Search results for: solar cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4444

Search results for: solar cells

154 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 278
153 Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field

Authors: Tomasz Borowski, Dawid Sołoducha, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world.

Keywords: rotating magnetic field, rosemary, thyme, essential oils, Escherichia coli

Procedia PDF Downloads 156
152 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery

Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek

Abstract:

Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.

Keywords: liposomes, siRNA, pH-sensitive, molecular switch

Procedia PDF Downloads 204
151 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
150 Evidence for Replication of an Unusual G8P[14] Human Rotavirus Strain in the Feces of an Alpine Goat: Zoonotic Transmission from Caprine Species

Authors: Amine Alaoui Sanae, Tagjdid Reda, Loutfi Chafiqa, Melloul Merouane, Laloui Aziz, Touil Nadia, El Fahim, E. Mostafa

Abstract:

Background: Rotavirus group A (RVA) strains with G8P[14] specificities are usually detected in calves and goats. However, these strains have been reported globally in humans and have often been characterized as originating from zoonotic transmissions, particularly in area where ruminants and humans live side-by-side. Whether human P[14] genotypes are two-way and can be transmitted to animal species remains to be established. Here we describe VP4 deduced amino-acid relationships of three Moroccan P[14] genotypes originating from different species and the receptiveness of an alpine goat to a human G8P[14] through an experimental infection. Material/methods: the human MA31 RVA strain was originally identified in a four years old girl presenting an acute gastroenteritis hospitalized at the pediatric care unit in Rabat Hospital in 2011. The virus was isolated and propagated in MA104 cells in the presence of trypsin. Ch_10S and 8045_S animal RVA strains were identified in fecal samples of a 2-week-old native goat and 3-week-old calf with diarrhea in 2011 in Bouaarfa and My Bousselham respectively. Genomic RNAs of all strains were subjected to a two-step RT-PCR and sequenced using the consensus primers VP4. The phylogenetic tree for MA31, Ch_10S and 8045_S VP4 and a set of published P[14] genotypes was constructed using MEGA6 software. The receptivity of MA31 strain by an eight month-old alpine goat was assayed. The animal was orally and intraperitonally inoculated with a dose of 8.5 TCID50 of virus stock at passage level 3. The shedding of the virus was tested by a real time RT-PCR assay. Results: The phylogenetic tree showed that the three Moroccan strains MA31, Ch_10S and 8045_S VP4 were highly related to each other (100% similar at the nucleotide level). They were clustered together with the B10925, Sp813, PA77 and P169 strains isolated in Belgium, Spain and Italy respectively. The Belgian strain B10925 was the most closely related to the Moroccan strains. In contrast, the 8045_S and Ch_10S strains were clustered distantly from the Tunisian calf strain B137 and the goat strain cap455 isolated in South Africa respectively. The human MA31 RVA strain was able to induce bloody diarrhea at 2 days post infection (dpi) in the alpine goat kid. RVA virus shedding started by 2 dpi (Ct value of 28) and continued until 5 dpi (Ct value of 25) with a concomitant elevation in the body temperature. Conclusions: Our study while limited to one animal, is the first study proving experimentally that a human P[14] genotype causes diarrhea and virus shedding in the goat. This result reinforce the potential role of inter- species transmission in generating novel and rare rotavirus strains such G8P[14] which infect humans.

Keywords: interspecies transmission, rotavirus, goat, human

Procedia PDF Downloads 290
149 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology

Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa

Abstract:

Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.

Keywords: network, mixing, hydrates, continuous process, carbon dioxide

Procedia PDF Downloads 52
148 A Case of Myelofibrosis-Related Arthropathy: A Rare and Underrecognized Entity

Authors: Geum Yeon Sim, Jasal Patel, Anand Kumthekar, Stanley Wainapel

Abstract:

A 65-year-old right-hand dominant African-American man, formerly employed as a security guard, was referred to Rehabilitation Medicine with bilateral hand stiffness and weakness. His past medical history was only significant for myelofibrosis, diagnosed 4 years earlier, for which he was receiving scheduled blood transfusions. Approximately 2 years ago, he began to notice stiffness and swelling in his non-dominant hand that progressed to pain and decreased strength, limiting his hand function. Similar but milder symptoms developed in his right hand several months later. There was no history of prior injury or exposure to cold. Physical examination showed enlargement of metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints with finger flexion contractures, Swan-neck and Boutonniere deformities, and associated joint tenderness. Changes were more prominent in the left hand. X-rays showed mild osteoarthritis of several bilateral PIP joints. Anti-nuclear antibodies, rheumatoid factor, and cyclic citrullinated peptide antibodies were negative. MRI of the hand showed no erosions or synovitis. A rheumatology consultation was obtained, and the cause of his symptoms was attributed to myelofibrosis-related arthropathy with secondary osteoarthritis. The patient was tried on diclofenac cream and received a few courses of Occupational Therapy with limited functional improvement. Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells with variable morphologic maturity and hematopoietic efficiency. Rheumatic manifestations of malignancies include direct invasion, paraneoplastic presentations, secondary gout, or hypertrophic osteoarthropathy. PMF causes gradual bone marrow fibrosis with extramedullary metaplastic hematopoiesis in the liver, spleen, or lymph nodes. Musculoskeletal symptoms are not common and are not well described in the literature. The first reported case of myelofibrosis related arthritis was seronegative arthritis due to synovial invasion of myeloproliferative elements. Myelofibrosis has been associated with autoimmune diseases such as systemic lupus erythematosus, progressive systemic sclerosis, and rheumatoid arthritis. Gout has been reported in patients with myelofibrosis, and the underlying mechanism is thought to be related to the high turnover of nucleic acids that is greatly augmented in this disease. X-ray findings in these patients usually include erosive arthritis with synovitis. Treatment of underlying PMF is the treatment of choice, along with anti-inflammatory medications. Physicians should be cognizant of recognizing this rare entity in patients with PMF while maintaining clinical suspicion for more common causes of joint deformities, such as rheumatic diseases.

Keywords: myelofibrosis, arthritis, arthralgia, malignancy

Procedia PDF Downloads 98
147 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes

Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov

Abstract:

Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of  5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.

Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics

Procedia PDF Downloads 282
146 Developing Motorized Spectroscopy System for Tissue Scanning

Authors: Tuba Denkceken, Ayse Nur Sarı, Volkan Ihsan Tore, Mahmut Denkceken

Abstract:

The aim of the presented study was to develop a newly motorized spectroscopy system. Our system is composed of probe and motor parts. The probe part consists of bioimpedance and fiber optic components that include two platinum wires (each 25 micrometer in diameter) and two fiber cables (each 50 micrometers in diameter) respectively. Probe was examined on tissue phantom (polystyrene microspheres with different diameters). In the bioimpedance part of the probe current was transferred to the phantom and conductivity information was obtained. Adjacent two fiber cables were used in the fiber optic part of the system. Light was transferred to the phantom by fiber that was connected to the light source and backscattered light was collected with the other adjacent fiber for analysis. It is known that the nucleus expands and the nucleus-cytoplasm ratio increases during the cancer progression in the cell and this situation is one of the most important criteria for evaluating the tissue for pathologists. The sensitivity of the probe to particle (nucleus) size in phantom was tested during the study. Spectroscopic data obtained from our system on phantom was evaluated by multivariate statistical analysis. Thus the information about the particle size in the phantom was obtained. Bioimpedance and fiber optic experiments results which were obtained from polystyrene microspheres showed that the impedance value and the oscillation amplitude were increasing while the size of particle was enlarging. These results were compatible with the previous studies. In order to motorize the system within the motor part, three driver electronic circuits were designed primarily. In this part, supply capacitors were placed symmetrically near to the supply inputs which were used for balancing the oscillation. Female capacitors were connected to the control pin. Optic and mechanic switches were made. Drivers were structurally designed as they could command highly calibrated motors. It was considered important to keep the drivers’ dimension as small as we could (4.4x4.4x1.4 cm). Then three miniature step motors were connected to each other along with three drivers. Since spectroscopic techniques are quantitative methods, they yield more objective results than traditional ones. In the future part of this study, it is planning to get spectroscopic data that have optic and impedance information from the cell culture which is normal, low metastatic and high metastatic breast cancer. In case of getting high sensitivity in differentiated cells, it might be possible to scan large surface tissue areas in a short time with small steps. By means of motorize feature of the system, any region of the tissue will not be missed, in this manner we are going to be able to diagnose cancerous parts of the tissue meticulously. This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through 3001 project (115E662).

