Search results for: saline resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3481

Search results for: saline resistance

3091 Influence of Aluminum Content on the Microstructural, Mechanical and Tribological Properties of TiAlN Coatings for Using in Dental and Surgical Instrumentation

Authors: Hernan D. Mejia, Gilberto B. Gaitan, Mauricio A. Franco

Abstract:

420 steel is normally used in the manufacture of dental and surgical instrumentation, as well as parts in the chemical, pharmaceutical, and food industries, among others, where they must withstand heavy loads and often be in contact with corrosive environments, which leads to wear and deterioration of these steels in relatively short times. In the case of medical applications, the instruments made of this steel also suffer wear and corrosion during the repetitive sterilization processes due to the relatively low achievable hardness of just 50 HRC and its hardly acceptable resistance to corrosion. In order to improve the wear resistance of 420 steel, TiAlN coatings were deposited, increasing the aluminum content in the alloy by varying the power applied to the aluminum target of 900, 1100, and 1300 W. Evaluations using XRD, Micro Raman, XPS, AFM, SEM, and TEM showed a columnar growth crystal structure with an average thickness of 2 microns and consisting of the TiN and TiAlN phases, whose roughness and grain size decrease with a higher Al content. The AlN phase also appears in the sample deposited at 1300W. The hardness, determined by nanoindentation, initially increases with the aluminum content from 9.7 GPa to 17.1 GPa, but then decreases to 15.4 GPa for the sample with the highest aluminum content due to the appearance of hexagonal AlN and a decrease of harder TiN and TiAlN phases. It was observed that the wear coefficient had a contrary behavior, which took values of 2.7; 1.7 and 6.6x10⁻⁶ mm³/N.m, respectively. All the coated samples significantly improved the wear resistance of the uncoated 420 steel.

Keywords: hard coatings, magnetron sputtering, TiAlN coatings, surgical instruments, wear resistance

Procedia PDF Downloads 101
3090 Surveillance of Artemisinin Resistance Markers and Their Impact on Treatment Outcomes in Malaria Patients in an Endemic Area of South-Western Nigeria

Authors: Abiodun Amusan, Olugbenga Akinola, Kazeem Akano, María Hernández-Castañeda, Jenna Dick, Akintunde Sowunmi, Geoffrey Hart, Grace Gbotosho

Abstract:

Introduction: Artemisinin-based Combination Therapy (ACTs) is the cornerstone malaria treatment option in most malaria-endemic countries. Unfortunately, the malaria control effort is constantly being threatened by resistance of Plasmodium falciparum to ACTs. The recent evidence of artemisinin resistance in East Africa and its possibility of spreading to other African regions portends an imminent health catastrophe. This study aimed at evaluating the occurrence, prevalence, and influence of artemisinin-resistance markers on treatment outcomes in Ibadan before and after post-adoption of artemisinin combination therapy (ACTs) in Nigeria in 2005. Method: The study involved day zero dry blood spot (DBS) obtained from malaria patients during retrospective (2000-2005) and prospective (2021) studies. A cohort in the prospective study received oral dihydroartemisinin-piperaquine and underwent a 42-day follow-up to observe treatment outcomes. Genomic DNA was extracted from the DBS samples using a QIAamp blood extraction kit. Fragments of P. falciparum kelch13 (Pfkelch13), P. falciparum coronin (Pfcoronin), P. falciparum multidrug resistance 2 (PfMDR2), and P. falciparum chloroquine resistance transporter (PfCRT) genes were amplified and sequenced on a sanger sequencing platform to identify artemisinin resistance-associated mutations. Mutations were identified by aligning sequenced data with reference sequences obtained from the National Center for Biotechnology Information. Data were analyzed using descriptive statistics and student t-tests. Results: Mean parasite clearance time (PCT) and fever clearance time (FCT) were 2.1 ± 0.6 days (95% CI: 1.97-2.24) and 1.3 ± 0.7 days (95% CI: 1.1-1.6) respectively. Four mutations, K189T [34/53(64.2%)], R255K [2/53(3.8%)], K189N [1/53(1.9%)] and N217H [1/53(1.9%)] were identified within the N-terminal (Coiled-coil containing) domain of Pfkelch13. No artemisinin resistance-associated mutation usually found within the β-propeller domain of the Pfkelch13 gene was found in these analyzed samples. However, K189T and R255K mutations showed a significant correlation with longer parasite clearance time in the patients (P<0.002). The observed Pfkelch13 gene changes did not influence the baseline mean parasitemia (P = 0.44). P76S [17/100 (17%)] and V62M [1/100 (1%)] changes were identified in the Pfcoronin gene fragment without any influence on the parasitological parameters. No change was observed in the PfMDR2 gene, while no artemisinin resistance-associated mutation was found in the PfCRT gene. Furthermore, a sample each in the retrospective study contained the Pfkelch13 K189T and Pfcoronin P76S mutations. Conclusion: The study revealed absence of genetic-based evidence of artemisinin resistance in the study population at the time of study. The high frequency of K189T Pfkelch13 mutation and its correlation with increased parasite clearance time in this study may depict geographical variation of resistance mediators and imminent artemisinin resistance, respectively. The study also revealed an inherent potential of parasites to harbour drug-resistant genotypes before the introduction of ACTs in Nigeria.

Keywords: artemisinin resistance, plasmodium falciparum, Pfkelch13 mutations, Pfcoronin

Procedia PDF Downloads 22
3089 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment

Authors: Innocent O. Arukalam, Emeka E. Oguzie

Abstract:

Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.

Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation

Procedia PDF Downloads 65
3088 Investigation of Rifampicin and Isoniazid Resistance Mutated Genes in Mycobacterium Tuberculosis Isolated From Patients

Authors: Seyyed Mohammad Amin Mousavi Sagharchi, Alireza Mahmoudi Nasab, Tim Bakker

Abstract:

Introduction: Mycobacterium tuberculosis (MTB) is the most intelligent bacterium that existed in the world to our best knowledge. This bacterium can cause tuberculosis (TB) which is responsible for its spread speed and murder of millions of people around the world. MTB has the practical function to escape from anti-tuberculosis drugs (AT), for this purpose, it handles some mutations in the main genes and creates new patterns for inhibited genes. Method and materials: Researchers have their best tries to safely isolate MTB from the sputum specimens of 35 patients in some hospitals in the Tehran province and detect MTB by culture on Löwenstein-Jensen (LJ) medium and microscopic examination. DNA was extracted from the established bacterial colony by enzymatic extraction method. It was amplified by the polymerase chain reaction (PCR) method, reverse hybridization, and evaluation for detection of resistance genes; generally, researchers apply GenoType MTBDRplus assay. Results: Investigations of results declare us that 21 of the isolated specimens (about 60%) have mutation in rpoB gene, which resisted to rifampicin (most prevalence), and 8 of them (about 22.8%) have mutation in katG or inhA genes which resisted to isoniazid. Also, 4 of them (about 11.4%) don't have any mutation, and 2 of them (about 5.7%) have mutation in every three genes, which makes them resistant to the two drugs mentioned above. Conclusion: Rifampicin and isoniazid are two essential AT that using in the first line of treatment. Resistance in rpoB, and katG, and inhA genes related to mentioned drugs lead to ineffective treatment.

Keywords: mycobacterium tuberculosis, tuberculosis, drug resistance, isoniazid, rifampicin

Procedia PDF Downloads 64
3087 Comparative Study of Mechanical and Corrosion Behaviors on Heat Treated Steel Alloys

Authors: Mario Robinson, Moe Rabea

Abstract:

This research examines the effects of heat treatment processes on the mechanical properties and corrosion resistanceof1045 and 4140 Steel Alloysfor industrial applications. Heat treatment processes of full annealing, normalizing, quenching, and tempering are carried out on the alloy samples. The mechanical and corrosion resistance tests of the heat treated samples are carried out, and the results obtained are related to their SEMmorphologies analysis. The results show that the heat treatment processes have an effect on the tensile strength, impact, and a significant effect on the corrosion resistance of the alloy samples. With respect to the strain characteristics, significant improvement in the ductility of the samples is recorded in the full annealing and alloy tempered samples. Thus, for application requiring strength and ductility, such as in aerospace industries, this tempered heat treated alloy could be used. In addition, the quenched sample shows a significant improvement in hardness.

Keywords: heat treatment, corrosion resistance, steel, industrial appilcations

Procedia PDF Downloads 151
3086 Sub-Chronic Exposure to Dexamethasone Impairs Cognitive Function and Insulin in Prefrontal Cortex of Male Wistar Rats

Authors: A. Alli-Oluwafuyi, A. Amin, S. M. Fii, S. O. Amusa, A. Imam, N. T. Asogwa, W. I. Abdulmajeed, F. Olaseinde, B. V. Owoyele

Abstract:

Chronic stress or prolonged glucocorticoid administration impairs higher cognitive functions in rodents and humans. However, the mechanisms are not fully clear. Insulin and receptors are expressed in the brain and are involved in cognition. Insulin resistance accompanies Alzheimer’s disease and associated cognitive decline. The goal of this study was to evaluate the effects of sub-chronic administration of a glucocorticoid, dexamethasone (DEX) on behavior and biochemical changes in prefrontal cortex (PFC). Male Wistar rats were administered DEX (2, 4 & 8 mg/kg, IP) or saline for seven consecutive days and behavior was assessed in the following paradigms: “Y” maze, elevated plus maze, Morris’ water maze and novel object recognition (NOR) tests. Insulin, lactate dehydrogenase (LDH) and Superoxide Dismutase (SOD) activity were evaluated in homogenates of the prefrontal cortex. DEX-treated rats exhibited impaired prefrontal cortex function manifesting as reduced locomotion, impaired novel object exploration and impaired short- and long-term spatial memory compared to normal controls (p < 0.05). These effects were not consistently dose-dependent. These behavioral alterations were accompanied by a decrease in insulin concentration observed in PFC of 4 mg/kg DEX-treated rats compared to control (10μIU/mg vs. 50μIU/mg; p < 0.05) but not 2mg/kg. Furthermore, we report a modification of brain stress markers LDH and SOD (p > 0.05). These results indicate that prolonged activation of GCs disrupt prefrontal cortex function which may be related to insulin impairment. These effects may not be attributable to a non-specific elevation of oxidative stress in the brain. Future studies would evaluate mechanisms of GR-induced insulin loss.

Keywords: dexamethasone, insulin, memory, prefrontal cortex

Procedia PDF Downloads 253
3085 Surpassing Antibiotic Resistance through Synergistic Effects of Polyethyleneimine-Silver Nanoparticle Complex Coated Mesoporous Silica Trio-Nanoconstructs

Authors: Ranjith Kumar Kankala, Wei-Zhi Lin, Chia-Hung Lee

Abstract:

Antibiotic resistance in bacteria has become an emergency situation clinically. To improve the efficacy of antibiotics in resistant strains, advancement of nanoparticles is inevitable than ever. Herewith, we demonstrate a design by immobilizing tetracycline (TET) in copper substituted mesoporous silica nanoparticles (Cu-MSNs) through a pH-sensitive coordination link, enabling its release in the acidic environment. Subsequently, MSNs are coated with silver nanoparticles stabilized polyethyleneimine (PEI-SNP) to act against drug-resistant (MDR) bacterial strains. Silver ions released from SNP are capable of sensitizing the resistant strains and facilitate the generation of free radicals capable of damaging the cell components. In addition, copper ions in the framework are also capable of generating free radicals through Fenton-like reaction. Furthermore, the nanoparticles are well-characterized physically, and various antibacterial efficacious tests against isolated multidrug resistant bacterial strain were highly commendable. However, this formulation has no significant toxic effect on normal mammalian fibroblast cells accounting its high biocompatibility. These MSN trio-hybrids, i.e., SNP, tetracycline, and copper ions result in synergistic effects, and their advancement could bypass resistance and allow synergism for effective treatment of antibiotic clinically.

