMWPE, wear

Procedia PDF Downloads 275
15762 Disseminated Tuberculosis: Experience from Tuberculosis Directly Observed Treatment Short Course Center at a Tertiary Care Teaching Hospital in the Philippines

Authors: Jamie R. Chua, Christina Irene D. Mejia, Regina P. Berba

Abstract:

Disseminated tuberculosis is an infectious disease caused by Mycobacterium tuberculosis involving two or more non-contiguous sites identified through bacteriologic confirmation or clinical diagnosis. Over the five year period included in the study, the UP-PGH TB DOTS clinic had total of 3,967 referrals, and the prevalence of disseminated tuberculosis is 1% (68/3967). The mean age was 33.9 years (range 19-64 years) with a male: female ratio of 1:1. 67% (52 patients) had no predisposing comorbid illness or immune disorder. The most common presenting symptoms were abdominal pain (19%), back pain (13%), abdominal enlargement (11%) and mass (10.2%). Anemia, leukocytosis, hypoalbuminemia, and high-normal serum calcium were common biochemical and hematologic findings. Around 36% (25) of patients were diagnosed clinically with disseminated tuberculosis despite lacking bacteriologic evidence of multi-organ involvement. The lungs (86%) is still the most commonly involved site, followed by intestinal (22%), vertebral/Pott’s (27%), and pelvic/genital (19%). The mean time from presentation to initiation of therapy was 22 days (SD 32.7). Only 18 patients (29.3%) were properly recorded to have been referred to local TB DOTs facilities. Of the 68 patients, only 16% (11 patients) continued follow-up at PGH, and all had documented treatment completion. Treatment outcomes of the remaining were unknown. Due to the variety of involved sites, a high index of suspicion is required. Knowledge on clinical features, common radiographic findings, and histopathologic characteristics of disseminated TB is important as bacteriologic evidence of infection is not always apparent.

Keywords: disseminated tuberculosis, Mycobacterium tuberculosis, miliary tuberculosis, tuberculosis

Procedia PDF Downloads 244
15761 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles

Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.

Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots

Procedia PDF Downloads 88
15760 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 139
15759 Phenotypic Characterization of Listeria Spp Isolated from Chicken Carcasses Marketed in Northeast of Iran

Authors: Abdollah Jamshidi, Tayebeh Zeinali, Mehrnaz Rad, Jamshid Razmyar

Abstract:

Listeria infections occur worldwide in variety of animals and man. Listeriae are widely distributed in nature. The organism has been isolated from the feces of humans and several animals, different soils, plants, aquatic environments and food of animal and vegetable origin. Listeria monocytogenes is recognized as important food-borne pathogens due to its high mortality rate. This organism is able to growth at refrigeration temperature, and high osmotic pressure. Poultry can become contaminated environmentally or through healthy carrier birds. In recent decades, prophylactic use of antimicrobial agents may be lead to emergence of antibiotic resistant organisms, which can be transmitted to human through consumption of contaminated foods. In this study, from 200 fresh chicken carcasses samples which were collected randomly from different supermarkets and butcheries, 80 samples were detected as contaminate with Listeria spp. and 19% of the isolates identified as Listeria monocytogene using multiplex PCR assay. Conventional methods were used to differentiate other species of the listeria genus. The results showed the most prevalent isolates as L. monocytogenes (48.75%). Other isolates were detected as Listeria innocua (28.75%), Listeria murrayi (20%), Listeria grayi (3.75%) and Listeria welshimeri (2.5%).The Majority of the isolates had multidrug resistance to commonly used antibiotics. Most of them were resistant to erythromycin (50%), followed by Tetracycline (44.44%), Clindamycin (41.66%), and Trimethoprim (25%). Some of them showed resistance to chloramphenicol (17.65%). The results indicate the resistance of the isolates to antimicrobials commonly used to treat human listeriosis, which could be a potential health hazard for consumers.