Keywords: motorized spectroscopy, phantom, scanning system, tissue scanning

Procedia PDF Downloads 191
145 Evaluation of Oral Biofilm Suppression by Carribean Herbal Extracts

Authors: Ravi Teja Chitturi Suryaprakash, Chandrashekhar Unakal, Haytham Al-Bayaty, Duraisamy Saravanakumar

Abstract:

Background and significance: Oral biofilm formation is a well-known causative factor for caries and periodontal diseases. Scientists over the years have been trying to find a solution against the formation of oral biofilms. Though several advances have been made to understand the microbial ecology and how the bio film survives, it is still an enigma to researchers to find a chemical product that not only can inhibit the formation of oral bio film but also not disturb the oral micro flora required for oral health and not to cause damage to the cells of the oral cavity. One such product that has never been investigated much are herbal preparations. Some of the microorganisms important in the formation of biofilm are Streptococcus mutans, Actinomyces naeslundi, Streptococuss oralis and Prevotella intermedia. The aim of this study was to study the antimicrobial property of some herbal extracts available in Trinidad and Tobago against these pathogens. The significance of this study is that identification of biologically effective plant extracts can result in indigenous development of mouth rinses and tooth pastes that the people can benefit from to not only develop effective but also a cheap solution. Methodology: The extracts from the leaves of Plectranthus ambonicus, Ocmium tenuiflorum, Azadirchata indica, Anacardium occidentale, Psidium guajava were prepared by dissolving them in water. The extracts from the roots of Curcuma longa were prepared similarly and the antimicrobial activity of these six plant extracts was determined by the agar well diffusion method using minimum inhibitory concentration (MIC) against Streptococcus mutans, Actinomyces naeslundi, Streptococuss oralis and Prevotella intermedia and compared with chlorhexidine. Results: The six plant extracts showed variable effect on the oral micro-organisms. Ocmium tenuiflorum (16.66 ± 0.44, 14 ± 0.58, 13.33 ± 0.88, 12.83 ± 0.60), Azadirchata indica (17.5 ± 0.28, 14.83 ± 0.17, 15 ± 0.58, 12.83 ± 0.6) and Curcuma longa (16.16 ± 0.44, 13.66 ± 0.88, 12.33 ± 0.88, 11.33 ± 0.67) were found to have highest inhibitory activity against all the four pathogens (Streptococcus mutans, Streptococuss oralis, Actinomyces naeslundi, and Prevotella intermedia) respectively. Conclusion: Although the extracts were not pure compounds we obtained antimicrobial results which determine that they are potent antimicrobial agents. Further derivation of pure compounds from these extracts could be lucrative as it might lead to the development of a cost effective and biologically safe medicine to act against oral biofilms. Acknowledgement: The authors would like to acknowledge the Campus Research and Publication Fund Committee, The University of the West Indies for funding this study and would also like to acknowledge Dr. Leonette Cox, Department of Chemistry, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago for helping to prepare the plant extracts.

Keywords: agar well diffusion method, herbal extracts, minimum inhibitory concentration, oral biofilm forming microorganisms

Procedia PDF Downloads 180
144 Preliminary Studies on Poloxamer-Based Hydrogels with Oregano Essential Oil as Potential Topical Treatment of Cutaneous Papillomas

Authors: Ana Maria Muț, Georgeta Coneac, Ioana Olariu, Ștefana Avram, Ioana Zinuca Pavel, Ionela Daliana Minda, Lavinia Vlaia, Cristina Adriana Dehelean, Corina Danciu

Abstract:

Oregano essential oil is obtained from different parts of the plant Origanum vulgare (fam. Lamiaceae) and carvacrol and thymol are primary components, widely recognized for their antimicrobial activity, as well as their antiviral and antifungal properties. Poloxamers are triblock copolymers (Pluronic®), formed of three non-ionic blocks with a hydrophobic polyoxypropylene central chain flanked by two polyoxyethylene hydrophilic chains. They are known for their biocompatibility, sensitivity to temperature changes (sol-to-gel transition of aqueous solution with temperature increase), but also for their amphiphilic and surface active nature determining the formation of micelles, useful for solubilization of different hydrophobic compounds such as the terpenes and terpenoids contained in essential oils. Thus, these polymers, listed in European and US Pharmacopoeia and approved by FDA, are widely used as solubilizers and gelling agents for various pharmaceutical preparations, including topical hydrogels. The aim of this study was to investigate the posibility of solubilizing oregano essential oil (OEO) in polymeric micelles using polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers to obtain semisolid systems suitable for topical application. A formulation screening was performed, using Pluronic® F-127 in concentration of 20%, Pluronic® L-31, Pluronic® L-61 and Pluronic® L-62 in concentration of 0.5%, 0.8% respectively 1% to obtain the polymeric micelles-based systems. Then, to each selected system, with or without 10% absolute ethanol, 5% or 8% OEO was added. The obtained transparent poloxamer-based hydrogels containing solubilized OEO were further evaluated for pH, rheological characteristics (flow behaviour, viscosity, consistency and spreadability), using consacrated techniques like potentiometric titration, stationary shear flow test, penetrometric method and parallel plate method. Also, in vitro release and permeation of carvacrol from the hydrogels was carried out, using vertical diffusion cells and synthetic hydrophilic membrane and porcine skin respectively. The pH values and rheological features of all tested formulations were in accordance with official requirements for semisolid cutaneous preparations. But, the formulation containing 0.8% Pluronic® L-31, 10% absolute ethanol, 8% OEO and water and the formulation with 1% Pluronic® L-31, 5% OEO and water, produced the highest cumulative amounts of carvacrol released/permeated through the membrane. The present study demonstrated that oregano essential oil can be successfully solubilized in the investigated poloxamer-based hydrogels. These systems can be further investigated as potential topical therapy for cutaneous papillomas. Funding: This research was funded by Project PN-III-P1-1.1-TE2019-0130, Contract number TE47, Romania.