Keywords: antibiotic resistance, copper, mesoporous silica nanoparticles, Ph-sensitive release, polyethyleneimine, silver, tetracycline

Procedia PDF Downloads 175
3084 The Effect of Vibration Amplitude on Tissue Temperature and Lesion Size When Using a Vibrating Cardiac Catheter

Authors: Kaihong Yu, Tetsui Yamashita, Shigeaki Shingyochi, Kazuo Matsumoto, Makoto Ohta

Abstract:

During cardiac ablation, high power delivery for deeper lesion formation is limited by electrode-tissue interface overheating which can cause serious complications such as thrombus. To prevent this overheating, temperature control and open irrigation are often used. In temperature control, radiofrequency generator is adjusted to deliver the maximum output power, which maintains the electrode temperature at a target temperature (commonly 55°C or 60°C). Then the electrode-tissue interface temperature is also limited. The electrode temperature is a result of heating from the contacted tissue and cooling from the surrounding blood. Because the cooling from blood is decreased under conditions of low blood flow, the generator needs to decrease the output power. Thus, temperature control cannot deliver high power under conditions of low blood flow. In open irrigation, saline in room temperature is flushed through the holes arranged in the electrode. The electrode-tissue interface is cooled by the sufficient environmental cooling. And high power delivery can also be done under conditions of low blood flow. However, a large amount of saline infusions (approximately 1500 ml) during irrigation can cause other serious complication. When open irrigation cannot be used under conditions of low blood flow, a new overheating prevention may be required. The authors have proposed a new electrode cooling method by making the catheter vibrating. The previous work has introduced that the vibration can make a cooling effect on electrode, which may result form that the vibration could increase the flow velocity around the catheter. The previous work has also proved that increasing vibration frequency can increase the cooling by vibration. However, the effect of the vibration amplitude is still unknown. Thus, the present study investigated the effect of vibration amplitude on tissue temperature and lesion size. An agar phantom model was used as a tissue-equivalent material for measuring tissue temperature. Thermocouples were inserted into the agar to measure the internal temperature. Porcine myocardium was used for lesion size measurement. A normal ablation catheter was set perpendicular to the tissue (agar or porcine myocardium) with 10 gf contact force in 37°C saline without flow. Vibration amplitude of ± 0.5, ± 0.75, and ± 1.0 mm with a constant frequency (31 Hz or 63) was used. A temperature control protocol (45°C for agar phantom, 60°C for porcine myocardium) was used for the radiofrequency applications. The larger amplitude shows the larger lesion sizes. And the higher tissue temperatures in agar phantom are also shown with the higher amplitude. With a same frequency, the larger amplitude has the higher vibrating speed. And the higher vibrating speed will increase the flow velocity around the electrode more, which leads to a larger electrode temperature decrease. To maintain the electrode at the target temperature, ablator has to increase the output power. With the higher output power in the same duration, the released energy also increases. Consequently, the tissue temperature will be increased and lead to larger lesion sizes.

Keywords: cardiac ablation, electrode cooling, lesion size, tissue temperature

Procedia PDF Downloads 351
3083 Loss of Function of Only One of Two CPR5 Paralogs Causes Resistance Against Rice Yellow Mottle Virus

Authors: Yugander Arra, Florence Auguy, Melissa Stiebner, Sophie Chéron, Michael M. Wudick, Van Schepler-Luu, Sébastien Cunnac, Wolf B. Frommer, Laurence Albar

Abstract:

Rice yellow mottle virus (RYMV) is one of the most important diseases affecting rice in Africa. The most promising strategy to reduce yield losses is the use of highly resistant varieties. The resistance gene RYMV2 is homolog of the Arabidopsis constitutive expression of pathogenesis related protein-5 (AtCPR5) nucleoporin gene. Resistance alleles are originating from African cultivated rice Oryza glaberrima, rarely cultivated, and are characterized by frameshifts or early stop codons, leading to a non-functional or truncated protein. Rice possesses two paralogs of CPR5 and function of these genes are unclear. Here, we evaluated the role of the two rice candidate nucleoporin paralogs OsCPR5.1 (pathogenesis-related gene 5; RYMV2) and OsCPR5.2 by CRISPR/Cas9 genome editing. Despite striking sequence and structural similarity, only loss-of-function of OsCPR5.1 led to full resistance, while loss-of-function oscpr5.2 mutants remained susceptible. Short N-terminal deletions in OsCPR5.1 also did not lead to resistance. In contrast to Atcpr5 mutants, neither OsCPR5.1 nor OsCPR5.2 knock out mutants showed substantial growth defects. Taken together, the candidate nucleoporin OsCPR5.1, but not its close homolog OsCPR5.2, plays a specific role for the susceptibility to RYMV, possibly by impairing the import of viral RNA or protein into the nucleus. Whereas gene introgression from O. glaberrima to high yielding O. sativa varieties is impaired by strong sterility barriers and the negative impact of linkage drag, genome editing of OsCPR5.1, while maintaining OsCPR5.2 activity, thus provides a promising strategy to generate O. sativa elite lines that are resistant to RYMV.

Keywords: CRISPR Cas9, genome editing, knock out mutant, recessive resistance, rice yellow mottle virus

Procedia PDF Downloads 88
3082 The Influence of Steel Connection on Fire Resistance of Composite Steel-Framed Buildings

Authors: Mohammed Kadhim, Zhaohui Huang

Abstract:

Steel connections can play an important role in enhancing the robustness of structures under fire conditions. Therefore, it is significant to examine the influence of steel connections on the fire resistance of composite steel-framed buildings. In this paper, both the behavior of steel connections and their influence on composite steel frame are analyzed using the non-linear finite element computer software VULCAN at ambient and elevated temperatures. The chosen frame is subjected to ISO834 fire. The comparison between end plate connections, pinned connection, and rigid connection has been carried out. By applying different compartment fires, some cases are studied to show the behavior of steel connection when the fire is applied at certain beams. In addition, different plate thickness and deferent applied loads have been analyzed to examine the behavior of chosen steel connection under ISO834 fire. It was found from the analytical results that the beam with extended end plate is stronger and has better performance in terms of axial forces than those beams with flush end plate connection. It was also found that extended end plate connection has highest limiting temperatures compared to the flush end plate connection. In addition, it was found that the performance of end-plate connections is very close to rigid connection and very far from pinned connections. Furthermore, plate thickness has less effect on the influence of steel connection on fire resistance. In conclusion, the behavior of composite steel framed buildings is largely dependent on the steel connection due to their high impact under fire condition. It is recommended to consider the extended end-plate in the design proposes because of its higher properties compared to the flush end plate connection. Finally, this paper shows a steel connection has an important effect on the fire resistance of composite steel framed buildings.

