Search results for: functional networks
5236 The Integrated Strategy of Maintenance with a Scientific Analysis
Authors: Mahmoud Meckawey
Abstract:
This research is dealing with one of the most important aspects of maintenance fields, that is Maintenance Strategy. It's the branch which concerns the concepts and the schematic thoughts in how to manage maintenance and how to deal with the defects in the engineering products (buildings, machines, etc.) in general. Through the papers we will act with the followings: i) The Engineering Product & the Technical Systems: When we act with the maintenance process, in a strategic view, we act with an (engineering product) which consists of multi integrated systems. In fact, there is no engineering product with only one system. We will discuss and explain this topic, through which we will derivate a developed definition for the maintenance process. ii) The factors or basis of the functionality efficiency: That is the main factors affect the functional efficiency of the systems and the engineering products, then by this way we can give a technical definition of defects and how they occur. iii) The legality of occurrence of defects (Legal defects and Illegal defects): with which we assume that all the factors of the functionality efficiency been applied, and then we will discuss the results. iv) The Guarantee, the Functional Span Age and the Technical surplus concepts: In the complementation with the above topic, and associated with the Reliability theorems, where we act with the Probability of Failure state, with which we almost interest with the design stages, that is to check and adapt the design of the elements. But in Maintainability we act in a different way as we act with the actual state of the systems. So, we act with the rest of the story that means we have to act with the complementary part of the probability of failure term which refers to the actual surplus of the functionality for the systems.Keywords: engineering product and technical systems, functional span age, legal and illegal defects, technical and functional surplus
Procedia PDF Downloads 4745235 Automatic Calibration of Agent-Based Models Using Deep Neural Networks
Authors: Sima Najafzadehkhoei, George Vega Yon
Abstract:
This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.Keywords: ABM, calibration, CNN, LSTM, epidemiology
Procedia PDF Downloads 235234 Marketing in Post-Pandemic Environment
Authors: Mohammad Mehdizadeh
Abstract:
COVID-19 forced marketers to change their marketing strategies, focusing less on reactive approaches and more on proactive approaches, primarily social media. The next few years will be dominated by employee engagement and customer experience, leading to businesses focusing more on "long-term customer relationships." A large number of marketing strategies need to be employed in an ever-evolving online environment, which is both filled with opportunities and dangers, as well as being an intimidating platform to use, incorporating new and exciting opportunities for businesses and organizations as it constantly evolves. In this article, we examine the effect of social networks on marketing in post-pandemic environments. A descriptive survey is used as the research method. The results show that social networks have a positive and significant impact on marketing in a post-pandemic environment. Among the social networks studied, Instagram, Facebook, and Twitter have the most positive effect on marketing advancement.Keywords: COVID-19, customers, marketing, post-pandemic
Procedia PDF Downloads 865233 Blockchain for IoT Security and Privacy in Healthcare Sector
Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab
Abstract:
The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data
Procedia PDF Downloads 1775232 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1455231 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 775230 The Functional Magnetic Resonance Imaging and the Consumer Behaviour: Reviewing Recent Research
Authors: Mikel Alonso López
Abstract:
In the first decade of the twenty-first century, advanced imaging techniques began to be applied for neuroscience research. The Functional Magnetic Resonance Imaging (fMRI) is one of the most important and most used research techniques for the investigation of emotions, because of its ease to observe the brain areas that oxygenate when performing certain tasks. In this research, we make a review about the main research carried out on the influence of the emotions in the decision-making process that is exposed by using the fMRI.Keywords: decision making, emotions, fMRI, consumer behaviour
Procedia PDF Downloads 4785229 Similarity of the Disposition of the Electrostatic Potential of Tetrazole and Carboxylic Group to Investigate Their Bioisosteric Relationship
Authors: Alya A. Arabi
Abstract:
Bioisosteres are functional groups that can be interchangeably used without affecting the potency of the drug. Bioisosteres have similar pharmacological properties. Bioisosterism is useful for modifying the physicochemical properties of a drug while obeying the Lipinski’s rules. Bioisosteres are key in optimizing the pharmacokinetic and pharmacodynamics properties of a drug. Tetrazole and carboxylate anions are non-classic bioisosteres. Density functional theory was used to obtain the wavefunction of the molecules and the optimized geometries. The quantum theory of atoms in molecules (QTAIM) was used to uncover the similarity of the average electron density in tetrazole and carboxylate anions. This similarity between the bioisosteres capped by a methyl group was valid despite the fact that the groups have different volumes, charges, energies, or electron populations. The biochemical correspondence of tetrazole and carboxylic acid was also determined to be a result of the similarity of the topography of the electrostatic potential (ESP). The ESP demonstrates the pharmacological and biochemical resemblance for a matching “key-and-lock” interaction.Keywords: bioisosteres, carboxylic acid, density functional theory, electrostatic potential, tetrazole
Procedia PDF Downloads 4335228 Literature Review: Microalgae as Functional Foods with Solvent Free Extraction
Authors: Angela Justina Kumalaputri
Abstract:
Indonesia, as a maritime country, has abundant marine living resources yet has not been optimally utilized. So far, we only focusing on fisheries. In the other hand, Indonesia, as the country with the fourth longest coastline, is a very good cultivation place for microalgae. Microalgae can be diversified to many important products, such as food, fuel, pharmaceutical products, functional food, and cosmetics.This research is focusing on the literature study about types of microalgae as sources for functional foods (such as antioxidants), including the contents and the separation methods. The research methods which we use are: (1) Literature study about various microalgaes (2) Literature study about extractions using supercritical fluid of CO₂, which are free from toxic organic solvents, environmentally friendly, and safe for food products. Supercritical fluid extraction using CO₂ (low critical points: temperature at 31.1 oC and pressure at 72.9 bars) could be done at a low temperature which are suitable for temperature labile compounds, low energy, and faster extraction time compared with conventional method of extraction.Keywords: antioxidants, supercritical fluid extraction, solvent-free extraction, microalgae
Procedia PDF Downloads 725227 Hypergraph Models of Metabolism
Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova
Abstract:
In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterize a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.Keywords: complexity, hypergraphs, reciprocity, metabolism
Procedia PDF Downloads 2965226 Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility
Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad
Abstract:
File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.Keywords: wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD Protocol, DHT
Procedia PDF Downloads 4805225 Design and Simulation of All Optical Fiber to the Home Network
Authors: Rahul Malhotra
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 5545224 The Relationship between Functional Movement Screening Test and Prevalence of Musculoskeletal Disorders in Emergency Nurse and Emergency Medical Services Staff Shiraz, Iran, 2017
Authors: Akram Sadat Jafari Roodbandi, Alireza Choobineh, Nazanin Hosseini, Vafa Feyzi
Abstract:
Introduction: Physical fitness and optimum functional movement are essential for efficiently performing job tasks without fatigue and injury. Functional Movement Screening (FMS) tests are used in screening of athletes and military forces. Nurses and emergency medical staff are obliged to perform many physical activities such as transporting patients, CPR operations, etc. due to the nature of their jobs. This study aimed to assess relationship between FMS test score and the prevalence of musculoskeletal disorders (MSDs) in emergency nurses and emergency medical services (EMS) staff. Methods: 134 male and female emergency nurses and EMS technicians participated in this cross-sectional, descriptive-analytical study. After video tutorial and practical training of how to do FMS test, the participants carried out the test while they were wearing comfortable clothes. The final score of the FMS test ranges from 0 to 21. The score of 14 is considered weak in the functional movement base on FMS test protocol. In addition to the demographic data questionnaire, the Nordic musculoskeletal questionnaire was also completed for each participant. SPSS software was used for statistical analysis with a significance level of 0.05. Results: Totally, 49.3% (n=66) of the subjects were female. The mean age and work experience of the subjects were 35.3 ± 8.7 and 11.4 ± 7.7, respectively. The highest prevalence of MSDs was observed at the knee and lower back with 32.8% (n=44) and 23.1% (n=31), respectively. 26 (19.4%) health worker had FMS test score of 14 and less. The results of the Spearman correlation test showed that the FMS test score was significantly associated with MSDs (r=-0.419, p < 0.0001). It meant that MSDs increased with the decrease of the FMS test score. Age, sex, and MSDs were the remaining significant factors in linear regression logistic model with dependent variable of FMS test score. Conclusion: FMS test seems to be a usable screening tool in pre-employment and periodic medical tests for occupations that require physical fitness and optimum functional movements.Keywords: functional movement, musculoskeletal disorders, health care worker, screening test