Keywords: oregano essential oil, carvacrol, poloxamer, topical hydrogels

Procedia PDF Downloads 113
143 Mycotoxin Bioavailability in Sparus Aurata Muscle After Human Digestion and Intestinal Transport (Caco-2/HT-29 Cells) Simulation

Authors: Cheila Pereira, Sara C. Cunha, Miguel A. Faria, José O. Fernandes

Abstract:

The increasing world population brings several concerns, one of which is food security and sustainability. To meet this challenge, aquaculture, the farming of aquatic animals and plants, including fish, mollusks, bivalves, and algae, has experienced sustained growth and development in recent years. Recent advances in this industry have focused on reducing its economic and environmental costs, for example, the substitution of protein sources in fish feed. Plant-based proteins are now a common approach, and while it is a greener alternative to animal-based proteins, there are some disadvantages, such as their putative content and intoxicants such as mycotoxins. These are naturally occurring plant contaminants, and their exposure in fish can cause health problems, stunted growth or even death, resulting in economic losses for the producers and health concerns for the consumers. Different works have demonstrated the presence of both AFB1 (aflatoxin B1) and ENNB1 (enniatin B1) in fish feed and their capacity to be absorbed and bioaccumulate in the fish organism after digestion, further reaching humans through fish ingestion. The aim of this work was to evaluate the bioaccessibility of both mycotoxins in samples of Sparus aurata muscle using a static digestion model based on the INFOGEST protocol. The samples were subjected to different cooking procedures – raw, grilled and fried – and different seasonings – none, thyme and ginger – in order to evaluate their potential reduction effect on mycotoxins bioaccessibility, followed by the evaluation of the intestinal transport of both compounds with an in vitro cell model composed of Caco-2/HT-29 co-culture monolayers, simulating the human intestinal epithelium. The bioaccessible fractions obtained in the digestion studies were used in the transport studies for a more realistic approach to bioavailability evaluation. Results demonstrated the effect of the use of different cooking procedures and seasoning on the toxin's bioavailability. Sparus aurata was chosen in this study for its large production in aquaculture and high consumption in Europe. Also, with the continued evolution of fish farming practices and more common usage of novel feed ingredients based on plants, there is a growing concern about less studied contaminants in aquaculture and their consequences for human health. In pair with greener advances in this industry, there is a convergence towards alternative research methods, such as in vitro applications. In the case of bioavailability studies, both in vitro digestion protocols and intestinal transport assessment are excellent alternatives to in vivo studies. These methods provide fast, reliable and comparable results without ethical restraints.

Keywords: AFB1, aquaculture, bioaccessibility, ENNB1, intestinal transport.

Procedia PDF Downloads 66
142 Devotional Informant and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstone’ Reservoir Quality, Sarir Formation, Sirt

Authors: Faraj M. Elkhatri, Hana Ellafi

Abstract:

In recent years, there has been a growing recognition of the potential of marine-based functional foods and combination therapies in promoting a healthy lifestyle and exploring their effectiveness in preventing or treating diseases. The combination of marine bioactive compounds or extracts offers synergistic or enhancement effects through various mechanisms, including multi-target actions, improved bioavailability, enhanced bioactivity, and mitigation of potential adverse effects. Both the green-lipped mussel (GLM) and fucoidan derived from brown seaweed are rich in bioactivities. These two, mussel and fucoidan, have not been previously formulated together. This study aims to combine GLM oil from Perna canaliculus with low molecular weight fucoidan (LMWF) extracted from Undaria pinnatifida to investigate the unique mixture’s anti-inflammatory and antioxidant properties. The cytotoxicity of individual compounds and combinations was assessed using the MTT assay in (THP-1 and RAW264.7) cell lines. The anti-inflammatory activity of mussel-fucoidan was evaluated by treating LPS-stimulated human monocyte and macrophage (THP1-1) cells. Subsequently, the inflammatory cytokines released into the supernatant of these cell lines were quantified via ELISA. Antioxidant activity was determined by using the free radical scavenging assay (DPPH). DPPH assay demonstrated that the radical scavenging activity of the combinations, particularly at concentrations exceeding 1 mg/ml, showed a significantly higher percentage of inhibition when compared to the individual component. This suggests an enhancement effect when the two compounds are combined, leading to increased antioxidant activity. In terms of immunomodulatory activity, the individual compounds exhibited distinct behaviors. GLM oil displayed a higher ability to suppress the cytokine TNF- compared to LMWF. Interestingly, the LMWF fraction, when used individually, did not demonstrate TNF- suppression. However, when combined with GLM, the TNF- suppression (anti-inflammatory) activity of the combination was better than GLM or LWMF alone. This observation underscores the potential for enhancement interactions between the two components in terms of anti-inflammatory properties. This study revealed that each individual compound, LMWF, and GLM, possesses unique and notable bioactivity. The combination of these two individual compounds results in an enhancement effect, where the bioactivity of each is enhanced, creating a superior combination. This suggests that the combination of LMWF and GLM has the potential to offer a more potent and multifaceted therapeutic effect, particularly in the context of antioxidant and anti-inflammatory activities. These findings hold promise for the development of novel therapeutic interventions or supplements that harness the enhancement effects.

Keywords: formation damage, porosity loses, pore throat, quartz cement

Procedia PDF Downloads 56
141 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies

Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

Protein apoferritin seems to be a very promising structure for use as a nanocarrier. It is prepared from intracellular ferritin protein naturally found in most organisms. The role of ferritin proteins is to store and transport ferrous ions. Apoferritin is a hollow protein cage without ferrous ions that can be prepared from ferritin by reduction with thioglycolic acid or dithionite. The structure of apoferritin is composed of 24 protein subunits, creating a sphere with 12 nm in diameter. The inner cavity has a diameter of 8 nm. The drug encapsulation process is based on the response of apoferritin structure to the pH changes of surrounding solution. In low pH, apoferritin is disassembled into individual subunits and its structure is “opened”. It can then be mixed with any desired cytotoxic drug and after adjustment of pH back to neutral the subunits are reconnected again and the drug is encapsulated within the apoferritin particles. Excess drug molecules can be removed by dialysis. The receptors for apoferritin, SCARA5 and TfR1 can be found in the membrane of both healthy and cancer cells. To enhance the specific targeting of apoferritin nanocarrier, it is possible to modify its surface with targeting moieties, such as antibodies. To ensure sterically correct complex, we used a a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (ApoDox) was coated either with gold nanoparticles (ApoDox-Nano) or gold (III) chloride hydrate reduced with sodium borohydride (ApoDox-HAu). The applied amount of gold in form of gold (III) chloride hydrate was 10 times higher than in the case of gold nanoparticles. However, after removal of the excess unbound ions by electrophoretic separation, the concentration of gold on the surface of apoferritin was only 6 times higher for ApoDox-HAu in comparison with ApoDox-Nano. Moreover, the reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties (excitation maximum at 480 nm with emission maximum at 600 nm) and thus its biological activity. Fluorescent properties of ApoDox-Nano were similar to the unmodified ApoDox, therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, we used ELISA-like method with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, we applied ApoDox without targeting antibodies and ApoDox-Nano modified with targeting antibodies (human IgG antibodies). The amount of unmodified ApoDox on antigen after incubation and subsequent rinsing with water was 5 times lower than in the case of ApoDox-Nano modified with targeting antibodies. The modification of non-gold ApoDox with antibodies caused no change in its targeting properties. It can therefore be concluded that the demonstrated procedure allows us to create nanocarrier with enhanced targeting properties, suitable for nanomedicine.