Keywords: composite steel-framed buildings, connection behavior, end-plate connections, finite element modeling, fire resistance

Procedia PDF Downloads 128
3081 Effect of Honey on Rate of Healing of Socket after Tooth Extraction in Rabbits

Authors: Deependra Prasad Sarraf, Ashish Shrestha, Mehul Rajesh Jaisani, Gajendra Prasad Rauniar

Abstract:

Background: Honey is the worlds’ oldest known wound dressing. Its wound healing properties are not fully established till today. Concerns about antibiotic resistance, and a renewed interest in natural remedies have prompted the resurgence in the antimicrobial and wound healing properties of Honey. Evidence from animal studies and some trials has suggested that honey may accelerate wound healing in burns, infected wounds and open wounds. None of these reports have documented the effect of honey on the healing of socket after tooth extraction. Therefore, the present experimental study was planned to evaluate the efficacy of honey on the healing of socket after tooth extraction in rabbits. Materials and Methods: An experimental study was conducted in six New Zealand White rabbits. Extraction of first premolar tooth on both sides of the lower jaw was done under anesthesia produced by Ketamine and Xylazine followed by application of honey on one socket (test group) and normal saline (control group) in the opposite socket. The intervention was continued for two more days. On the 7th day, the biopsy was taken from the extraction site, and histopathological examination was done. Student’s t-test was used for comparison between the groups and differences were considered to be statistically significant at p-value less than 0.05. Results: There was a significant difference between control group and test group in terms of fibroblast proliferation (p = 0.0019) and bony trabeculae formation (p=0.0003). Inflammatory cells were also observed in both groups, and it was not significant (p=1.0). Overlying epithelium was hyperplastic in both the groups. Conclusion: The study showed that local application of honey promoted the rapid healing process particularly by increasing fibroblast proliferation and bony trabeculae.

Keywords: honey, extraction wound, Nepal, healing

Procedia PDF Downloads 270
3080 Genome Sequencing and Analysis of the Spontaneous Nanosilver Resistant Bacterium Proteus mirabilis Strain scdr1

Authors: Amr Saeb, Khalid Al-Rubeaan, Mohamed Abouelhoda, Manojkumar Selvaraju, Hamsa Tayeb

Abstract:

Background: P. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in diabetic foot ulcer (DFU) patients. Methodology: P. mirabilis SCDR1 was isolated from a diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against nano-silver colloids, the commercial nano-silver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis and pathogenomics in the identification and characterization of the infectious pathogen. Results: P. mirabilis SCDR1 is a multi-drug resistant isolate that also showed high levels of resistance against nano-silver colloids, nano-silver chitosan composite and the commercially available nano-silver and silver bandages. The P. mirabilis-SCDR1 genome size is 3,815,621 bp with G+C content of 38.44%. P. mirabilis-SCDR1 genome contains a total of 3,533 genes, 3,414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S), and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, wound, it can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification. Conclusion: P. mirabilis SCDR1 is the spontaneous nano-silver resistant bacterial strain. P. mirabilis SCDR1 strain contains all reported pathogenic and virulence factors characteristic for the species. In addition, it possesses several mechanisms that may lead to the observed nano-silver resistance.

Keywords: Proteus mirabilis, multi-drug resistance, silver nanoparticles, resistance, next generation sequencing techniques, genome analysis, bioinformatics, phylogeny, pathogenomics, diabetic foot ulcer, xenobiotics, multidrug resistance efflux, biofilm formation, swarming mobility, resistome, glutathione S-transferase, copper/silver efflux system, altruism

Procedia PDF Downloads 310
3079 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History

Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu

Abstract:

Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.

Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation

Procedia PDF Downloads 207
3078 Evaluation of Antibiotic Resistance and Extended-Spectrum β-Lactamases Production Rates of Gram Negative Rods in a University Research and Practice Hospital, 2012-2015

Authors: Recep Kesli, Cengiz Demir, Onur Turkyilmaz, Hayriye Tokay

Abstract:

Objective: Gram-negative rods are a large group of bacteria, and include many families, genera, and species. Most clinical isolates belong to the family Enterobacteriaceae. Resistance due to the production of extended-spectrum β-lactamases (ESBLs) is a difficulty in the handling of Enterobacteriaceae infections, but other mechanisms of resistance are also emerging, leading to multidrug resistance and threatening to create panresistant species. We aimed in this study to evaluate resistance rates of Gram-negative rods bacteria isolated from clinical specimens in Microbiology Laboratory, Afyon Kocatepe University, ANS Research and Practice Hospital, between October 2012 and September 2015. Methods: The Gram-negative rods strains were identified by conventional methods and VITEK 2 automated identification system (bio-Mérieux, Marcy l’etoile, France). Antibiotic resistance tests were performed by both the Kirby-Bauer disk-diffusion and automated Antimicrobial Susceptibility Testing (AST, bio-Mérieux, Marcy l’etoile, France) methods. Disk diffusion results were evaluated according to the standards of Clinical and Laboratory Standards Institute (CLSI). Results: Of the totally isolated 1.701 Enterobacteriaceae strains 1434 (84,3%) were Klebsiella pneumoniae, 171 (10%) were Enterobacter spp., 96 (5.6%) were Proteus spp., and 639 Nonfermenting gram negatives, 477 (74.6%) were identified as Pseudomonas aeruginosa, 135 (21.1%) were Acinetobacter baumannii and 27 (4.3%) were Stenotrophomonas maltophilia. The ESBL positivity rate of the totally studied Enterobacteriaceae group were 30.4%. Antibiotic resistance rates for Klebsiella pneumoniae were as follows: amikacin 30.4%, gentamicin 40.1%, ampicillin-sulbactam 64.5%, cefepime 56.7%, cefoxitin 35.3%, ceftazidime 66.8%, ciprofloxacin 65.2%, ertapenem 22.8%, imipenem 20.5%, meropenem 20.5 %, and trimethoprim-sulfamethoxazole 50.1%, and for 114 Enterobacter spp were detected as; amikacin 26.3%, gentamicin 31.5%, cefepime 26.3%, ceftazidime 61.4%, ciprofloxacin 8.7%, ertapenem 8.7%, imipenem 12.2%, meropenem 12.2%, and trimethoprim-sulfamethoxazole 19.2 %. Resistance rates for Proteus spp. were: 24,3% meropenem, 26.2% imipenem, 20.2% amikacin 10.5% cefepim, 33.3% ciprofloxacin and levofloxacine, 31.6% ceftazidime, 20% ceftriaxone, 15.2% gentamicin, 26.6% amoxicillin-clavulanate, and 26.2% trimethoprim-sulfamethoxale. Resistance rates of P. aeruginosa was found as follows: Amikacin 32%, gentamicin 42 %, imipenem 43%, merpenem 43%, ciprofloxacin 50%, levofloxacin 52%, cefepim 38%, ceftazidim 63%, piperacillin/tacobactam 85%, for Acinetobacter baumannii; Amikacin 53.3%, gentamicin 56.6 %, imipenem 83%, merpenem 86%, ciprofloxacin 100%, ceftazidim 100%, piperacillin/tacobactam 85 %, colisitn 0 %, and for S. malthophilia; levofloxacin 66.6 % and trimethoprim/sulfamethoxozole 0 %. Conclusions: This study showed that resistance in Gram-negative rods was a serious clinical problem in our hospital and suggested the need to perform typification of the isolated bacteria with susceptibility testing regularly in the routine laboratory procedures. This application guided to empirical antibiotic treatment choices truly, as a consequence of the reality that each hospital shows different resistance profiles.

Keywords: antibiotic resistance, gram negative rods, ESBL, VITEK 2

Procedia PDF Downloads 307
3077 Achieving Appropriate Use of Antibiotics through Pharmacists’ Intervention at Practice Point: An Indian Study Report

Authors: Parimalakrishnan Sundararjan, Madheswaran Murugan, Dhanya Dharman, Yatindra Kumar, Sudhir Singh Gangwar, Guru Prasad Mohanta

Abstract:

Antibiotic resistance AR is a global issue, India started to redress the issues of antibiotic resistance late and it plans to have: active surveillance of microbial resistance and promote appropriate use of antibiotics. The present study attempted to achieve appropriate use of antibiotics through pharmacists’ intervention at practice point. In a quasi-experimental prospective cohort study, the cases with bacteremia from four hospitals were identified during 2015 and 2016 for intervention. The pharmacists centered intervention: active screening of each prescription and comparing with the selection of antibiotics with susceptibility of the bacteria. Wherever irrationality noticed, it was brought to the notice of the treating physician for making changes. There were two groups: intervention group and control group without intervention. The active screening and intervention in 915 patients has reduced therapeutic regimen time in patients with bacteremia. The intervention group showed the decreased duration of hospital stay 3.4 days from 5.1 days. Further, multivariate modeling of patients who were in control group showed that patients in the intervention group had a significant decrease in both duration of hospital stay and infection-related mortality. Unlike developed countries, pharmacists are not active partners in patient care in India. This unique attempt of pharmacist’ invention was planned in consultation with hospital authorities which proved beneficial in terms of reducing the duration of treatment, hospital stay, and infection-related mortality. This establishes the need for a collaborative decision making among the health workforce in patient care at least for promoting rational use of antibiotics, an attempt to combat resistance.

Keywords: antibiotics resistance, intervention, bacteremia, multivariate modeling

Procedia PDF Downloads 159
3076 Oleuropein Ameliorates Palmitate-Induced Insulin Resistance by Increasing GLUT4 Translocation through Activation of AMP-Activated Protein Kinase in Rat Soleus Muscles

Authors: Hakam Alkhateeb

Abstract:

Oleuropein, the main constituent of leaves and fruits of the olive tree, has been demonstrated to exert beneficial effects on parameters relevant to the normal homeostatic mechanisms of glucose regulation in rat skeletal muscle. However, the antidiabetic effect of oleuropein, to our knowledge, has not been examined. Therefore, in this study, we examined whether oleuropein ameliorated palmitate-induced insulin resistance in skeletal muscle. To examine this question, insulin resistance was rapidly induced by incubating (12h) soleus muscle with a high concentration of palmitate(2mM). Subsequently, we attempted to restore insulin sensitivity by incubating (12h) muscles with oleuropien (1.5mM), while maintaining high concentrations of palmitate. Palmitate treatment for 12 h reduced insulin-stimulated glucose transport, GLUT4 translocationandAS160 phosphorylation. Oleuropein treatment (12 h) fully restoredinsulin-stimulated glucose transport, GLUT4translocationandAS160 phosphorylation. Inhibition of PI3K phosphorylation with wortmannin (1µM)did not affect the oleuropein-induced improvements in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. These results suggested that the improvements in these parameters cannot account for activating PI3K pathway. Taken altogether, it appears that oleuropein, through activation of another pathway like activated protein kinase (AMPK), may provide a possible strategy by which they ameliorate palmitate-induced insulin resistance in skeletal muscles.

Keywords: AS160, diabetes, GLUT4, oleuropein

Procedia PDF Downloads 194
3075 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method

Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk

Abstract:

In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.

Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS

Procedia PDF Downloads 172
3074 A Prospective Study on the Pattern of Antibiotics Use and Prevalence of Multidrug Resistant Escherichia Coli in Poultry Chickens and Its Correlation with Urinary Tract Infection

Authors: Stelvin Sebastian, Andriya Annie Tom, Joyalanna Babu, Merin Joshy

Abstract:

Introduction: The worldwide increase in the use of antibiotics in poultry and livestock industry to treat and prevent bacterial diseases and as growth promoters in feeds has led to the problem of development of antibiotic resistance both in animals and human population. Aim: To study the pattern of antibiotic use and prevalence of multidrug-resistant Escherichia coli in poultry chickens in selected farms in Muvattupuzha and to compare the spread of multidrug-resistant bacteria from poultry environment to UTI patients. Methodology: Two farms from each of 6 localities in Muvattupuzha were selected. A questionnaire on the pattern of antibiotic use and various farming practices were surveyed from farms. From each farm, 60samples of fresh fecal matter, litter from inside, litter from the outside shed, agricultural soil and control soil were collected, and antimicrobial susceptibility testing of E. coli was done. Antibiogram of UTI patients was collected from the secondary care hospital included in the study, and those were compared with resistance patterns of poultry samples. Results: From survey response antibiotics such as ofloxacin, enrofloxacin, levofloxacin, ciprofloxacin, colistin, ceftriaxone, neomycin, cephalexin, and oxytetracycline were used for treatment and prevention of infections in poultry. 31of 48 samples (51.66%) showed E. coli growth. 7 of 15 antibiotics (46.6%) showed resistance. Ampicillin, amoxicillin, meropenem, tetracycline showed 100% resistance to all samples. Statistical analysis confirmed similar resistance pattern in the poultry environment and UTI patients for antibiotics such as ampicillin, amoxicillin, amikacin, and ofloxacin. Conclusion: E. coli were resistant not only to extended-spectrum beta-lactams but also to carbapenems, which may be disseminated to the environment where litter was used as manure. This may due to irrational use of antibiotics in chicken or from their use in poultry feed as growth promoters. The study concludes the presence of multidrug-resistant E.coli in poultry and its spread to environment and humans, which may cause potentially serious implications for human health.

Keywords: multidrug resistance, escherichia coli, urinary tract infection, poultry

Procedia PDF Downloads 127
3073 Varietal Behavior of Some Chickpea Genotypes to Wilt Disease Induced by Fusarium oxysporum f.sp. ciceris

Authors: Rouag N., Khalifa M. W., Bencheikh A., Abed H.

Abstract:

The behavior study of forty-two varieties and genotypes of chickpeas regarding root wilt disease induced by Fusarium oxysporum under the natural conditions of infection was conducted at the ITGC experimental station in Sétif. The infected plants of the different chickpea genotypes have shown multiple symptoms in the field caused by the local strain of Fusarium oxysporum f.sp.cecris belonging to race II of the pathogen. These symptoms ranged from lateral or partial wilting of some ramifications to total desiccation of the plant, sometimes combined with the very slow growth of symptomatic plants. The results of the search for sources of resistance to Fusarium wilt of chickpeas in the 42 genotypes tested revealed that in terms of infection rate, the presence of 7 groups and no genotype showed absolute resistance. While in terms of severity, the results revealed the presence of three homogeneous groups. The first group formed by the most resistant genotypes, in this case, Flip10-368C; Flip11-77C; Flip11-186C; Flip11-124C; Flip11-142C, Flip11-152C; Flip11-69C; Ghab 05; Flip11-159C; Flip11-90C; Flip10-357C and Flip11-37C while the second group is the FLIP genotype 10-382C which was found to be the most sensitive for the natural infection test. Thus, the genotypes of Cicer arietinum L., which have shown significant levels of resistance to Fusarium wilt, can be integrated into breeding and improvement programs.

Keywords: chickpea, Cicer arietinum, Fusarium oxysporum, genotype resistance

Procedia PDF Downloads 59
3072 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: artificial joints, plasma surface modification, UHMWPE, vitamin E, wear

Procedia PDF Downloads 286
3071 Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement

Authors: Zhuomin Zou, Thijs Van Landeghem, Elke Gruyaert

Abstract:

Using supplementary cementitious materials, such as blast-furnace slag and limestone, to replace cement clinker is a promising method to reduce the carbon emissions from cement production. To efficiently use slag and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. The Portland cement (PC) was prepared by grinding 95% clinker + 5% gypsum. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., NO.1 fine slag, medium PC, and coarse limestone; NO.2 fine limestone, medium PC, and coarse slag; NO.3. fine PC, medium slag, and coarse limestone. The binder contents in the ternary cements were (a) 50 % PC, 40 % slag, and 10 % limestone (called high cement group) or (b) 35 % PC, 55 % slag, and 10 % limestone (called low cement group). The pure PC and binary cement with 50% slag and 50% PC prepared with the same binders as the ternary cement were considered as reference cements. All these cements were used to investigate the mortar performance in terms of workability, strength at 2, 7, 28, and 90 days, carbonation resistance, and non-steady state chloride migration resistance at 28 and 56 days. Results show that blending medium PC with fine slag could exhibit comparable performance to blending fine PC with medium/coarse slag in binary cement. For the three ternary cements in the high cement group, ternary cement with fine limestone (NO.2) shows the lowest strength, carbonation, and chloride migration performance. Ternary cements with fine slag (NO.1) and with fine PC (NO.3) show the highest flexural strength at early and late ages, respectively. In addition, compared with ternary cement with fine PC (NO.3), ternary cement with fine slag (NO.1) has a similar carbonation resistance and a better chloride migration resistance. For the low cement group, three ternary cements have a similar flexural and compressive strength before 7 days. After 28 days, ternary cement with fine limestone (NO.2) shows the highest flexural strength while fine PC (NO.3) has the highest compressive strength. In addition, ternary cement with fine slag (NO.1) shows a better chloride migration resistance but a lower carbonation resistance compared with the other two ternary cements. Moreover, the durability performance of ternary cement with fine PC (NO.3) is better than that of fine limestone (NO.2).

