Search results for: fault detection and classification
1260 Emergence of Carbapenemase Escherichia Coli Isolates from the Little Egret (Egretta Garzetta) in Algeria
Authors: Bouaziz Amira, Zaatout Nawel
Abstract:
Background: Antimicrobial resistance is an urgent global health challenge in human and veterinary medicine, where migratory birds play a major role in the dissemination of multi-drug-resistant bacteria. The aim of this study was to screen for the presence of carbapenemase-producing Gram-negative bacteria (GNB) in the little egret (Egrettagarzetta) migratory bird stools in Algeria. Materials/Methods: In January 2014, 12 feacal samples were collected in Garaet El-Tarf, Oum El-Bouaghi city, Algeria. Samples were subjected to selective isolation of carbapenem-resistant GNB. Representative colonies were identified using the VITEK system. The obtained isolates were subjected to antibiotic susceptibility testing using the disc-diffusion method as well as carbapenemase production was verified by the modified Carba NP test. Results: In total, ten E. coli were obtained and were resistant to amoxicillin/clavulanic acid (100%), ertapenem (70%), cefoxitin (60%) cefotaxime (20%), cefepime (20%), ciprofloxacin (20%) and aztreonam (10%). The phenotypic detection results revealed that six out of the obtained strains were positive for the modified Carba NP test. Conclusion: The present study suggests that the little egret (Egretta garzetta) could be considered a reservoir of carbapenem-resistant Gram-negative bacteria.Keywords: antimicrobial resistance, E. coli, Egretta garzetta, carbapenem resistance, dissemination
Procedia PDF Downloads 81259 Comparative Correlation Investigation of Polynuclear Aromatic Hydrocarbons (PAHs) in Soils of Different Land Uses: Sources Evaluation Perspective
Authors: O. Onoriode Emoyan, E. Eyitemi Akporhonor, Charles Otobrise
Abstract:
Polycyclic Aromatic Hydrocarbons (PAHs) are formed mainly as a result of incomplete combustion of organic materials during industrial, domestic activities or natural occurrence. Their toxicity and contamination of terrestrial and aquatic ecosystem have been established. Though with limited validity index, previous research has focused on PAHs isomer pair ratios of variable physicochemical properties in source identification. The objective of this investigation was to determine the empirical validity of Pearson correlation coefficient (PCC) and cluster analysis (CA) in PAHs source identification along soil samples of different land uses. Therefore, 16 PAHs grouped as endocrine disruption substances (EDSs) were determined in 10 sample stations in top and sub soils seasonally. PAHs was determined the use of Varian 300 gas chromatograph interfaced with flame ionization detector. Instruments and reagents used are of standard and chromatographic grades respectively. PCC and CA results showed that the classification of PAHs along kinetically and thermodyanamically-favoured and those derived directly from plants product through biologically mediated processes used in source signature is about the predominance PAHs are likely to be. Therefore the observed PAHs in the studied stations have trace quantities of the vast majority of the sixteen un-substituted PAHs which may ultimately inhabit the actual source signature authentication. Type and extent of bacterial metabolism, transformation products/substrates, and environmental factors such as: salinity, pH, oxygen concentration, nutrients, light intensity, temperature, co-substrates and environmental medium are hereby recommended as factors to be considered when evaluating possible sources of PAHs.Keywords: comparative correlation, kinetically and thermodynamically-favored PAHs, pearson correlation coefficient, cluster analysis, sources evaluation
Procedia PDF Downloads 4191258 Fabrication of Gold Nanoparticles Self-Assembled Functionalized Improved Graphene on Carbon Paste Electrode for Electrochemical Determination of Levodopa in the Presence of Ascorbic Acid
Authors: Mohammad Ali Karimi, Hossein Tavallali, Abdolhamid Hatefi-Mehrjardi
Abstract:
In this study, an electrochemical sensor based on gold nanoparticles (AuNPs) functionalized improved graphene (AuNPs-IGE) was fabricated for selective determination of L-dopa in the presence of ascorbic acid by a novel self-assembly method. The AuNP IGE modified carbon paste electrode (AuNPs-IGE/CPE) utilized for investigation of the electrochemical behavior of L-dopa in phosphate buffer solution. Compared to bare CPE, AuNPs-IGE/CPE shows novel properties towards the electrochemical redox of levodopa (L-dopa) in phosphate buffer solution at pH 4.0. The oxidation potential of L-dopa shows a significant decrease at the AuNPs-IGE/CPE. The oxidation current of L-dopa is higher than that of the unmodified CPE. AuNPs-IG/CPE shows excellent electrocatalytic activity for the oxidation of ascorbic acid (AA). Using differential pulse voltammetry (DPV) method, the oxidation current is well linear with L-dopa concentration in the range of 0.4–50 µmol L-1, with a detection limit of about 1.41 nmol L-1 (S/N = 3). Therefore, it was applied to measure L-dopa from real samples that recoveries are 94.6-106.2%. The proposed electrode can also effectively avoid the interference of ascorbic acid, making the proposed sensor suitable for the accurate determination of L-dopa in both pharmaceutical preparations and human body fluids.Keywords: gold nanoparticles, improved graphene, L-dopa, self-assembly
Procedia PDF Downloads 2211257 Stability of Novel Peptides (Linusorbs) in Flaxseed Meal Fortified Gluten-Free Bread
Authors: Youn Young Shim, Martin J. T. Reaney
Abstract:
Flaxseed meal is rich in water-soluble gums and, as such, can improve texture in gluten-free products. Flaxseed bioactive-antioxidant peptides, linusorbs (LOs, a.k.a. cyclolinopeptides), are a class of molecules that may contribute health-promoting effects. The effects of dough preparation, baking, and storage on flaxseed-derived LOs stability in doughs and baked products are un-known. Gluten-free (GF) bread dough and bread were prepared with flaxseed meal and the LO content was determined in the flaxseed meal, bread flour containing the flaxseed meal, bread dough, and bread. The LO contents during storage (0, 1, 2, and 4 weeks) at different temperatures (−18 °C, 4 °C, and 22−23 °C) were determined by high-performance liquid chromatog-raphy-diode array detection (HPLC-DAD). The content of oxidized LOs like [1–9-NαC],[1(Rs, Ss)-MetO]-linusorb B2 (LO14) were substantially constant in flaxseed meal and flour produced from flaxseed meal under all conditions for up to 4 weeks. However, during GF-bread production LOs decreased. Due to microbial contamination dough could not be stored at either 4 or 21°C, and bread could only be stored for one week at 21°C. Up to 4 weeks storage was possible for bread and dough at −18 °C and bread at 4 °C without the loss of LOs. The LOs change mostly from processing and less so from storage. The concentration of reduced LOs in flour and meal were much higher than measured in dough and bread. There was not a corre-sponding increase in oxidized LOs. The LOs in flaxseed meal-fortified bread were stable for products stored at low temperatures. This study is the first of the impact of baking conditions on LO content and quality.Keywords: flaxseed, stability, gluten-free, antioxidant
Procedia PDF Downloads 881256 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 3751255 Correlation between Microalbuminuria and Hypertension in Type 2 Diabetic Patients
Authors: Alia Ali, Azeem Taj, Muhammed Joher Amin, Farrukh Iqbal, Zafar Iqbal
Abstract:
Background: Hypertension is commonly found in patients with Diabetic Kidney Disease (DKD). Microalbuminuria is the first clinical sign of involvement of kidneys in patients with type 2 diabetes. Uncontrolled hypertension induces a higher risk of cardiovascular events, including death, increasing proteinuria and progression to kidney disease. Objectives: To determine the correlation between microalbuminuria and hypertension and their association with other risk factors in type 2 diabetic patients. Methods: One hundred and thirteen type 2 diabetic patients were screened for microalbuminuria and raised blood pressure, attending the diabetic clinic of Shaikh Zayed Hospital, Lahore, Pakistan. The study was conducted from November 2012 to June 2013. Results: Patients were divided into two groups. Group 1, those with normoalbuminuria (n=63) and Group 2, those having microalbuminuria (n=50). Group 2 patients showed higher blood pressure values as compared to Group 1. The results were statistically significant and showed poor glycemic control as a contributing risk factor. Conclusion: The study concluded that there is high frequency of hypertension among type 2 diabetics but still much higher among those having microalbuminuria. So, early recognition of renal dysfunction through detection of microalbuminuria and to start treatment without any delay will confer future protection from end-stage renal disease as well as hypertension and its complications in type 2 diabetic patients.Keywords: hypertension, microalbuminuria, diabetic kidney disease, type 2 Diabetes mellitus