Keywords: apoferritin, doxorubicin, nanocarrier, targeting antibodies

Procedia PDF Downloads 389
140 Curcumin and Its Analogues: Potent Natural Antibacterial Compounds against Staphylococcus aureus

Authors: Prince Kumar, Shamseer Kulangara Kandi, Diwan S. Rawat, Kasturi Mukhopadhyay

Abstract:

Staphylococcus aureus is the most pathogenic of all staphylococci, a major cause of nosocomial infections, and known for acquiring resistance towards various commonly used antibiotics. Due to the widespread use of synthetic drugs, clinicians are now facing a serious threat in healthcare. The increasing resistance in staphylococci has created a need for alternatives to these synthetic drugs. One of the alternatives is a natural plant-based medicine for both disease prevention as well as the treatment of chronic diseases. Among such natural compounds, curcumin is one of the most studied molecules and has been an integral part of traditional medicines and Ayurveda from ancient times. It is a natural polyphenolic compound with diverse pharmacological effects, including anti-inflammatory, antioxidant, anti-cancerous and antibacterial activities. In spite of its efficacy and potential, curcumin has not been approved as a therapeutic agent yet, because of its low solubility, low bioavailability, and rapid metabolism in vivo. The presence of central β-diketone moiety in curcumin is responsible for its rapid metabolism. To overcome this, in the present study, curcuminoids were designed by modifying the central β-diketone moiety of curcumin into mono carbonyl moiety and their antibacterial potency against S. aureus ATCC 29213 was determined. Further, the mode of action and hemolytic activity of the most potent curcuminoids were studied. Minimum inhibitory concentration (MIC) and in vitro killing kinetics were used to study the antibacterial activity of the designed curcuminoids. For hemolytic assay, mouse Red blood cells were incubated with curcuminoids and hemoglobin release was measured spectrophotometrically. The mode of action of curcuminoids was analysed by membrane depolarization assay using membrane potential sensitive dye 3,3’-dipropylthiacarbocyanine iodide (DiSC3(5)) through spectrofluorimetry and membrane permeabilization assay using calcein-AM through flow cytometry. Antibacterial screening of the designed library (61 curcuminoids) revealed excellent in vitro potency of six compounds against S. aureus (MIC 8 to 32 µg/ml). Moreover, these six compounds were found to be non-hemolytic up to 225 µg/ml that is much higher than their corresponding MIC values. The in vitro killing kinetics data showed five of these lead compounds to be bactericidal causing >3 log reduction in the viable cell count within 4 hrs at 5 × MIC while the sixth compound was found to be bacteriostatic. Depolarization assay revealed that all the six curcuminoids caused depolarization in their corresponding MIC range. Further, the membrane permeabilization assay showed that all the six curcuminoids caused permeabilization at 5 × MIC in 2 hrs. This membrane depolarization and permeabilization caused by curcuminoids found to be in correlation with their corresponding killing efficacy. Both these assays point out that membrane perturbations might be a primary mode of action for these curcuminoids. Overall, the present study leads us six water soluble, non-hemolytic, membrane-active curcuminoids and provided an impetus for further research on therapeutic use of these lead curcuminoids against S. aureus.

Keywords: antibacterial, curcumin, minimum inhibitory concentration , Staphylococcus aureus

Procedia PDF Downloads 169
139 Functional Switching of Serratia marcescens Transcriptional Regulator from Activator to Inhibitor of Quorum Sensing by Exogenous Addition

Authors: Norihiro Kato, Yuriko Takayama

Abstract:

Some gram-negative bacteria enable the simultaneous activation of gene expression involved in N-acylhomoserine lactone (AHL) dependent cell-to-cell communication system. Such regulatory system for the bacterial group behavior is termed as quorum sensing (QS) because a diffusible AHL signal can accumulate around the cell during the increase of the cell density and trigger activation of the sequential QS process. By blocking the QS, the expression of diverse genes related to infection, antibiotic production, and biofilm formation is inhibited. Conditioning of QS by regulation of the DNA-receptor-AHL interaction is a potential target for enhancing host defenses against pathogenicity. We focused on engineered application of transcriptional regulator SpnR produced in opportunistic human pathogen Serratia marcescens. The SpnR can interact with AHL signals at an N-terminal domain and also with a promoter region of a QS target gene at a C-terminal domain. As the initial process of the QS activation, the SpnR forms a complex with the AHL to enhance the expression of pig cluster; the SpnR normally acts as an activator for the expression of the QS-dependent gene. In this research, we attempt to artificially control QS by changing the role of SpnR. The QS-dependent prodigiosin production is expected to inhibit by externally added SpnR in the culture broth of AS-1 strain because the AHL concentration was kept below the threshold by AHL-SpnR complex formation. Maltose-binding protein (MBP)-tagged SpnR (MBP-SpnR) was overexpressed in Escherichia coli and purified using an affinity chromatography equipped with an amylose resin column. The specific interaction between AHL and MBP-SpnR was demonstrated by quartz crystal microbalance (QCM) sensor. AHL with amino end-group was coupled with COOH-terminated self-assembled monolayer prepared on a gold electrode of 27-MHz quartz crystal sensor using water-soluble carbodiimide. After the injection of MBP-SpnR into a cup-type sensor cell filled with the buffer solution, time course of resonant frequency change (ΔFs) was determined. A decrease of ΔFs clearly showed the uptake of MBP-SpnR onto the AHL-immobilized electrode. Furthermore, no binding affinity was observed after the heat-inactivation of MBP-SpnR at 80ºC. These results suggest that MBP-SpnR possesses a specific affinity for AHL. MBP-SpnR was added to the culture medium as an AHL trap to study inhibitory effects on intracellularly accumulated prodigiosin. With approximately 2 µM MBP-SpnR, the amount of prodigiosin induced was half that of the control without any additives. In conclusion, the function of SpnR could be switched by adding it to the cell culture. Exogenously added MBP-SpnR possesses high affinity for AHL derived from cells and acts as an inhibitor of AHL-mediated QS.

Keywords: intracellular signaling, microbial biotechnology, quorum sensing, transcriptional regulator

Procedia PDF Downloads 267
138 Fabrication of Electrospun Green Fluorescent Protein Nano-Fibers for Biomedical Applications

Authors: Yakup Ulusu, Faruk Ozel, Numan Eczacioglu, Abdurrahman Ozen, Sabriye Acikgoz

Abstract:

GFP discovered in the mid-1970s, has been used as a marker after replicated genetic study by scientists. In biotechnology, cell, molecular biology, the GFP gene is frequently used as a reporter of expression. In modified forms, it has been used to make biosensors. Many animals have been created that express GFP as an evidence that a gene can be expressed throughout a given organism. Proteins labeled with GFP identified locations are determined. And so, cell connections can be monitored, gene expression can be reported, protein-protein interactions can be observed and signals that create events can be detected. Additionally, monitoring GFP is noninvasive; it can be detected by under UV-light because of simply generating fluorescence. Moreover, GFP is a relatively small and inert molecule, that does not seem to treat any biological processes of interest. The synthesis of GFP has some steps like, to construct the plasmid system, transformation in E. coli, production and purification of protein. GFP carrying plasmid vector pBAD–GFPuv was digested using two different restriction endonuclease enzymes (NheI and Eco RI) and DNA fragment of GFP was gel purified before cloning. The GFP-encoding DNA fragment was ligated into pET28a plasmid using NheI and Eco RI restriction sites. The final plasmid was named pETGFP and DNA sequencing of this plasmid indicated that the hexa histidine-tagged GFP was correctly inserted. Histidine-tagged GFP was expressed in an Escherichia coli BL21 DE3 (pLysE) strain. The strain was transformed with pETGFP plasmid and grown on LuiraBertoni (LB) plates with kanamycin and chloramphenicol selection. E. coli cells were grown up to an optical density (OD 600) of 0.8 and induced by the addition of a final concentration of 1mM isopropyl-thiogalactopyranoside (IPTG) and then grown for additional 4 h. The amino-terminal hexa-histidine-tag facilitated purification of the GFP by using a His Bind affinity chromatography resin (Novagen). Purity of GFP protein was analyzed by a 12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The concentration of protein was determined by UV absorption at 280 nm (Varian Cary 50 Scan UV/VIS spectrophotometer). Synthesis of GFP-Polymer composite nanofibers was produced by using GFP solution (10mg/mL) and polymer precursor Polyvinylpyrrolidone, (PVP, Mw=1300000) as starting materials and template, respectively. For the fabrication of nanofibers with the different fiber diameter; a sol–gel solution comprising of 0.40, 0.60 and 0.80 g PVP (depending upon the desired fiber diameter) and 100 mg GFP in 10 mL water: ethanol (3:2) mixtures were prepared and then the solution was covered on collecting plate via electro spinning at 10 kV with a feed-rate of 0.25 mL h-1 using Spellman electro spinning system. Results show that GFP-based nano-fiber can be used plenty of biomedical applications such as bio-imaging, bio-mechanic, bio-material and tissue engineering.