Procedia PDF Downloads 1295223 The Correlation between Hypomania, Creative Potential and Type of Major in Undergraduate Students
Authors: Dhea Kothari
Abstract:
There is an extensive amount of research that has examined the positive relationship between creativity and hypomania in terms of creative accomplishments, eminence, behaviors, occupations. Previous research had recruited participants based on creative occupations or stages of hypomania or bipolar disorder. This thesis focused on the relationship between hypomania and creative cognitive potential, such as divergent thinking and insight problem-solving. This was examined at an undergraduate educational level by recruiting students majoring in art, majoring in natural sciences (NSCI) and those double majoring in arts and NSCI. Participants were given a modified Alternate Uses Task (AUT) to measure divergent thinking and a set of rebus puzzles to measure insight problem-solving. Both tasks involved a level of overcoming functional fixedness. A negative association was observed between hypomania and originality of responses on the AUT when an object with low functional fixedness was given to all participants. On the other hand, a positive association was found between hypomania and originality of responses on the AUT when an object with high functional fixedness was given to the participants majoring in NSCI. Therefore, the research suggests that an increased ability to overcome functional fixedness might be central to individuals with hypomania and individuals with higher creative cognitive potential.Keywords: creative cognition, convergent thinking, creativity, divergent thinking, insight, major type, problem-solving
Procedia PDF Downloads 935222 Impact of Glycation on Proteomics of Human Serum Albumin: Relevance to Diabetes Associated Pathologies
Authors: Alok Raghav, Jamal Ahmad
Abstract:
Background: Serum albumin glycation and advanced glycation end products (AGE) formation correlates in diabetes and its associated complications. Extensive modified human serum albumin is used to study the biochemical, electrochemical and functional properties in hyperglycemic environment with relevance to diabetes. We evaluate Spectroscopic, side chain modifications, amino acid analysis, biochemical and functional group properties in four glucose modified samples. Methods: A series four human serum albumin samples modified with glucose was characterized in terms of amino acid analysis, spectroscopic properties and side chain modifications. The diagnostic technique employed incorporates UV Spectroscopy, Fluorescence Spectroscopy, biochemical assays for side chain modifications, amino acid estimations, electrochemical and optical characterstic of glycated albumin. Conclusion: Glucose modified human serum albumin confers AGEs formation alters biochemical, electrochemical, optical, and functional property that depend on the reactivity of glucose and its concentration used for in-vitro glycation. A biochemical, electrochemical, optical, and functional characterization of modified albumin in-vitro produced AGE product that will be useful to interpret the complications and pathophysiological significance in diabetes.Keywords: human serum albumin, glycated albumin, adavanced glycation end products, associated pathologies
Procedia PDF Downloads 3985221 Physical Training in the Context of Preparation for the Performance of Junior Two: Sports Dance Practitioners
Authors: Rosa Alin Cristian
Abstract:
As in any other sports branch, there is also a relationship of dependence between the motor qualities and the technical skills in the sports dance, in the sense that superior performances from a technical, artistic point of view can be obtained only on the basis of a certain level of motor qualities and of the morphological and functional indices of the organism. Starting from the premise that physical training is a basic component of the dancers' training process, determining the efficacy and efficiency of the athletes in training and competitions, its main objectives are to obtain an optimal functional capacity of the body, which is reached through a superior level of development and manifestation of the basic and specific motor qualities, through appropriate values of the morph-functional indices, all against the background of a perfect state of health. We propose in this paper to create an inventory of the motor qualities specific to the sports dance, of their forms of manifestation, to establish some methodical priorities for their development, in order to support the specialists in their attempt to approach the physical training in the most rigorous and efficient way, according to the characteristics of each age category.Keywords: physical training, motor skills, sports dance, performance