Procedia PDF Downloads 3961254 Genotyping of Salmonella enterica Collected from Poultry Farms Located in Riyadh, KSA by Multiplex-PCR
Authors: Moussa I. Mohamed, Turki, K. A. Al-Faraj, Abdullah A. Al-Arfaj, Ashgan M. Hessain
Abstract:
The objective of the present study is to detect the incidences of Salmonella enterica from different poultry farms located in Egypt on molecular basis. During the summer of 2012, a total of 1800 cloacal swabs were collected from poultry farms located I Cairo, Egypt to be subjected for isolation of Salmonella enteric. Moreover, a total of 300 samples of poultry and poultry products were collected from different retail establishment markets in Cairo, Egypt including, 150 local whole frozen chickens, 50 imported whole frozen chickens, 100 local chicken cut samples. The highest rate of isolation 8% was obtained from imported frozen chickens and local chicken cuts, followed by local frozen chickens 6.66% and finally rectal swabs from apparently health chickens 6.4 %. Salmonella Typhimurium and Salmonella Enteritidis were most frequent among the total Salmonella isolates. Multiplex-PCR for the rapid detection of Salmonella Typhimurium and Salmonella Enteritidis from field samples especially after pre-enrichment on Rappaport-Vassiliadis (RV) selective broth (PCR-RV), revealed the same positive samples. Therefore PCR-RV technique is rabid, time saving and applicable to detect Salmonella serovars directly from chicken samples. Moreover, detecting Salmonella Typhimurium and Salmonella Enteritidis by this assay was carried out within 2 days opposed to 5–6 d by the bacteriological and serological methods.Keywords: Salmonella enterica, Salmonella typhimurium, Salmonella enteritidis enrichment, multiplex-PCR
Procedia PDF Downloads 3751253 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 1201252 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features
Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han
Abstract:
Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction
Procedia PDF Downloads 2311251 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy
Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao
Abstract:
As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.Keywords: coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain
Procedia PDF Downloads 4091250 Visualization Tool for EEG Signal Segmentation
Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh
Abstract:
This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation
Procedia PDF Downloads 3971249 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt
Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa
Abstract:
The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults
Procedia PDF Downloads 4271248 Pharmacokinetic Study of Clarithromycin in Human Female of Pakistani Population
Authors: Atifa Mushtaq, Tanweer Khaliq, Hafiz Alam Sher, Asia Farid, Anila Kanwal, Maliha Sarfraz
Abstract:
The study was designed to assess the various pharmacokinetic parameters of a commercially available clarithromycin Tablet (Klaricid® 250 mg Abbot, Pakistan) in plasma sample of healthy adult female volunteers by applying a rapid, sensitive and accurate HPLC-UV analytical method. The human plasma samples were evaluated by using an isocratic High Performance Liquid Chromatography (HPLC) system of Sykam consisted of a pump with a column C18 column (250×4.6mn, 5µm) UV-detector. The mobile phase comprises of potassium dihydrogen phosphate (50 mM, pH 6.8, contained 0.7% triethylamine), methanol and acetonitrile (30:25:45, v/v/v) was delivered with injection volume of 20µL at flow rate of 1 mL/min. The detection was performed at λmax 275 nm. By applying this method, important pharmacokinetic parameters Cmax, Tmax, Area under curve (AUC), half-life (t1/2), , Volume of distribution (Vd) and Clearance (Cl) were measured. The parameters of pharmacokinetics of clarithromycin were calculated by software (APO) pharmacological analysis. Maximum plasma concentrations Cmax 2.78 ±0.33 µg/ml, time to reach maximum concentration tmax 2.82 ± 0.11 h and Area under curve AUC was 20.14 h.µg/ml. The mean ± SD values obtained for the pharmacokinetic parameters showed a significant difference in pharmacokinetic parameters observed in previous literature which emphasizes the need for dose adjustment of clarithromycin in Pakistani population.Keywords: Pharmacokinetc, Clarothromycin, HPLC, Pakistan