Keywords: biomaterial, GFP, nano-fibers, protein expression

Procedia PDF Downloads 320
137 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 344
136 The Hidden Mechanism beyond Ginger (Zingiber officinale Rosc.) Potent in vivo and in vitro Anti-Inflammatory Activity

Authors: Shahira M. Ezzat, Marwa I. Ezzat, Mona M. Okba, Esther T. Menze, Ashraf B. Abdel-Naim, Shahnas O. Mohamed

Abstract:

Background: In order to decrease the burden of the high cost of synthetic drugs, it is important to focus on phytopharmaceuticals. The aim of our study was to search for the mechanism of ginger (Zingiber officinale Roscoe) anti-inflammatory potential and to correlate it to its biophytochemicals. Methods: Various extracts viz. water, 50%, 70%, 80%, and 90% ethanol were prepared from ginger rhizomes. Fractionation of the aqueous extract (AE) was accomplished using Diaion HP-20. In vitro anti-inflammatory activity of the different extracts and isolated compounds was evaluated by protein denaturation inhibition, membrane stabilization, protease inhibition, and anti-lipoxygenase assays. In vivo anti-inflammatory activity of AE was estimated by assessment of rat paw oedema after carrageenan injection. Prostaglandin E2 (PGE2), certain inflammation markers (TNF-α, IL-6, IL-1α, IL-1β, INFr, MCP-1MIP, RANTES, and Nox) levels and MPO activity in the paw edema exudates were measured. Total antioxidant capacity (TAC) was also determined. Histopathological alterations of paw tissues were scored. Results: All the tested extracts showed significant (p < 0.1) anti-inflammatory activities. The highest percentage of heat induced albumin denaturation (66%) was exhibited by the 50% ethanol (250 μg/ml). The 70 and 90% ethanol extracts (500 μg/ml) were more potent as membrane stabilizers (34.5 and 37%, respectively) than diclofenac (33%). The 80 and 90% ethanol extracts (500 μg/ml) showed maximum protease inhibition (56%). The strongest anti-lipoxygenase activity was observed for the AE. It showed more significant lipoxygenase inhibition activity than that of diclofenac (58% and 52%, respectively) at the same concentration (125 μg/ml). Fractionation of AE yielded four main fractions (Fr I-IV) which showed significant in vitro anti-inflammatory. Purification of Fr-III and IV led to the isolation of 6-poradol (G1), 6-shogaol (G2); methyl 6- gingerol (G3), 5-gingerol (G4), 6-gingerol (G5), 8-gingerol (G6), 10-gingerol (G7), and 1-dehydro-6-gingerol (G8). G2 (62.5 ug/ml), G1 (250 ug/ml), and G8 (250 ug/ml) exhibited potent anti-inflammatory activity in all studied assays, while G4 and G5 exhibited moderate activity. In vivo administration of AE ameliorated rat paw oedema in a dose-dependent manner. AE (at 200 mg/kg) showed significant reduction (60%) of PGE2 production. The AE at different doses (at 25-200 mg/kg) showed significant reduction in inflammatory markers except for IL-1α. AE (at 25 mg/kg) is superior to indomethacin in reduction of IL-1β. Treatment of animals with the AE (100, 200 mg/kg) or indomethacin (10 mg/kg) showed significant reduction in TNF-α, IL-6, MCP-1, and RANTES levels, and MPO activity by about (31, 57 and 32% ) (65, 60 and 57%) (27, 41 and 28%) (23, 32 and 23%) (66, 67 and 67%) respectively. AE at 100 and 200 mg/kg was equipotent to indomethacin in reduction of NOₓ level and in increasing the TAC. Histopathological examination revealed very few inflammatory cells infiltration and oedema after administration of AE (200 mg/kg) prior to carrageenan. Conclusion: Ginger anti-inflammatory activity is mediated by inhibiting macrophage and neutrophils activation as well as negatively affecting monocyte and leukocyte migration. Moreover, it produced dose-dependent decrease in pro-inflammatory cytokines and chemokines and replenished the total antioxidant capacity. We strongly recommend future investigations of ginger in the potential signal transduction pathways.

Keywords: anti-lipoxygenase activity, inflammatory markers, 1-dehydro-6-gingerol, 6-shogaol

Procedia PDF Downloads 252
135 Exposure of Pacu, Piaractus mesopotamicus Gill Tissue to a High Stocking Density: An Ion Regulatory and Microscopy Study

Authors: Wiolene Montanari Nordi, Debora Botequio Moretti, Mariana Caroline Pontin, Jessica Pampolini, Raul Machado-Neto

Abstract:

Gills are organs responsible for respiration and osmoregulation between the fish internal environment and water. Under stress conditions, oxidative response and gill plasticity to attempt to increase gas exchange area are noteworthy, compromising the physiological processes and therefore fish health. Colostrum is a dietary source of nutrients, immunoglobulin, antioxidant and bioactive molecules, essential for immunological protection and development of the gastrointestinal epithelium. The hypothesis of this work is that antioxidant factors present in the colostrum, unprecedentedly tested in gills, can minimize or reduce the alteration of its epithelium structure of juvenile pacu (Piaractus mesopotamicus) subjected to high stocking density. The histological changes in the gills architecture were characterized by the frequency, incidence and severity of the tissue alteration and ionic status. Juvenile (50 kg fish/m3) were fed with pelleted diets containing 0, 10, 20 or 30% of lyophilized bovine colostrum (LBC) inclusion and at 30 experimental days, gill and blood samples were collected in eight fish per treatment. The study revealed differences in the type, frequency and severity (histological alterations index – HAI) of tissue alterations among the treatments, however, no distinct differences in the incidence of alteration (mean alteration value – MAV) were observed. The main histological changes in gill were elevation of the lamellar epithelium, excessive cell proliferation of the filament and lamellar epithelium causing total or partial melting of the lamella, hyperplasia and hypertrophy of lamellar and filament epithelium, uncontrolled thickening of filament and lamellar tissues, mucous and chloride cells presence in the lamella, aneurysms, vascular congestion and presence of parasites. The MAV obtained per treatment were 2.0, 2.5, 1.8 and 2.5 to fish fed diets containing 0, 10, 20 and 30% of LBC inclusion, respectively, classifying the incidence of gill alterations as slightly to moderate. The severity of alteration of individual fish of treatment 0, 10 and 20% LBC ranged values from 5 to 40 (HAI average of 20.1, 17.5 and 17.6, respectively, P > 0.05), and differs from 30% LBC, that ranged from 6 to 129 (HAI mean of 77.2, P < 0.05). The HAI value in the treatments 0, 10 and 20% LBC reveals gill tissue with injuries classified from slightly to moderate, while in 30% LBC moderate to severe, consequence of the onset of necrosis in the tissue of two fish that compromises the normal functioning of the organ. In relation to frequency of gill alterations, evaluated according to absence of alterations (0) to highly frequent (+++), histological alterations were observed in all evaluated fish, with a trend of higher frequency in 0% LBC. The concentration of Na+, Cl-, K+ and Ca2+ did not changed in all treatments (P > 0.05), indicating similar capacity of ion exchange. The concentrations of bovine colostrum used in diets of present study did not impair the alterations observed in the gills of juvenile pacu.