Keywords: limestone, particle size distribution, slag, ternary cement

Procedia PDF Downloads 100
3070 The Antioxidant and Antinociceptive Effects of Curcumin in Experimentally Induced Pain in Rats

Authors: Valeriu Mihai But, Sorana Daniela Bolboacă, Adriana Elena Bulboacă

Abstract:

The nutraceutical compound Curcumin (Curcuma longa L.) is known for its anti-inflammatory, anti-cancer, and antioxidant effects. This study aimed to evaluate the antioxidative and analgesic effects of Curcumin (CC) compared to Tramadol (T) in chemical-induced nociceptive pain in rats. Thirty-five rats were randomly divided into five groups of seven rats each and were treated as follows: C group (control group): treated with saline solution 0.9%, (1 ml, i.p. administration), ethanoic acid (EA) group: pretreated with saline solution 0.9% - 30 min before EA nociceptive pain induction, (1 ml, i.p. administration), T group: pretreated with Tramadol, 10 mg/kg body weight (bw), i.p. administration - 30 min before EA nociceptive pain induction, CC1-group: pretreated with 1 mg/100g bw Curcumin i.p. administration - 2 days before EA pain induction and CC2-group: pretreated with Curcumin 2 mg/100g bw i.p. administration - 2 days before EA nociceptive pain induction. The following oxidative stress parameters were assessed: malondialdehyde (MDA), nitric oxide (NOx), total oxidative status (TOS), total antioxidative capacity (TAC), and thiol (Th). The antalgic activity was measured by the ethanoic acid writhing test. Treatment with Curcumin, both 1 mg/100g bw, and 2 mg/100g bw, showed significant differences as compared with the control group (p<0.001) regarding malondialdehyde (MDA), nitric oxide (NOx), and total oxidative status (TOS) oxidative biomarkers. Pretreatment with 2 mg/100g bw of Curcumin presented a significant decrease in MDA values compared with Tramadol (p<0.001). The TAC significantly increased in pretreatment with Curcumin compared with group control. (p<0.001) The nociceptive response to EA was significantly reduced in Curcumin and Tramadol groups. Treatment with Curcumin at a higher concentration was more effective. In an experimental pain model, this study demonstrates an important antioxidant and antinociceptive activity of Curcumin comparable with Tramadol treatment.

Keywords: curcumin, nociception, oxidative stress, pain

Procedia PDF Downloads 87
3069 Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey

Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu

Abstract:

In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12, Mauremys rivulata = 14, Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. In this study, a total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The Multiple Antibiotic Resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.

Keywords: bacteriological quality, amphibian, reptile, antibiotic, heavy metal resistance

Procedia PDF Downloads 358
3068 The Pressure Losses in the Model of Human Lungs

Authors: Michaela Chovancova, Pavel Niedoba

Abstract:

For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.

Keywords: human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing

Procedia PDF Downloads 333
3067 Resistance of Mycobacterium tuberculosis to Daptomycin

Authors: Ji-Chan Jang

Abstract:

Tuberculosis is still major health problem because there is an increase of multidrug-resistant and extensively drug-resistant forms of the disease. Therefore, the most urgent clinical need is to discover potent agents and develop novel drug combination capable of reducing the duration of MDR and XDR tuberculosis therapy. Three reference strains H37Rv, CDC1551, W-Beijing GC1237 and six clinical isolates of MDRTB were tested to daptomycin in the range of 0.013 to 256 mg/L. Daptomycin is resistant to all tested M. tuberculosis strains not only laboratory strains but also clinical MDR strains that were isolated at different source. Daptomycin will not be an antibiotic of choice for treating infection of Gram positive atypical slowly growing M. tuberculosis.

Keywords: tuberculosis, daptomycin, resistance, Mycobacterium tuberculosis

Procedia PDF Downloads 341
3066 Fecal Prevalence, Serotype Distribution and Antimicrobial Resistance of Salmonella in Dairy Cattle in Central Ethiopia

Authors: Tadesse Eguale, Ephrem Engdawork, Wondwossen Gebreyes, Dainel Asrat, Hile Alemayehu, John Gunn

Abstract:

Salmonella is one of the major zoonotic pathogens affecting wide range of vertebrates and humans worldwide. Consumption of contaminated dairy products and contact with dairy cattle represent the common sources of non-typhoidal Salmonella infection in humans. Fecal samples were collected from 132 dairy herds in central Ethiopia and cultured for Salmonella to determine the prevalence, serotype distribution and antimicrobial susceptibility. Salmonella was recovered from the feces of at least one cattle in 10(7.6%) of the dairy farms. Out of 1193 fecal samples 30(2.5%) were positive for Salmonella. Large farm size, detection of diarrhea in one or more animals during sampling and keeping animals completely indoor compared to occasional grazing outside were associated with Salmonella positivity of the farms. Farm level prevalence of Salmonella was significantly higher in young animals below 6 months of age compared to other age groups(X2=10.24; p=0.04). Nine different serotypes were isolated. The four most frequently recovered serotypes were S. Typhimurium (23.3%),S. Saintpaul (20%) and S. Kentucky and S. Virchow (16.7%) each. All isolates were resistant or intermediately resistant to at least one of the 18 drugs tested. Twenty-six (86.7%), 20(66.7%), 18(60%), 16(53.3%) of the isolates were resistant to streptomycin, nitrofurantoin, sulfisoxazole and tetracycline respectively. Resistance to 2 drugs was detected in 93.3% of the isolates. Resistance to 3 or more drugs were detected in 21(70%) of the total isolates while multi-drug resistance (MDR) to 7 or more drugs were detected in 12 (40%) of the isolates. The rate of occurrence of MDR in Salmonella strains isolated from dairy farms in Addis Ababa was significantly higher than those isolated from farms outside of Addis Ababa((p= 0.009). The detection of high MDR in Salmonella isolates originating from dairy farms warrants the need for strict pathogen reduction strategy in dairy cattle and spread of these MDR strains to human population.