Procedia PDF Downloads 725220 Functional Variants Detection by RNAseq
Authors: Raffaele A. Calogero
Abstract:
RNAseq represents an attractive methodology for the detection of functional genomic variants. RNAseq results obtained from polyA+ RNA selection protocol (POLYA) and from exonic regions capturing protocol (ACCESS) indicate that ACCESS detects 10% more coding SNV/INDELs with respect to POLYA. ACCESS requires less reads for coding SNV detection with respect to POLYA. However, if the analysis aims at identifying SNV/INDELs also in the 5’ and 3’ UTRs, POLYA is definitively the preferred method. No particular advantage comes from ACCESS or POLYA in the detection of fusion transcripts.Keywords: fusion transcripts, INDEL, RNA-seq, WES, SNV
Procedia PDF Downloads 2845219 Clustering Based and Centralized Routing Table Topology of Control Protocol in Mobile Wireless Sensor Networks
Authors: Mbida Mohamed, Ezzati Abdellah
Abstract:
A strong challenge in the wireless sensor networks (WSN) is to save the energy and have a long life time in the network without having a high rate of loss information. However, topology control (TC) protocols are designed in a way that the network is divided and having a standard system of exchange packets between nodes. In this article, we will propose a clustering based and centralized routing table protocol of TC (CBCRT) which delegates a leader node that will encapsulate a single routing table in every cluster nodes. Hence, if a node wants to send packets to the sink, it requests the information's routing table of the current cluster from the node leader in order to root the packet.Keywords: mobile wireless sensor networks, routing, topology of control, protocols
Procedia PDF Downloads 2715218 Overview of Wireless Body Area Networks
Authors: Rashi Jain
Abstract:
The Wireless Body Area Networks (WBANs) is an emerging interdisciplinary area where small sensors are placed on/within the human body. These sensors monitor the physiological activities and vital statistics of the body. The data from these sensors is aggregated and communicated to a remote doctor for immediate attention or to a database for records. On 6 Feb 2012, the IEEE 802.15.6 task group approved the standard for Body Area Network (BAN) technologies. The standard proposes the physical and MAC layer for the WBANs. The work provides an introduction to WBANs and overview of the physical and MAC layers of the standard. The physical layer specifications have been covered. A comparison of different protocols used at MAC layer is drawn. An introduction to the network layer and security aspects of the WBANs is made. The WBANs suffer certain limitations such as regulation of frequency bands, minimizing the effect of transmission and reception of electromagnetic signals on the human body, maintaining the energy efficiency among others. This has slowed down their implementation.Keywords: vehicular networks, sensors, MicroController 8085, LTE
Procedia PDF Downloads 2595217 A Multilevel Authentication Protocol: MAP in VANET for Human Safety
Authors: N. Meddeb, A. M. Makhlouf, M. A. Ben Ayed
Abstract:
Due to the real-time requirement of message in Vehicular Ad hoc NETworks (VANET), it is necessary to authenticate vehicles to achieve security, efficiency, and conditional privacy-preserving. Privacy is of utmost relevance in VANETs. For this reason, we have proposed a new protocol called ‘Multilevel Authentication Protocol’ (MAP) that considers different vehicle categories. The proposed protocol is based on our Multilevel Authentication protocol for Vehicular networks (MAVnet). But the MAP leads to human safety, where the priority is given to the ambulance vehicles. For evaluation, we used the Java language to develop a demo application and deployed it on the Network Security Simulation (Nessi2). Compared with existing authentication protocols, MAP markedly enhance the communication overhead and decreases the delay of exchanging messages while preserving conditional privacy.Keywords: Vehicular Ad hoc NETworks (VANET), vehicle categories, safety, databases, privacy, authentication, throughput, delay
Procedia PDF Downloads 2955216 Water Repellent Finishing of Cotton: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, water repellent, textiles, cotton
Procedia PDF Downloads 2395215 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1745214 Influence of Cooking on the Functional Properties of Dioscorea Schimperiana During Chips Production