Keywords: histological alterations of gill tissue, ionic status, lyophilized bovine colostrum, optical microscopy

Procedia PDF Downloads 299
134 Nanoparticle Exposure Levels in Indoor and Outdoor Demolition Sites

Authors: Aniruddha Mitra, Abbas Rashidi, Shane Lewis, Jefferson Doehling, Alexis Pawlak, Jacob Schwartz, Imaobong Ekpo, Atin Adhikari

Abstract:

Working or living close to demolition sites can increase risks of dust-related health problems. Demolition of concrete buildings may produce crystalline silica dust, which can be associated with a broad range of respiratory diseases including silicosis and lung cancers. Previous studies demonstrated significant associations between demolition dust exposure and increase in the incidence of mesothelioma or asbestos cancer. Dust is a generic term used for minute solid particles of typically <500 µm in diameter. Dust particles in demolition sites vary in a wide range of sizes. Larger particles tend to settle down from the air. On the other hand, the smaller and lighter solid particles remain dispersed in the air for a long period and pose sustained exposure risks. Submicron ultrafine particles and nanoparticles are respirable deeper into our alveoli beyond our body’s natural respiratory cleaning mechanisms such as cilia and mucous membranes and are likely to be retained in the lower airways. To our knowledge, how various demolition tasks release nanoparticles are largely unknown and previous studies mostly focused on course dust, PM2.5, and PM10. General belief is that the dust generated during demolition tasks are mostly large particles formed through crushing, grinding, or sawing of various concrete and wooden structures. Therefore, little consideration has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor, which was used for nanoparticle monitoring at two adjacent indoor and outdoor building demolition sites in southern Georgia. Nanoparticle levels were measured (n = 10) by TSI NanoScan SMPS Model 3910 at four different distances (5, 10, 15, and 30 m) from the work location as well as in control sites. Temperature and relative humidity levels were recorded. Indoor demolition works included acetylene torch, masonry drilling, ceiling panel removal, and other miscellaneous tasks. Whereas, outdoor demolition works included acetylene torch and skid-steer loader use to remove a HVAC system. Concentration ranges of nanoparticles of 13 particle sizes at the indoor demolition site were: 11.5 nm: 63 – 1054/cm³; 15.4 nm: 170 – 1690/cm³; 20.5 nm: 321 – 730/cm³; 27.4 nm: 740 – 3255/cm³; 36.5 nm: 1,220 – 17,828/cm³; 48.7 nm: 1,993 – 40,465/cm³; 64.9 nm: 2,848 – 58,910/cm³; 86.6 nm: 3,722 – 62,040/cm³; 115.5 nm: 3,732 – 46,786/cm³; 154 nm: 3,022 – 21,506/cm³; 205.4 nm: 12 – 15,482/cm³; 273.8 nm: Keywords: demolition dust, industrial hygiene, aerosol, occupational exposure

Procedia PDF Downloads 423
133 Electrophoretic Light Scattering Based on Total Internal Reflection as a Promising Diagnostic Method

Authors: Ekaterina A. Savchenko, Elena N. Velichko, Evgenii T. Aksenov

Abstract:

The development of pathological processes, such as cardiovascular and oncological diseases, are accompanied by changes in molecular parameters in cells, tissues, and serum. The study of the behavior of protein molecules in solutions is of primarily importance for diagnosis of such diseases. Various physical and chemical methods are used to study molecular systems. With the advent of the laser and advances in electronics, optical methods, such as scanning electron microscopy, sedimentation analysis, nephelometry, static and dynamic light scattering, have become the most universal, informative and accurate tools for estimating the parameters of nanoscale objects. The electrophoretic light scattering is the most effective technique. It has a high potential in the study of biological solutions and their properties. This technique allows one to investigate the processes of aggregation and dissociation of different macromolecules and obtain information on their shapes, sizes and molecular weights. Electrophoretic light scattering is an analytical method for registration of the motion of microscopic particles under the influence of an electric field by means of quasi-elastic light scattering in a homogeneous solution with a subsequent registration of the spectral or correlation characteristics of the light scattered from a moving object. We modified the technique by using the regime of total internal reflection with the aim of increasing its sensitivity and reducing the volume of the sample to be investigated, which opens the prospects of automating simultaneous multiparameter measurements. In addition, the method of total internal reflection allows one to study biological fluids on the level of single molecules, which also makes it possible to increase the sensitivity and the informativeness of the results because the data obtained from an individual molecule is not averaged over an ensemble, which is important in the study of bimolecular fluids. To our best knowledge the study of electrophoretic light scattering in the regime of total internal reflection is proposed for the first time, latex microspheres 1 μm in size were used as test objects. In this study, the total internal reflection regime was realized on a quartz prism where the free electrophoresis regime was set. A semiconductor laser with a wavelength of 655 nm was used as a radiation source, and the light scattering signal was registered by a pin-diode. Then the signal from a photodetector was transmitted to a digital oscilloscope and to a computer. The autocorrelation functions and the fast Fourier transform in the regime of Brownian motion and under the action of the field were calculated to obtain the parameters of the object investigated. The main result of the study was the dependence of the autocorrelation function on the concentration of microspheres and the applied field magnitude. The effect of heating became more pronounced with increasing sample concentrations and electric field. The results obtained in our study demonstrated the applicability of the method for the examination of liquid solutions, including biological fluids.

Keywords: light scattering, electrophoretic light scattering, electrophoresis, total internal reflection

Procedia PDF Downloads 214
132 Sugar-Induced Stabilization Effect of Protein Structure

Authors: Mitsuhiro Hirai, Satoshi Ajito, Nobutaka Shimizu, Noriyuki Igarashi, Hiroki Iwase, Shinichi Takata

Abstract:

Sugars and polyols are known to be bioprotectants preventing such as protein denaturation and enzyme deactivation and widely used as a nontoxic additive in various industrial and medical products. The mechanism of their protective actions has been explained by specific bindings between biological components and additives, changes in solvent viscosities, and surface tension and free energy changes upon transfer of those components into additive solutions. On the other hand, some organisms having tolerances against extreme environment produce stress proteins and/or accumulate sugars in cells, which is called cryptobiosis. In particular, trehalose has been drawing attention relevant to cryptobiosis under external stress such as high or low temperature, drying, osmotic pressure, and so on. The function of cryptobiosis by trehalose has been explained relevant to the restriction of the intra-and/or-inter-molecular movement by vitrification or from the replacement of water molecule by trehalose. Previous results suggest that the structure and interaction between sugar and water are a key determinant for understanding cryptobiosis. Recently, we have shown direct evidence that the protein hydration (solvation) and structural stability against chemical and thermal denaturation significantly depend on sugar species and glycerol. Sugar and glycerol molecules tend to be preferentially or weakly excluded from the protein surface and preserved the native protein hydration shell. Due to the protective action of the protein hydration shell by those molecules, the protein structure is stabilized against chemical (guanidinium chloride) and thermal denaturation. The protective action depends on sugar species. To understand the above trend and difference in detail, it is essentially important to clarify the characteristics of solutions containing those additives. In this study, by using wide-angle X-ray scattering technique covering a wide spatial region (~3-120 Å), we have clarified structures of sugar solutions with the concentration from 5% w/w to 65% w/w. The sugars measured in the present study were monosaccharides (glucose, fructose, mannose) and disaccharides (sucrose, trehalose, maltose). Due to observed scattering data with a wide spatial resolution, we have succeeded in obtaining information on the internal structure of individual sugar molecules and on the correlation between them. Every sugar gradually shortened the average inter-molecular distance as the concentration increased. The inter-molecular interaction between sugar molecules was essentially showed an exclusive tendency for every sugar, which appeared as the presence of a repulsive correlation hole. This trend was more weakly seen for trehalose compared to other sugars. The intermolecular distance and spread of individual molecule clearly showed the dependence of sugar species. We will discuss the relation between the characteristic of sugar solution and its protective action of biological materials.

Keywords: hydration, protein, sugar, X-ray scattering

Procedia PDF Downloads 156
131 Elastoplastic Modified Stillinger Weber-Potential Based Discretized Virtual Internal Bond and Its Application to the Dynamic Fracture Propagation

Authors: Dina Kon Mushid, Kabutakapua Kakanda, Dibu Dave Mbako

Abstract:

The failure of material usually involves elastoplastic deformation and fracturing. Continuum mechanics can effectively deal with plastic deformation by using a yield function and the flow rule. At the same time, it has some limitations in dealing with the fracture problem since it is a theory based on the continuous field hypothesis. The lattice model can simulate the fracture problem very well, but it is inadequate for dealing with plastic deformation. Based on the discretized virtual internal bond model (DVIB), this paper proposes a lattice model that can account for plasticity. DVIB is a lattice method that considers material to comprise bond cells. Each bond cell may have any geometry with a finite number of bonds. The two-body or multi-body potential can characterize the strain energy of a bond cell. The two-body potential leads to the fixed Poisson ratio, while the multi-body potential can overcome the limitation of the fixed Poisson ratio. In the present paper, the modified Stillinger-Weber (SW), a multi-body potential, is employed to characterize the bond cell energy. The SW potential is composed of two parts. One part is the two-body potential that describes the interatomic interactions between particles. Another is the three-body potential that represents the bond angle interactions between particles. Because the SW interaction can represent the bond stretch and bond angle contribution, the SW potential-based DVIB (SW-DVIB) can represent the various Poisson ratios. To embed the plasticity in the SW-DVIB, the plasticity is considered in the two-body part of the SW potential. It is done by reducing the bond stiffness to a lower level once the bond reaches the yielding point. While before the bond reaches the yielding point, the bond is elastic. When the bond deformation exceeds the yielding point, the bond stiffness is softened to a lower value. When unloaded, irreversible deformation occurs. With the bond length increasing to a critical value, termed the failure bond length, the bond fails. The critical failure bond length is related to the cell size and the macro fracture energy. By this means, the fracture energy is conserved so that the cell size sensitivity problem is relieved to a great extent. In addition, the plasticity and the fracture are also unified at the bond level. To make the DVIB able to simulate different Poisson ratios, the three-body part of the SW potential is kept elasto-brittle. The bond angle can bear the moment before the bond angle increment is smaller than a critical value. By this method, the SW-DVIB can simulate the plastic deformation and the fracturing process of material with various Poisson ratios. The elastoplastic SW-DVIB is used to simulate the plastic deformation of a material, the plastic fracturing process, and the tunnel plastic deformation. It has been shown that the current SW-DVIB method is straightforward in simulating both elastoplastic deformation and plastic fracture.

Keywords: lattice model, discretized virtual internal bond, elastoplastic deformation, fracture, modified stillinger-weber potential

Procedia PDF Downloads 98
130 Molecular Identification of Camel Tick and Investigation of Its Natural Infection by Rickettsia and Borrelia in Saudi Arabia

Authors: Reem Alajmi, Hind Al Harbi, Tahany Ayaad, Zainab Al Musawi

Abstract:

Hard ticks Hyalomma spp. (family: Ixodidae) are obligate ectoparasite in their all life stages on some domestic animals mainly camels and cattle. Ticks may lead to many economic and public health problems because of their blood feeding behavior. Also, they act as vectors for many bacterial, viral and protozoan agents which may cause serious diseases such as tick-born encephalitis, Rocky-mountain spotted fever, Q-fever and Lyme disease which can affect human and/or animals. In the present study, molecular identification of ticks that attack camels in Riyadh region, Saudi Arabia based on the partial sequence of mitochondrial 16s rRNA gene was applied. Also, the present study aims to detect natural infections of collected camel ticks with Rickessia spp. and Borelia spp. using PCR/hybridization of Citrate synthase encoding gene present in bacterial cells. Hard ticks infesting camels were collected from different camels located in a farm in Riyadh region, Saudi Arabia. Results of the present study showed that the collected specimens belong to two species: Hyalomma dromedari represent 99% of the identified specimens and Hyalomma marginatum which account for 1 % of identified ticks. The molecular identification was made through blasting the obtained sequence of this study with sequences already present and identified in GeneBank. All obtained sequences of H. dromedarii specimens showed 97-100% identity with the same gene sequence of the same species (Accession # L34306.1) which was used as a reference. Meanwhile, no intraspecific variations of H. marginatum mesured because only one specimen was collected. Results also had shown that the intraspecific variability between individuals of H. dromedarii obtained in 92 % of samples ranging from 0.2- 6.6%, while the remaining 7 % of the total samples of H. dromedarii showed about 10.3 % individual differences. However, the interspecific variability between H. dromedarii and H. marginatum was approximately 18.3 %. On the other hand, by using the technique of PCR/hybridization, we could detect natural infection of camel ticks with Rickettsia spp. and Borrelia spp. Results revealed the natural presence of both bacteria in collected ticks. Rickettsial spp. infection present in 29% of collected ticks, while 35% of collected specimen were infected with Borrelia spp. The valuable results obtained from the present study are a new record for the molecular identification of camel ticks in Riyadh, Saudi Arabia and their natural infection with both Rickettsia spp. and Borrelia spp. These results may help scientists to provide a good and direct control strategy of ticks in order to protect one of the most important economic animals which are camels. Also results of this project spotlight on the disease that might be transmitted by ticks to put out a direct protective plan to prevent spreading of these dangerous agents. Further molecular studies are needed to confirm the results of the present study by using other mitochondrial and nuclear genes for tick identification.