Procedia PDF Downloads 1081247 White Wine Discrimination Based on Deconvoluted Surface Enhanced Raman Spectroscopy Signals
Authors: Dana Alina Magdas, Nicoleta Simona Vedeanu, Ioana Feher, Rares Stiufiuc
Abstract:
Food and beverages authentication using rapid and non-expensive analytical tools represents nowadays an important challenge. In this regard, the potential of vibrational techniques in food authentication has gained an increased attention during the last years. For wines discrimination, Raman spectroscopy appears more feasible to be used as compared with IR (infrared) spectroscopy, because of the relatively weak water bending mode in the vibrational spectroscopy fingerprint range. Despite this, the use of Raman technique in wine discrimination is in an early stage. Taking this into consideration, the wine discrimination potential of surface-enhanced Raman scattering (SERS) technique is reported in the present work. The novelty of this study, compared with the previously reported studies, concerning the application of vibrational techniques in wine discrimination consists in the fact that the present work presents the wines differentiation based on the individual signals obtained from deconvoluted spectra. In order to achieve wines classification with respect to variety, geographical origin and vintage, the peaks intensities obtained after spectra deconvolution were compared using supervised chemometric methods like Linear Discriminant Analysis (LDA). For this purpose, a set of 20 white Romanian wines from different viticultural Romanian regions four varieties, was considered. Chemometric methods applied directly to row SERS experimental spectra proved their efficiency, but discrimination markers identification found to be very difficult due to the overlapped signals as well as for the band shifts. By using this approach, a better general view related to the differences that appear among the wines in terms of compositional differentiation could be reached.Keywords: chemometry, SERS, variety, wines discrimination
Procedia PDF Downloads 1601246 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters
Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev
Abstract:
Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters
Procedia PDF Downloads 1971245 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads
Authors: Kayijuka Idrissa
Abstract:
This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.Keywords: statistical methods, traffic flow, Poisson distribution, car moving technics
Procedia PDF Downloads 2821244 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine
Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy
Abstract:
Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.Keywords: land cover, google earth engine, machine learning, remote sensing
Procedia PDF Downloads 1131243 The Predictors of Head and Neck Cancer-Head and Neck Cancer-Related Lymphedema in Patients with Resected Advanced Head and Neck Cancer
Authors: Shu-Ching Chen, Li-Yun Lee
Abstract:
The purpose of the study was to identify the factors associated with head and neck cancer-related lymphoedema (HNCRL)-related symptoms, body image, and HNCRL-related functional outcomes among patients with resected advanced head and neck cancer. A cross-sectional correlational design was conducted to examine the predictors of HNCRL-related functional outcomes in patients with resected advanced head and neck cancer. Eligible patients were recruited from a single medical center in northern Taiwan. Consecutive patients were approached and recruited from the Radiation Head and Neck Outpatient Department of this medical center. Eligible subjects were assessed for the Symptom Distress Scale–Modified for Head and Neck Cancer (SDS-mhnc), Brief International Classification of Functioning, Disability and Health (ICF) Core Set for Head and Neck Cancer (BCSQ-H&N), Body Image Scale–Modified (BIS-m), The MD Anderson Head and Neck Lymphedema Rating Scale (MDAHNLRS), The Foldi’s Stages of Lymphedema (Foldi’s Scale), Patterson’s Scale, UCLA Shoulder Rating Scale (UCLA SRS), and Karnofsky’s Performance Status Index (KPS). The results showed that the worst problems with body HNCRL functional outcomes. Patients’ HNCRL symptom distress and performance status are robust predictors across over for overall HNCRL functional outcomes, problems with body HNCRL functional outcomes, and activity and social functioning HNCRL functional outcomes. Based on the results of this period research program, we will develop a Cancer Rehabilitation and Lymphedema Care Program (CRLCP) to use in the care of patients with resected advanced head and neck cancer.Keywords: head and neck cancer, resected, lymphedema, symptom, body image, functional outcome