Keywords: listeria species, L. monocytogenes, antibiotic resistance, chicken carcass

Procedia PDF Downloads 386
15758 Equity and Quality in Saudi Early Childhood Education: A Case Study on Inclusion School

Authors: Ahlam A. Alghamdi

Abstract:

For many years and until now, education based on gendered division is endorsed in the public Saudi schools starting from the primary grades (1,2, 3rd grades). Although preschool has no boys and girls segregation restrictions, children from first grade starting their first form of cultural ideology based on gender. Ensuring high-quality education serving all children -both boys and girls- is an aim for policymakers and early learning professionals in Saudi Arabia. The past five years have witnessed a major change in terms of shifting the paradigm to educating young children in the country. In May 2018, the Ministry of Education (MoE) had declared a commencement decision of inclusion schools serve both girls and boys in primary grades with a high-quality early learning opportunity. This study sought to shed light on one of the earliest schools that have implemented the inclusion experience. The methodological approach adopted is based on the qualitative inquiry of case study to investigate complex phenomena within the contexts of inclusion school. Data collection procedures included on-site visitations and semi-structured interviews with the teachers to document their thoughts, narratives, and living experiences. The findings of this study identified three themes based on cultural, educational, and professional interpretations. An overview of recommendations highlighted the benefits and possible challenges of future implementations of inclusion schools in Saudi Arabia.

Keywords: early learning, gender division, inclusion school, Saudi Arabia

Procedia PDF Downloads 157
15757 The Impacts Of Hydraulic Conditions On The Fate, Transport And Accumulation Of Microplastics Pollution In The Aquatic Ecosystems

Authors: Majid Rasta, Xiaotao Shi, Mian Adnan Kakakhel, Yanqin Bai, Lao Liu, Jia Manke

Abstract:

Microplastics (MPs; particles <5 mm) pollution is considered as a globally pervasive threat to aquatic ecosystems, and many studies reported this pollution in rivers, wetlands, lakes, coastal waters and oceans. In the aquatic environments, settling and transport of MPs in water column and sediments are determined by different factors such as hydrologic characteristics, watershed pattern, rainfall events, hydraulic conditions, vegetation, hydrodynamics behavior of MPs, and physical features of particles (shape, size and density). In the meantime, hydraulic conditions (such as turbulence, high/low water speed flows or water stagnation) play a key role in the fate of MPs in aquatic ecosystems. Therefore, this study presents a briefly review on the effects of different hydraulic conditions on the fate, transport and accumulation of MPs in aquatic ecosystems. Generally, MPs are distributed horizontally and vertically in aquatic environments. The vertical distribution of MPs in the water column changes with different flow velocities. In the riverine, turbulent flow causing from the rapid water velocity and shallow depth may create a homogeneous mixture of MPs throughout the water column. While low velocity followed by low-turbulent waters can lead to the low level vertical mixing of MP particles in the water column. Consequently, the high numbers of MPs are expected to be found in the sediments of deep and wide channels as well as estuaries. In contrast, observing the lowest accumulation of MP particles in the sediments of straights of the rivers, places with the highest flow velocity is understandable. In the marine environment, hydrodynamic factors (e.g., turbulence, current velocity and residual circulation) can affect the sedimentation and transportation of MPs and thus change the distribution of MPs in the marine and coastal sediments. For instance, marine bays are known as the accumulation area of MPs due to poor hydrodynamic conditions. On the other hand, in the nearshore zone, the flow conditions are highly complex and dynamic. Experimental studies illustrated that maximum horizontal flow velocity in the sandy beach can predict the accumulation of MPs so that particles with high sinking velocities deposit in the lower water depths. As a whole, it can be concluded that the transport and accumulation of MPs in aquatic ecosystems are highly affected by hydraulic conditions. This study provided information about the impacts of hydraulic on MPs pollution. Further research on hydraulics and its relationship to the accumulation of MPs in aquatic ecosystems is needed to increase insights into this pollution.

Keywords: microplastics pollution, hydraulic, transport, accumulation

Procedia PDF Downloads 73
15756 Assessing the Risk of Socio-economic Drought: A Case Study of Chuxiong Yi Autonomous Prefecture, China

Authors: Mengdan Guo, Zongmin Wang, Haibo Yang

Abstract:

Drought is one of the most complex and destructive natural disasters, with a huge impact on both nature and society. In recent years, adverse climate conditions and uncontrolled human activities have exacerbated the occurrence of global droughts, among which socio-economic droughts are closely related to human survival. The study of socio-economic drought risk assessment is crucial for sustainable social development. Therefore, this study comprehensively considered the risk of disaster causing factors, the exposure level of the disaster-prone environment, and the vulnerability of the disaster bearing body to construct a socio-economic drought risk assessment model for Chuxiong Prefecture in Yunnan Province. Firstly, a threedimensional frequency analysis of intensity area duration drought was conducted, followed by a statistical analysis of the drought risk of the socio-economic system. Secondly, a grid analysis model was constructed to assess the exposure levels of different agents and study the effects of drought on regional crop growth, industrial economic growth, and human consumption thresholds. Thirdly, an agricultural vulnerability model for different irrigation levels was established by using the DSSAT crop model. Industrial economic vulnerability and domestic water vulnerability under the impact of drought were investigated by constructing a standardized socio-economic drought index and coupling water loss. Finally, the socio-economic drought risk was assessed by combining hazard, exposure, and vulnerability. The results show that the frequency of drought occurrence in Chuxiong Prefecture, Yunnan Province is relatively high, with high population and economic exposure concentrated in urban areas of various counties and districts, and high agricultural exposure concentrated in mountainous and rural areas. Irrigation can effectively reduce agricultural vulnerability in Chuxiong, and the yield loss rate under the 20mm winter irrigation scenario decreased by 10.7% compared to the rain fed scenario. From the perspective of comprehensive risk, the distribution of long-term socio-economic drought risk in Chuxiong Prefecture is relatively consistent, with the more severe areas mainly concentrated in Chuxiong City and Lufeng County, followed by counties such as Yao'an, Mouding and Yuanmou. Shuangbai County has the lowest socio-economic drought risk, which is basically consistent with the economic distribution trend of Chuxiong Prefecture. And in June, July, and August, the drought risk in Chuxiong Prefecture is generally high. These results can provide constructive suggestions for the allocation of water resources and the construction of water conservancy facilities in Chuxiong Prefecture, and provide scientific basis for more effective drought prevention and control. Future research is in the areas of data quality and availability, climate change impacts, human activity impacts, and countermeasures for a more comprehensive understanding and effective response to drought risk in Chuxiong Prefecture.

Keywords: DSSAT model, risk assessment, socio-economic drought, standardized socio-economic drought index

Procedia PDF Downloads 64
15755 Poly(Amidoamine) Dendrimer-Cisplatin Nanocomplex Mixed with Multifunctional Ovalbumin Coated Iron Oxide Nanoparticles for Immuno-Chemotherapeutics with M1 Polarization of Macrophages

Authors: Tefera Worku Mekonnen, Hiseh Chih Tsai

Abstract:

Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR) based tumor targeted 4.5 (4.5G) poly(amidoamine) dendrimer-cisplatin nanocomplex (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs have been examined by FTIR, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The conjugation of cisplatin (Cis-pt) with 4.5GDP was confirmed using carbon NMR. The tumor-specific 4.5GDP-Cis-pt NC provided ~45% and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed when the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NP was biocompatible in different cell lines, even at a high concentration (200 µg mL−1). In contrast, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL−1) significantly increased the cytotoxicity against the cancer cells, which is dose-dependent on the concentration of AC-IO-Ova NPs. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, the efficiency of anticancer cells may be further assisted by induction of an innate immune response via M1 macrophage polarization due to the presence of AC-IO-Ova NPs. We provide a better synergestic chemoimmunotherapeutic strategy to enhance the efficiency of anticancer of cisplatin via chemotherapeutic agent 4.5GDP-Cis-pt NC and induction of proinflammatory cytokines to stimulate innate immunity through AC-IO-Ova NPs against tumors.

Keywords: cisplatin-release, iron oxide, ovalbumin, poly(amidoamine) dendrimer

Procedia PDF Downloads 150
15754 Comparison of the Factor of Safety and Strength Reduction Factor Values from Slope Stability Analysis of a Large Open Pit

Authors: James Killian, Sarah Cox

Abstract:

The use of stability criteria within geotechnical engineering is the way the results of analyses are conveyed, and sensitivities and risk assessments are performed. Historically, the primary stability criteria for slope design has been the Factor of Safety (FOS) coming from a limit calculation. Increasingly, the value derived from Strength Reduction Factor (SRF) analysis is being used as the criteria for stability analysis. The purpose of this work was to study in detail the relationship between SRF values produced from a numerical modeling technique and the traditional FOS values produced from Limit Equilibrium (LEM) analyses. This study utilized a model of a 3000-foot-high slope with a 45-degree slope angle, assuming a perfectly plastic mohr-coulomb constitutive model with high cohesion and friction angle values typical of a large hard rock mine slope. A number of variables affecting the values of the SRF in a numerical analysis were tested, including zone size, in-situ stress, tensile strength, and dilation angle. This paper demonstrates that in most cases, SRF values are lower than the corresponding LEM FOS values. Modeled zone size has the greatest effect on the estimated SRF value, which can vary as much as 15% to the downside compared to FOS. For consistency when using SRF as a stability criteria, the authors suggest that numerical model zone sizes should not be constructed to be smaller than about 1% of the overall problem slope height and shouldn’t be greater than 2%. Future work could include investigations of the effect of anisotropic strength assumptions or advanced constitutive models.