Keywords: Camel ticks, Rickessia spp. , Borelia spp. , mitochondrial 16s rRNA gene

Procedia PDF Downloads 276
129 Thermal Stress and Computational Fluid Dynamics Analysis of Coatings for High-Temperature Corrosion

Authors: Ali Kadir, O. Anwar Beg

Abstract:

Thermal barrier coatings are among the most popular methods for providing corrosion protection in high temperature applications including aircraft engine systems, external spacecraft structures, rocket chambers etc. Many different materials are available for such coatings, of which ceramics generally perform the best. Motivated by these applications, the current investigation presents detailed finite element simulations of coating stress analysis for a 3- dimensional, 3-layered model of a test sample representing a typical gas turbine component scenario. Structural steel is selected for the main inner layer, Titanium (Ti) alloy for the middle layer and Silicon Carbide (SiC) for the outermost layer. The model dimensions are 20 mm (width), 10 mm (height) and three 1mm deep layers. ANSYS software is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion/corrosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. To recreate gas turbine scenarios; in the stress analysis simulations, static loading and thermal environment conditions of up to 1000 N and 1000 degrees Kelvin are imposed. The default solver was used to set the controls for the simulation with the fixed support being set as one side of the model while subjecting the opposite side to a tabular force of 500 and 1000 Newtons. Equivalent elastic strain, total deformation, equivalent stress and strain energy were computed for all cases. Each analysis was duplicated twice to remove one of the layers each time, to allow testing of the static and thermal effects with each of the coatings. ANSYS FLUENT simulation was conducted to study the effect of corrosion on the model under similar thermal conditions. The momentum and energy equations were solved and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A Discrete Phase Model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection (particles prescribed 5 m/s velocity and 1273.15 K). Extensive visualization of results is provided. The simulations reveal interesting features associated with coating response to realistic gas turbine loading conditions including significantly different stress concentrations with different coatings.

Keywords: thermal coating, corrosion, ANSYS FEA, CFD

Procedia PDF Downloads 135
128 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.

Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system

Procedia PDF Downloads 124
127 Abnormal Pap Smear Detection by Application of Revised Bethesda System in Commercial Sex Workers and a Control Group: A Comparative Study

Authors: Priyanka Manghani, Manthan Patel, Rahul Peddawad

Abstract:

Cervical Cancer is a major public health hurdle in the area of women’s health. The most common cause of Cervical Cancer is the Human Papilloma Virus (HPV). Human papilloma virus has various genotypes, with HPV 16 and HPV 18 being the major etiological factor causing carcinoma of the Cervix. Early screening and detection by Papanicolaou Smears (PAP) is an effective method for identifying premalignant and malignant lesions. In case of existing pre- malignant lesions /cervical dysplasia’s found with HPV 16 or 18, appropriate follow up can be done to prevent it from developing into a neoplasm. Aims and Objectives: Primary Aim; To study various abnormal cervical cytology reports as detected by Pap Smear Tests, using the Bethesda System in women at a Tertiary Care Hospital. Secondary Aim; To discuss the importance of Pap smear in Cervical Cancer Screening Program. Materials and Methods: Our study is a prospective study, based on 101 women who attended the Out-patient department of Obstetrics and Gynecology at a tertiary care hospital in age group 20-40 years with chief complaints of white/foul vaginal discharge, post-coital Bleeding, low back pain, irregular menstruation, etc. 60 women, who were tested, of the total no of women, were commercial sex workers, thus being a high-risk group for HPV infection. All women underwent conventional cytology. For all the abnormal smears, further cervical biopsies were done, and the final diagnosis was done on the basis of histopathology (gold standard). Results: In all these patients, 16 patients presented with normal smears out of which 2 belonged to the category of commercial sex workers (3.33%) and 14 being from the normal/control group (34.15%). 44 women presented with inflammatory smears out of which 30 were commercial sex workers (50%) and 14 from the control Group (34.15%). A total of 11 women presented with infectious etiology with 6 being commercial sex workers (10%) and 5 (12.2%) being in the control group. A total of 8 patients presented with low-grade squamous intra epithelial lesion (LSIL) with 7 (11.7%) being commercial sex workers and 1(2.44%) patient belonging to the control group. A Total of 7 patients presented with high-grade squamous intraepithelial lesion (HSIL) with 6 (10%) being commercial sex workers and 1 (2.44%) belonging to the control group. 9 patients in total presented with atypical squamous cells of undetermined significance (ASCUS) with 6(10%) being commercial sex workers and 3 (7.32%) belonging to the control group. Squamous cell carcinoma(SCC) presence was found only in 1(1.7%) commercial sex worker. Conclusion – We conclude that HSIL, LSIL, SCC and sexually related infections are comparatively more common in vulnerable groups such as sex workers due to a variety of factors such as multiple sexual partners and poor genital hygiene. Early screening and follow up interventions are highly needed for them along with Health education for risk factors and to emphasize on the importance of Pap smear screening.

Keywords: cervical cancer, papanicolaou (pap) smear, bethesda system, neoplasm

Procedia PDF Downloads 223
126 Characteristics of the Mortars Obtained by Radioactive Recycled Sand

Authors: Claudiu Mazilu, Ion Robu, Radu Deju

Abstract:

At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.

Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio

Procedia PDF Downloads 194
125 Relative Expression and Detection of MUB Adhesion Domains and Plantaricin-Like Bacteriocin among Probiotic Lactobacillus plantarum-Group Strains Isolated from Fermented Foods

Authors: Sundru Manjulata Devi, Prakash M. Halami

Abstract:

The immemorial use of fermented foods from vegetables, dairy and other biological sources are of great demand in India because of their health benefits. However, the diversity of Lactobacillus plantarum group (LPG) of vegetable origin has not been revealed yet, particularly with reference to their probiotic functionalities. In the present study, the different species of probiotic Lactobacillus plantarum group (LPG) i.e., L. plantarum subsp. plantarum MTCC 5422 (from fermented cereals), L. plantarum subsp. argentoratensis FG16 (from fermented bamboo shoot) and L. paraplantarum MTCC 9483 (from fermented gundruk) (as characterized by multiplex recA PCR assay) were considered to investigate their relative expression of MUB domains of mub gene (mucin binding protein) by Real time PCR. Initially, the allelic variation in the mub gene was assessed and found to encode three different variants (Type I, II and III). All the three types had 8, 9 and 10 MUB domains respectively (as analysed by Pfam database) and were found to be responsible for adhesion of bacteria to the host intestinal epithelial cells. These domains either get inserted or deleted during speciation or evolutionary events and lead to divergence. The reverse transcriptase qPCR analysis with mubLPF1+R1 primer pair supported variation in amplicon sizes with 300, 500 and 700 bp among different LPG strains. The relative expression of these MUB domains significantly unregulated in the presence of 1% mucin in overnight grown cultures. Simultaneously, the mub gene expressed efficiently by 7 fold in the culture L. paraplantarum MTCC 9483 with 10 MUB domains. An increase in the expression levels for L. plantarum subsp. plantarum MTCC 5422 and L. plantarum subsp. argentoratensis FG16 (MCC 2974) with 9 and 8 repetitive domains was around 4 and 2 fold, respectively. The detection and expression of an integrase (int) gene in the upstream region of mub gene reveals the excision and integration of these repetitive domains. Concurrently, an in vitro adhesion assay to mucin and exclusion of pathogens (such as Listeria monocytogenes and Micrococcus leuteus) was investigated and observed that the L. paraplantarum MTCC 9483 with more adhesion domains has more ability to adhere to mucin and inhibited the growth of pathogens. The production and expression of plantaricin-like bacteriocin (plnNC8 type) in MTCC 9483 suggests the pathogen inhibition. Hence, the expression of MUB domains can act as potential biomarkers in the screening of a novel probiotic LPG strain with adherence property. The present study provides a platform for an easy, rapid, less time consuming, low-cost methodology for the detection of potential probiotic bacteria. It was known that the traditional practices followed in the preparation of fermented bamboo shoots/gundruk/cereals of Indian foods contain different kinds of neutraceuticals for functional food and novel compounds with health promoting factors. In future, a detailed study of these food products can add more nutritive value, consumption and suitable for commercialization.

Keywords: adhesion gene, fermented foods, MUB domains, probiotics

Procedia PDF Downloads 270