Procedia PDF Downloads 2581242 Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells
Authors: Hawon Lee, Young-Pil Kim
Abstract:
Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity.Keywords: collagen, ECM, FRET, MMP
Procedia PDF Downloads 2021241 Effect of Diamagnetic Additives on Defects Level of Soft LiTiZn Ferrite Ceramics
Authors: Andrey V. Malyshev, Anna B. Petrova, Anatoly P. Surzhikov
Abstract:
The article presents the results of the influence of diamagnetic additives on the defects level of ferrite ceramics. For this purpose, we use a previously developed method based on the mathematical analysis of experimental temperature dependences of the initial permeability. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is the relation of two parameters correlating with elastic stress value in a material. Model samples containing a controlled number of intergranular phase inclusions served to prove the validity of the proposed method, as well as to assess its sensitivity in comparison with the traditional XRD (X-ray diffraction) analysis. The broadening data of diffraction reflexes of model samples have served for such comparison. The defects level data obtained by the proposed method are in good agreement with the X-ray data. The method showed high sensitivity. Therefore, the legitimacy of the selection relationship β/α parameters of phenomenological expression as a characteristic of the elastic state of the ferrite ceramics confirmed. In addition, the obtained data can be used in the detection of non-magnetic phases and testing the optimal sintering production technology of soft magnetic ferrites.Keywords: cure point, initial permeability, integral defects level, homogeneity
Procedia PDF Downloads 1341240 Blood Volume Pulse Extraction for Non-Contact Photoplethysmography Measurement from Facial Images
Authors: Ki Moo Lim, Iman R. Tayibnapis
Abstract:
According to WHO estimation, 38 out of 56 million (68%) global deaths in 2012, were due to noncommunicable diseases (NCDs). To avert NCD, one of the solutions is early detection of diseases. In order to do that, we developed 'U-Healthcare Mirror', which is able to measure vital sign such as heart rate (HR) and respiration rate without any physical contact and consciousness. To measure HR in the mirror, we utilized digital camera. The camera records red, green, and blue (RGB) discoloration from user's facial image sequences. We extracted blood volume pulse (BVP) from the RGB discoloration because the discoloration of the facial skin is accordance with BVP. We used blind source separation (BSS) to extract BVP from the RGB discoloration and adaptive filters for removing noises. We utilized singular value decomposition (SVD) method to implement the BSS and the adaptive filters. HR was estimated from the obtained BVP. We did experiment for HR measurement by using our method and previous method that used independent component analysis (ICA) method. We compared both of them with HR measurement from commercial oximeter. The experiment was conducted under various distance between 30~110 cm and light intensity between 5~2000 lux. For each condition, we did measurement 7 times. The estimated HR showed 2.25 bpm of mean error and 0.73 of pearson correlation coefficient. The accuracy has improved compared to previous work. The optimal distance between the mirror and user for HR measurement was 50 cm with medium light intensity, around 550 lux.Keywords: blood volume pulse, heart rate, photoplethysmography, independent component analysis
Procedia PDF Downloads 3291239 Severity Index Level in Effectively Managing Medium Voltage Underground Power Cable
Authors: Mohd Azraei Pangah Pa'at, Mohd Ruzlin Mohd Mokhtar, Norhidayu Rameli, Tashia Marie Anthony, Huzainie Shafi Abd Halim
Abstract:
Partial Discharge (PD) diagnostic mapping testing is one of the main diagnostic testing techniques that are widely used in the field or onsite testing for underground power cable in medium voltage level. The existence of PD activities is an early indication of insulation weakness hence early detection of PD activities can be determined and provides an initial prediction on the condition of the cable. To effectively manage the results of PD Mapping test, it is important to have acceptable criteria to facilitate prioritization of mitigation action. Tenaga Nasional Berhad (TNB) through Distribution Network (DN) division have developed PD severity model name Severity Index (SI) for offline PD mapping test since 2007 based on onsite test experience. However, this severity index recommendation action had never been revised since its establishment. At presence, PD measurements data have been extensively increased, hence the severity level indication and the effectiveness of the recommendation actions can be analyzed and verified again. Based on the new revision, the recommended action to be taken will be able to reflect the actual defect condition. Hence, will be accurately prioritizing preventive action plan and minimizing maintenance expenditure.Keywords: partial discharge, severity index, diagnostic testing, medium voltage, power cable
Procedia PDF Downloads 1861238 A Critical Study on Unprecedented Employment Discrimination and Growth of Contractual Labour Engaged by Rail Industry in India
Authors: Munmunlisa Mohanty, K. D. Raju
Abstract:
Rail industry is one of the model employers in India has separate national legislation (Railways Act 1989) to regulate its vast employment structure, functioning across the country. Indian Railway is not only the premier transport industry of the country; indeed, it is Asia’s most extensive rail network organisation and the world’s second-largest industry functioning under one management. With the growth of globalization of industrial products, the scope of anti-employment discrimination is no more confined to gender aspect only; instead, it extended to the unregularized classification of labour force applicable in the various industrial establishments in India. And the Indian Rail Industry inadvertently enhanced such discriminatory employment trends by engaging contractual labour in an unprecedented manner. The engagement of contractual labour by rail industry vanished the core “Employer-Employee” relationship between rail management and contractual labour who employed through the contractor. This employment trend reduces the cost of production and supervision, discourages the contractual labour from forming unions, and reduces its collective bargaining capacity. So, the primary intention of this paper is to highlight the increasing discriminatory employment scope for contractual labour engaged by Indian Railways. This paper critically analyses the diminishing perspective of anti-employment opportunity practiced by Indian Railways towards contractual labour and demands an urgent outlook on the probable scope of anti-employment discrimination against contractual labour engaged by Indian Railways. The researcher used doctrinal methodology where primary materials (Railways Act, Contract Labour Act and Occupational, health and Safety Code, 2020) and secondary data (CAG Report 2018, Railways Employment Regulation Rules, ILO Report etc.) are used for the paper.Keywords: anti-employment, CAG Report, contractual labour, discrimination, Indian Railway, principal employer
Procedia PDF Downloads 1711237 Impact of Marine Hydrodynamics and Coastal Morphology on Changes in Mangrove Forests (Case Study: West of Strait of Hormuz, Iran)
Authors: Fatemeh Parhizkar, Mojtaba Yamani, Abdolla Behboodi, Masoomeh Hashemi
Abstract:
The mangrove forests are natural and valuable gifts that exist in some parts of the world, including Iran. Regarding the threats faced by these forests and the declining area of them all over the world, as well as in Iran, it is very necessary to manage and monitor them. The current study aimed to investigate the changes in mangrove forests and the relationship between these changes and the marine hydrodynamics and coastal morphology in the area between qeshm island and the west coast of the Hormozgan province (i.e. the coastline between Mehran river and Bandar-e Pol port) in the 49-year period. After preprocessing and classifying satellite images using the SVM, MLC, and ANN classifiers and evaluating the accuracy of the maps, the SVM approach with the highest accuracy (the Kappa coefficient of 0.97 and overall accuracy of 98) was selected for preparing the classification map of all images. The results indicate that from 1972 to 1987, the area of these forests have had experienced a declining trend, and in the next years, their expansion was initiated. These forests include the mangrove forests of Khurkhuran wetland, Muriz Deraz Estuary, Haft Baram Estuary, the mangrove forest in the south of the Laft Port, and the mangrove forests between the Tabl