Keywords: salmonella, antimicrobial resistance, fecal prevalence

Procedia PDF Downloads 458
3065 Laboratory Evaluation of Rutting and Fatigue Damage Resistance of Asphalt Mixtures Modified with Carbon Nano Tubes

Authors: Ali Zain Ul Abadeen, Arshad Hussain

Abstract:

Roads are considered as the national capital, and huge developmental budget is spent on its construction, maintenance, and rehabilitation. Due to proliferating traffic volume, heavier loads and challenging environmental factors, the need for high-performance asphalt pavement is increased. In this research, the asphalt mixture was modified with carbon nanotubes ranging from 0.2% to 2% of binder to study the effect of CNT modification on rutting potential and fatigue life of asphalt mixtures. During this study, the conventional and modified asphalt mixture was subjected to a uni-axial dynamic creep test and dry Hamburg wheel tracking test to study rutting resistance. Fatigue behavior of asphalt mixture was studied using a four-point bending test apparatus. The plateau value of asphalt mixture was taken as a measure of fatigue performance according to the ratio of dissipated energy approach. Results of these experiments showed that CNT modified asphalt mixtures had reduced rut depth and increased rutting and fatigue resistance at higher percentages of carbon nanotubes.

Keywords: carbon nanotubes, fatigue, four point bending test, modified asphalt, rutting

Procedia PDF Downloads 117
3064 Exploring Fluoroquinolone-Resistance Dynamics Using a Distinct in Vitro Fermentation Chicken Caeca Model

Authors: Bello Gonzalez T. D. J., Setten Van M., Essen Van A., Brouwer M., Veldman K. T.

Abstract:

Resistance to fluoroquinolones (FQ) has evolved increasingly over the years, posing a significant challenge for the treatment of human infections, particularly gastrointestinal tract infections caused by zoonotic bacteria transmitted through the food chain and environment. In broiler chickens, a relatively high proportion of FQ resistance has been observed in Escherichia coli indicator, Salmonella and Campylobacter isolates. We hypothesize that flumequine (Flu), used as a secondary choice for the treatment of poultry infections, could potentially be associated with a high proportion of FQ resistance. To evaluate this hypothesis, we used an in vitro fermentation chicken caeca model. Two continuous single-stage fermenters were used to simulate in real time the physiological conditions of the chicken caeca microbial content (temperature, pH, caecal content mixing, and anoxic environment). A pool of chicken caecal content containing FQ-resistant E. coli obtained from chickens at slaughter age was used as inoculum along with a spiked FQ-susceptible Campylobacter jejuni strain isolated from broilers. Flu was added to one of the fermenters (Flu-fermenter) every 24 hours for two days to evaluate the selection and maintenance of FQ resistance over time, while the other served as a control (C-Fermenter). The experiment duration was 5 days. Samples were collected at three different time points: before, during and after Flu administration. Serial dilutions were plated on Butzler culture media with and without Flu (8mg/L) and enrofloxacin (4mg/L) and on MacConkey culture media with and without Flu (4mg/L) and enrofloxacin (1mg/L) to determine the proportion of resistant strains over time. Positive cultures were identified by mass spectrometry and matrix-assisted laser desorption/ionization (MALDI). A subset of the obtained isolates were used for Whole Genome Sequencing analysis. Over time, E. coli exhibited positive growth in both fermenters, while C. jejuni growth was detected up to day 3. The proportion of Flu-resistant E. coli strains recovered remained consistent over time after antibiotic selective pressure, while in the C-fermenter, a decrease was observed at day 5; a similar pattern was observed in the enrofloxacin-resistant E. coli strains. This suggests that Flu might play a role in the selection and persistence of enrofloxacin resistance, compared to C-fermenter, where enrofloxacin-resistant E. coli strains appear at a later time. Furthermore, positive growth was detected from both fermenters only on Butzler plates without antibiotics. A subset of C. jejuni strains from the Flu-fermenter revealed that those strains were susceptible to ciprofloxacin (MIC < 0.12 μg/mL). A selection of E. coli strains from both fermenters revealed the presence of plasmid-mediated quinolone resistance (PMQR) (qnr-B19) in only one strain from the C-fermenter belonging to sequence type (ST) 48, and in all from Flu-fermenter belonged to ST189. Our results showed that Flu selective impact on PMQR-positive E. coli strains, while no effect was observed in C. jejuni. Maintenance of Flu-resistance was correlated with antibiotic selective pressure. Further studies into antibiotic resistance gene transfer among commensal and zoonotic bacteria in the chicken caeca content may help to elucidate the resistance spread mechanisms.

Keywords: fluoroquinolone-resistance, escherichia coli, campylobacter jejuni, in vitro model

Procedia PDF Downloads 34
3063 Potentiodynamic Polarization Behavior of Surface Mechanical Attrition Treated AA7075

Authors: Vaibhav Pandey, K. Chattopadhyay, N. C. Santhi Srinivas, Vakil Singh

Abstract:

Aluminium alloy 7075 consist of different intermetallic precipitate particles MgZn2, CuAl2, which result in heterogeneity of micro structure and influence the corrosion properties of the alloy. Artificial ageing was found to enhance the strength properties, but highly susceptible to stress-corrosion cracking. Various conventional surface modification techniques are developed for improving corrosion properties of aluminum alloys. This led to development of novel surface mechanical attrition treatment (SMAT) technique the so called ultrasonic shot peening which gives nano-grain structure at surface. In the present investigation the influence of surface mechanical attrition treatment on corrosion behavior of aluminum alloy 7075 was studied in 3.5wt% NaCl solution. Two different size of 1 mm and 3 mm steel balls are used as peening media and SMAT was carried out for different time intervals 5, 15 and 30 minutes. Surface nano-grains/nano-crystallization was observed after SMAT. The formation of nano-grain structure was observed for larger size balls with time of treatment and consequent increase in micro strain. As-SMATed sample with 1 mm balls exhibits better corrosion resistance as compared to that of un-SMATed sample. The enhancement in corrosion resistance may be due to formation of surface nano-grain structure which reduced the electron release rate. In contrast the samples treated with 3 mm balls showed very poor corrosion resistance. A decrease in corrosion resistance was observed with increase in the time of peening. The decrease in corrosion resistance in the shotpeened samples with larger diameter balls may due to increase in microstrain and defect density.

Keywords: aluminum alloy 7075, corrosion, SMAT, ultrasonic shot peening, surface nano-grains

Procedia PDF Downloads 420
3062 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging

Authors: Balakrishna Shetty

Abstract:

Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.

Keywords: stem cells, imaging, DWI, peripheral vascular disease

Procedia PDF Downloads 46