Authors: Djeukeu Asongni William, Leng Marlyse, Gouado Inocent
Abstract:
Background: Process for obtaining D. schimperiana chips involves a long period of cooking followed by drying of obtained products in the sun. Such a process could induce the modification of the functional properties of the chips, thus reducing the technological uses of these products. This study was conducted with a view to assessing the impact of this process on the chips of D. schimperiana. Methods: The chips used were purchased in Baham, Bamendjou and Bagangté markets during the month of February 2013. A representative sample of each market chips was formed by mixing the chips of several sellers. The control sample consisted of fresh yams that have been sliced to the average size of local chips then dried in the oven at 45 ° C for 36 h. On each sample was performed the analysis of the physico-chemical properties (carbohydrates, lipids, proteins, iron , phosphorus, reducing sugars, ash and total starch) and gelling properties both with and without inhibitor alpha-amylases (0.018 and 0.146 mol / l). Results: Results show that the levels of ash 2.99 g / 100gms, iron 1.01 g / 100gms and phosphorus 532.06 mg / 100gms fresh sample were significantly higher than those of the products obtained in the traditional process. The functional properties of the chips obtained from different methods shows that the peak viscosity of the fresh sample is larger than the other samples with or without inhibitor. In addition, the fresh sample has the lowest breakdown under the same conditions. Conclusion: These results show that traditional process reduces technological potential of chips, thus limiting the value of D. schimperiana.Keywords: Dioscorea schimperiana, chips, functional properties, technological properties, valorization
Procedia PDF Downloads 4005213 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 2405212 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array
Authors: Rachid Dehini, Brahim Berbaoui
Abstract:
The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)
Procedia PDF Downloads 3305211 Performance Evaluation of Hierarchical Location-Based Services Coupled to the Greedy Perimeter Stateless Routing Protocol for Wireless Sensor Networks
Authors: Rania Khadim, Mohammed Erritali, Abdelhakim Maaden
Abstract:
Nowadays Wireless Sensor Networks have attracted worldwide research and industrial interest, because they can be applied in various areas. Geographic routing protocols are very suitable to those networks because they use location information when they need to route packets. Obviously, location information is maintained by Location-Based Services provided by network nodes in a distributed way. In this paper we choose to evaluate the performance of two hierarchical rendezvous location based-services, GLS (Grid Location Service) and HLS (Hierarchical Location Service) coupled to the GPSR routing protocol (Greedy Perimeter Stateless Routing) for Wireless Sensor Network. The simulations were performed using NS2 simulator to evaluate the performance and power of the two services in term of location overhead, the request travel time (RTT) and the query Success ratio (QSR). This work presents also a new scalability performance study of both GLS and HLS, specifically, what happens if the number of nodes N increases. The study will focus on three qualitative metrics: The location maintenance cost, the location query cost and the storage cost.Keywords: location based-services, routing protocols, scalability, wireless sensor networks
Procedia PDF Downloads 3715210 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational
Authors: Hamza Rekab Djabri, Salah Daoud
Abstract:
The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN
Procedia PDF Downloads 975209 Predictors of Motor and Cognitive Domains of Functional Performance after Rehabilitation of Individuals with Acute Stroke
Authors: A. F. Jaber, E. Dean, M. Liu, J. He, D. Sabata, J. Radel
Abstract:
Background: Stroke is a serious health care concern and a major cause of disability in the United States. This condition impacts the individual’s functional ability to perform daily activities. Predicting functional performance of people with stroke assists health care professionals in optimizing the delivery of health services to the affected individuals. The purpose of this study was to identify significant predictors of Motor FIM and of Cognitive FIM subscores among individuals with stroke after discharge from inpatient rehabilitation (typically 4-6 weeks after stroke onset). A second purpose is to explore the relation among personal characteristics, health status, and functional performance of daily activities within 2 weeks of stroke onset. Methods: This study used a retrospective chart review to conduct a secondary analysis of data obtained from the Healthcare Enterprise Repository for Ontological Narration (HERON) database. The HERON database integrates de-identified clinical data from seven different regional