Pier, Maleki Village, and Gevarzin Village. The marine hydrodynamic and geomorphological characteristics of the region, such as average intertidal zone, sediment data, the freshwater inlet of Mehran river, wave stability and calmness, topography and slope, as well as mangrove conservation projects make the further expansion of mangrove forests in this area possible. By providing significant and up-to-date information on the development and decline of mangrove forests in different parts of the coast, this study can significantly contribute to taking measures for the conservation and restoration of mangrove forests.Keywords: mangrove forests, marine hydrodynamics, coastal morphology, west of strait of Hormuz, Iran
Procedia PDF Downloads 961236 Case Presentation Ectopic Cushing's Syndrome Secondary to Thymic Neuroendocrine Tumors Secreting ACTH
Authors: Hasan Frookh Jamal
Abstract:
This is a case of a 36-year-old Bahraini gentleman diagnosed to have Cushing's Syndrome with a large anterior mediastinal mass. He was sent abroad to the Speciality hospital in Jordan, where he underwent diagnostic video-assisted thoracoscopy, partial thymectomy and pericardial fat excision. Histopathology of the mass was reported to be an Atypical carcinoid tumor with a low Ki67 proliferation index of 5%, the mitotic activity of 4 MF/10HPF and pathological stage classification(pTNM): pT1aN1. MRI of the pituitary gland showed an ill-defined non-enhancing focus of about 3mm on the Rt side of the pituitary on coronal images, with a similar but smaller one on the left side, which could be due to enhancing pattern rather than a real lesion as reported. The patient underwent Ga68 Dotate PET/CT scan post-operatively, which showed multiple somatostatin receptor-positive lesions seen within the tail, body and head of the pancreas and positive somatostatin receptor lymph nodes located between the pancreatic head and IVC. There was no uptake detected at the anterior mediastinum nor at the site of thymic mass resection. There was no evidence of any positive somatostatin uptake at the soft tissue or lymph nodes. The patient underwent IPSS, which proved that the source is, in fact, an ectopic source of ACTH secretion. Unfortunately, the patient's serum cortisol remained elevated after surgery and failed to be suppressed by 1 mg ODST and by 2 days LLDST with a high ACTH value. The patient was started on Osilodrostat for treatment of hypercortisolism for the time being and his future treatment plan with Lutetium-177 Dotate therapy vs. bilateral adrenalectomy is to be considered in an MDT meeting.Keywords: cushing syndrome, neuroendocrine tumur, carcinoid tumor, Thymoma
Procedia PDF Downloads 831235 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation
Authors: Abdal-Hafeez Alhussein
Abstract:
Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.Keywords: artificial intelligence, information technology, automation, scalability
Procedia PDF Downloads 171234 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization
Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik
Abstract:
The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection
Procedia PDF Downloads 1881233 Ground Deformation Module for the New Laboratory Methods
Authors: O. Giorgishvili
Abstract:
For calculation of foundations one of the important characteristics is the module of deformation (E0). As we all know, the main goal of calculation of the foundations of buildings on deformation is to arrange the base settling and difference in settlings in such limits that do not cause origination of cracks and changes in design levels that will be dangerous to standard operation in the buildings and their individual structures. As is known from the literature and the practical application, the modulus of deformation is determined by two basic methods: laboratory method, soil test on compression (without the side widening) and soil test in field conditions. As we know, the deformation modulus of soil determined by field method is closer to the actual modulus deformation of soil, but the complexity of the tests to be carried out and the financial concerns did not allow determination of ground deformation modulus by field method. Therefore, we determine the ground modulus of deformation by compression method without side widening. Concerning this, we introduce a new way for determination of ground modulus of deformation by laboratory order that occurs by side widening and more accurately reflects the ground modulus of deformation and more accurately reflects the actual modulus of deformation and closer to the modulus of deformation determined by the field method. In this regard, we bring a new approach on the ground deformation detection laboratory module, which is done by widening sides. The tests and the results showed that the proposed method of ground deformation modulus is closer to the results that are obtained in the field, which reflects the foundation's work in real terms more accurately than the compression of the ground deformation module.Keywords: build, deformation modulus, foundations, ground, laboratory research