Keywords: FOS, SRF, LEM, comparison

Procedia PDF Downloads 316
15753 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air

Authors: Tobias Schnabel

Abstract:

Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.

Keywords: naphthalene, titandioxide, indoor air, photocatalysis

Procedia PDF Downloads 145
15752 Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System

Authors: Ali Reza Ghanbarnezhad Ghazvini, Seyyed Hamid Reza Mosayyebi

Abstract:

In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures.

Keywords: modal pushover analysis, response modification factor, high-strength concrete, concrete shear walls, high-rise building

Procedia PDF Downloads 153
15751 Determination of Nutritional Value and Steroidal Saponin of Fenugreek Genotypes

Authors: Anita Singh, Richa Naula, Manoj Raghav

Abstract:

Nutrient rich and high-yielding varieties of fenugreek can be developed by using genotypes which are naturally high in nutrients. Gene banks harbour scanty germplasm collection of Trigonella spp. and a very little background information about its genetic diversity. The extent of genetic diversity in a specific breeding population depends upon the genotype included in it. The present investigation aims at the estimation of macronutrient (phosphorus by spectrophotometer and potassium by flame photometer), micronutrients, namely, iron, zinc, manganese, and copper from seeds of fenugreek genotypes using atomic absorption spectrophotometer, protein by Rapid N Cube Analyser and Steroidal Saponins. Twenty-eight genotypes of fenugreek along with two standard checks, namely, Pant Ragini and Pusa Early Bunching were collected from different parts of India, and nutrient contents of each genotype were determined at G. B. P. U. A. & T. Laboratory, Pantnagar. Highest potassium content was observed in PFG-35 (1207 mg/100g). PFG-37 and PFG-20 were richest in phosphorus, iron and manganese content among all the genotypes. The lowest zinc content was found in PFG-26 (1.19 mg/100g), while the maximum zinc content was found in PFG- 28 (4.43 mg/100g). The highest content of copper was found in PFG-26 (1.97 mg/100g). PFG-39 has the highest protein content (29.60 %). Significant differences were observed in the steroidal saponin among the genotypes. Saponin content ranged from 0.38 g/100g to 1.31 g/100g. Steroidal Saponins content was found the maximum in PFG-36 (1.31 g/100g) followed by PFG-17 (1.28 g/100g). Therefore, the genotypes which are rich in nutrient and oil content can be used for plant biofortification, dietary supplements, and herbal products.

Keywords: genotypes, macronutrients, micronutrient, protein, seeds

Procedia PDF Downloads 258
15750 Satellite Derived Snow Cover Status and Trends in the Indus Basin Reservoir

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

Snow constitutes an important component of the cryosphere, characterized by high temporal and spatial variability. Because of the contribution of snow melt to water availability, snow is an important focus for research on climate change and adaptation. MODIS satellite data have been used to identify spatial-temporal trends in snow cover in the upper Indus basin. For this research MODIS satellite 8 day composite data of medium resolution (250m) have been analysed from 2001-2005.Pixel based supervised classification have been performed and extent of snow have been calculated of all the images. Results show large variation in snow cover between years while an increasing trend from west to east is observed. Temperature data for the Upper Indus Basin (UIB) have been analysed for seasonal and annual trends over the period 2001-2005 and calibrated with the results acquired by the research. From the analysis it is concluded that there are indications that regional warming is one of the factor that is affecting the hydrology of the upper Indus basin due to accelerated glacial melting during the simulation period, stream flow in the upper Indus basin can be predicted with a high degree of accuracy. This conclusion is also supported by the research of ICIMOD in which there is an observation that the average annual precipitation over a five year period is less than the observed stream flow and supported by positive temperature trends in all seasons.

Keywords: indus basin, MODIS, remote sensing, snow cover

Procedia PDF Downloads 389