sources including hospital electronic medical record systems of the University of Kansas Health System. The initial HERON data extract encompassed 1192 records and the final sample consisted of 207 participants who were mostly white (74%) males (55%) with a diagnosis of ischemic stroke (77%). The outcome measures collected from HERON included performance scores on the National Institute of Health Stroke Scale (NIHSS), the Glasgow Coma Scale (GCS), and the Functional Independence Measure (FIM). The data analysis plan included descriptive statistics, Pearson correlation analysis, and Stepwise regression analysis. Results: significant predictors of discharge Motor FIM subscores included age, baseline Motor FIM subscores, discharge NIHSS scores, and comorbid electrolyte disorder (R2 = 0.57, p <0.026). Significant predictors of discharge Cognitive FIM subscores were age, baseline cognitive FIM subscores, client cooperative behavior, comorbid obesity, and the total number of comorbidities (R2 = 0.67, p <0.020). Functional performance on admission was significantly associated with age (p < 0.01), stroke severity (p < 0.01), and length of hospital stay (p < 0.05). Conclusions: our findings show that younger age, good motor and cognitive abilities on admission, mild stroke severity, fewer comorbidities, and positive client attitude all predict favorable functional outcomes after inpatient stroke rehabilitation. This study provides health care professionals with evidence to evaluate predictors of favorable functional outcomes early at stroke rehabilitation, to tailor individualized interventions based on their client’s anticipated prognosis, and to educate clients about the benefits of making lifestyle changes to improve their anticipated rate of functional recovery.Keywords: functional performance, predictors, stroke, recovery
Procedia PDF Downloads 1445208 Understanding the Influence of Social Media on Individual’s Quality of Life Perceptions
Authors: Biljana Marković
Abstract:
Social networks are an integral part of our everyday lives, becoming an indispensable medium for communication in personal and business environments. New forms and ways of communication change the general mindset and significantly affect the quality of life of individuals. Quality of life is perceived as an abstract term, but often people are not aware that they directly affect the quality of their own lives, making minor but significant everyday choices and decisions. Quality of life can be defined broadly, but in the widest sense, it involves a subjective sense of satisfaction with one's life. Scientific knowledge about the impact of social networks on self-assessment of the quality of life of individuals is only just beginning to be researched. Available research indicates potential benefits as well as a number of disadvantages. In the context of the previous claims, the focus of the study conducted by the authors of this paper focuses on analyzing the impact of social networks on individual’s self-assessment of quality of life and the correlation between time spent on social networks, and the choice of content that individuals choose to share to present themselves. Moreover, it is aimed to explain how much and in what ways they critically judge the lives of others online. The research aspires to show the positive as well as negative aspects that social networks, primarily Facebook and Instagram, have on creating a picture of individuals and how they compare themselves with others. The topic of this paper is based on quantitative research conducted on a representative sample. An analysis of the results of the survey conducted online has elaborated a hypothesis which claims that content shared by individuals on social networks influences the image they create about themselves. A comparative analysis of the results obtained with the results of similar research has led to the conclusion about the synergistic influence of social networks on the feeling of the quality of life of respondents. The originality of this work is reflected in the approach of conducting research by examining attitudes about an individual's life satisfaction, the way he or she creates a picture of himself/herself through social networks, the extent to which he/she compares herself/himself with others, and what social media applications he/she uses. At the cognitive level, scientific contributions were made through the development of information concepts on quality of life, and at the methodological level through the development of an original methodology for qualitative alignment of respondents' attitudes using statistical analysis. Furthermore, at the practical level through the application of concepts in assessing the creation of self-image and the image of others through social networks.Keywords: quality of life, social media, self image, influence of social media
Procedia PDF Downloads 1275207 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development
Procedia PDF Downloads 416