Procedia PDF Downloads 3691232 Understanding the Semantic Network of Tourism Studies in Taiwan by Using Bibliometrics Analysis
Authors: Chun-Min Lin, Yuh-Jen Wu, Ching-Ting Chung
Abstract:
The formulation of tourism policies requires objective academic research and evidence as support, especially research from local academia. Taiwan is a small island, and its economic growth relies heavily on tourism revenue. Taiwanese government has been devoting to the promotion of the tourism industry over the past few decades. Scientific research outcomes by Taiwanese scholars may and will help lay the foundations for drafting future tourism policy by the government. In this study, a total of 120 full journal articles published between 2008 and 2016 from the Journal of Tourism and Leisure Studies (JTSL) were examined to explore the scientific research trend of tourism study in Taiwan. JTSL is one of the most important Taiwanese journals in the tourism discipline which focuses on tourism-related issues and uses traditional Chinese as the study language. The method of co-word analysis from bibliometrics approaches was employed for semantic analysis in this study. When analyzing Chinese words and phrases, word segmentation analysis is a crucial step. It must be carried out initially and precisely in order to obtain meaningful word or word chunks for further frequency calculation. A word segmentation system basing on N-gram algorithm was developed in this study to conduct semantic analysis, and 100 groups of meaningful phrases with the highest recurrent rates were located. Subsequently, co-word analysis was employed for semantic classification. The results showed that the themes of tourism research in Taiwan in recent years cover the scope of tourism education, environmental protection, hotel management, information technology, and senior tourism. The results can give insight on the related issues and serve as a reference for tourism-related policy making and follow-up research.Keywords: bibliometrics, co-word analysis, word segmentation, tourism research, policy
Procedia PDF Downloads 2291231 Intelligent Chemistry Approach to Improvement of Oxygenates Analytical Method in Light Hydrocarbon by Multidimensional Gas Chromatography - FID and MS
Authors: Ahmed Aboforn
Abstract:
Butene-1 product is consider effectively raw material in Polyethylene production, however Oxygenates impurities existing will be effected ethylene/butene-1 copolymers synthesized through titanium-magnesium-supported Ziegler-Natta catalysts. Laterally, Petrochemical industries are challenge against poor quality of Butene-1 and other C4 mix – feedstock that reflected on business impact and production losing. In addition, propylene product suffering from contamination by oxygenates components and causing for lose production and plant upset of Polypropylene process plants. However, Multidimensional gas chromatography (MDGC) innovative analytical methodology is a chromatography technique used to separate complex samples, as mixing different functional group as Hydrocarbon and oxygenates compounds and have similar retention factors, by running the eluent through two or more columns instead of the customary single column. This analytical study striving to enhance the quality of Oxygenates analytical method, as monitoring the concentration of oxygenates with accurate and precise analytical method by utilizing multidimensional GC supported by Backflush technique and Flame Ionization Detector, which have high performance separation of hydrocarbon and Oxygenates; also improving the minimum detection limits (MDL) to detect the concentration <1.0 ppm. However different types of oxygenates as (Alcohols, Aldehyde, Ketones, Ester and Ether) may be determined in other Hydrocarbon streams asC3, C4-mix, until C12 mixture, supported by liquid injection auto-sampler.Keywords: analytical chemistry, gas chromatography, petrochemicals, oxygenates
Procedia PDF Downloads 83