Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 559

Search results for: databases

559 Assessment of Image Databases Used for Human Skin Detection Methods

Authors: Saleh Alshehri

Abstract:

Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.

Keywords: image databases, image processing, pattern recognition, neural networks

Procedia PDF Downloads 136
558 Enhance Security in XML Databases: XLog File for Severity-Aware Trust-Based Access Control

Authors: A: Asmawi, L. S. Affendey, N. I. Udzir, R. Mahmod

Abstract:

The topic of enhancing security in XML databases is important as it includes protecting sensitive data and providing a secure environment to users. In order to improve security and provide dynamic access control for XML databases, we presented XLog file to calculate user trust values by recording users’ bad transaction, errors and query severities. Severity-aware trust-based access control for XML databases manages the access policy depending on users' trust values and prevents unauthorized processes, malicious transactions and insider threats. Privileges are automatically modified and adjusted over time depending on user behaviour and query severity. Logging in database is an important process and is used for recovery and security purposes. In this paper, the Xlog file is presented as a dynamic and temporary log file for XML databases to enhance the level of security.

Keywords: XML database, trust-based access control, severity-aware, trust values, log file

Procedia PDF Downloads 223
557 A Method for Reduction of Association Rules in Data Mining

Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa

Abstract:

The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.

Keywords: data mining, association rules, rules reduction, artificial intelligence

Procedia PDF Downloads 59
556 Building an Integrated Relational Database from Swiss Nutrition National Survey and Swiss Health Datasets for Data Mining Purposes

Authors: Ilona Mewes, Helena Jenzer, Farshideh Einsele

Abstract:

Objective: The objective of the study was to integrate two big databases from Swiss nutrition national survey (menuCH) and Swiss health national survey 2012 for data mining purposes. Each database has a demographic base data. An integrated Swiss database is built to later discover critical food consumption patterns linked with lifestyle diseases known to be strongly tied with food consumption. Design: Swiss nutrition national survey (menuCH) with approx. 2000 respondents from two different surveys, one by Phone and the other by questionnaire along with Swiss health national survey 2012 with 21500 respondents were pre-processed, cleaned and finally integrated to a unique relational database. Results: The result of this study is an integrated relational database from the Swiss nutritional and health databases.

Keywords: health informatics, data mining, nutritional and health databases, nutritional and chronical databases

Procedia PDF Downloads 44
555 Utilization of CD-ROM Database as a Storage and Retrieval System by Students of Nasarawa State University Keffi

Authors: Suleiman Musa

Abstract:

The utilization of CD-ROM as a storage and retrieval system by Nasarawa State University Keffi (NSUK) Library is crucial in preserving and dissemination of information to students and staff. This study investigated the utilization of CD-ROM Database storage and retrieval system by students of NUSK. Data was generated using structure questionnaire. One thousand and fifty two (1052) respondents were randomly selected among post-graduate and under-graduate students. Eight hundred and ten (810) questionnaires were returned, but only five hundred and ninety three (593) questionnaires were well completed and useful. The study found that post-graduate students use CD-ROM Databases more often than the under-graduate students in NSUK. The result of the study revealed that knowledge about CD-ROM Database 33.22% got it through library staff. 29.69% use CD-ROM once a month. Large number of users 45.70% purposely uses CD-ROM Databases for study and research. In fact, lack of users’ orientation amount to 58.35% of problems faced, while 31.20% lack of trained staff make it more difficult for utilization of CD-ROM Database. Major numbers of users 38.28% are neither satisfied nor dissatisfied, while a good number of them 27.99% are satisfied. Then 1.52% is highly dissatisfied but could not give reasons why. However, to ensure effective utilization of CD-ROM Database storage and retrieval system by students of NSUK, the following recommendations are made: effort should be made to encourage under-graduate in using CD-ROM Database. The institution should conduct orientation/induction course for students on CD-ROM Databases in the library. There is need for NSUK to produce in house databases on their CD-ROM for easy access by users.

Keywords: utilization, CD-ROM databases, storage, retrieval, students

Procedia PDF Downloads 369
554 Cleaning of Scientific References in Large Patent Databases Using Rule-Based Scoring and Clustering

Authors: Emiel Caron

Abstract:

Patent databases contain patent related data, organized in a relational data model, and are used to produce various patent statistics. These databases store raw data about scientific references cited by patents. For example, Patstat holds references to tens of millions of scientific journal publications and conference proceedings. These references might be used to connect patent databases with bibliographic databases, e.g. to study to the relation between science, technology, and innovation in various domains. Problematic in such studies is the low data quality of the references, i.e. they are often ambiguous, unstructured, and incomplete. Moreover, a complete bibliographic reference is stored in only one attribute. Therefore, a computerized cleaning and disambiguation method for large patent databases is developed in this work. The method uses rule-based scoring and clustering. The rules are based on bibliographic metadata, retrieved from the raw data by regular expressions, and are transparent and adaptable. The rules in combination with string similarity measures are used to detect pairs of records that are potential duplicates. Due to the scoring, different rules can be combined, to join scientific references, i.e. the rules reinforce each other. The scores are based on expert knowledge and initial method evaluation. After the scoring, pairs of scientific references that are above a certain threshold, are clustered by means of single-linkage clustering algorithm to form connected components. The method is designed to disambiguate all the scientific references in the Patstat database. The performance evaluation of the clustering method, on a large golden set with highly cited papers, shows on average a 99% precision and a 95% recall. The method is therefore accurate but careful, i.e. it weighs precision over recall. Consequently, separate clusters of high precision are sometimes formed, when there is not enough evidence for connecting scientific references, e.g. in the case of missing year and journal information for a reference. The clusters produced by the method can be used to directly link the Patstat database with bibliographic databases as the Web of Science or Scopus.

Keywords: clustering, data cleaning, data disambiguation, data mining, patent analysis, scientometrics

Procedia PDF Downloads 126
553 A Novel Framework for User-Friendly Ontology-Mediated Access to Relational Databases

Authors: Efthymios Chondrogiannis, Vassiliki Andronikou, Efstathios Karanastasis, Theodora Varvarigou

Abstract:

A large amount of data is typically stored in relational databases (DB). The latter can efficiently handle user queries which intend to elicit the appropriate information from data sources. However, direct access and use of this data requires the end users to have an adequate technical background, while they should also cope with the internal data structure and values presented. Consequently the information retrieval is a quite difficult process even for IT or DB experts, taking into account the limited contributions of relational databases from the conceptual point of view. Ontologies enable users to formally describe a domain of knowledge in terms of concepts and relations among them and hence they can be used for unambiguously specifying the information captured by the relational database. However, accessing information residing in a database using ontologies is feasible, provided that the users are keen on using semantic web technologies. For enabling users form different disciplines to retrieve the appropriate data, the design of a Graphical User Interface is necessary. In this work, we will present an interactive, ontology-based, semantically enable web tool that can be used for information retrieval purposes. The tool is totally based on the ontological representation of underlying database schema while it provides a user friendly environment through which the users can graphically form and execute their queries.

Keywords: ontologies, relational databases, SPARQL, web interface

Procedia PDF Downloads 202
552 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 236
551 Database Playlists: Croatia's Popular Music in the Mirror of Collective Memory

Authors: Diana Grguric, Robert Svetlacic, Vladimir Simovic

Abstract:

Scientific research analytically explores database playlists by studying the memory culture through Croatian popular radio music. The research is based on the scientific analysis of databases developed on the basis of the playlist of ten Croatian radio stations. The most recent Croatian song on Statehood Day 2008-2013 is analyzed in order to gain insight into their (memory) potential in terms of storing, interpreting and presenting a national identity. The research starts with the general assumption that popular music is an efficient identifier, transmitter, and promoter of national identity. The aim of the scientific research of the database was to analytically reveal specific titles of Croatian popular songs that participate in marking memories and analyzing their symbolic capital to gain insight into the popular music experience of the past and to develop a new method of scientifically based analysis of specific databases.

Keywords: specific databases, popular radio music, collective memory, national identity

Procedia PDF Downloads 262
550 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases

Authors: Suglo Tohari Luri

Abstract:

Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.

Keywords: data, engine, intelligence, customer, neo4j, database

Procedia PDF Downloads 105
549 A Framework for SQL Learning: Linking Learning Taxonomy, Cognitive Model and Cross Cutting Factors

Authors: Huda Al Shuaily, Karen Renaud

Abstract:

Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.

Keywords: pattern, SQL, learning, model

Procedia PDF Downloads 167
548 Formulation of a Rapid Earthquake Risk Ranking Criteria for National Bridges in the National Capital Region Affected by the West Valley Fault Using GIS Data Integration

Authors: George Mariano Soriano

Abstract:

In this study, a Rapid Earthquake Risk Ranking Criteria was formulated by integrating various existing maps and databases by the Department of Public Works and Highways (DPWH) and Philippine Institute of Volcanology and Seismology (PHIVOLCS). Utilizing Geographic Information System (GIS) software, the above-mentioned maps and databases were used in extracting seismic hazard parameters and bridge vulnerability characteristics in order to rank the seismic damage risk rating of bridges in the National Capital Region.

Keywords: bridge, earthquake, GIS, hazard, risk, vulnerability

Procedia PDF Downloads 317
547 JREM: An Approach for Formalising Models in the Requirements Phase with JSON and NoSQL Databases

Authors: Aitana Alonso-Nogueira, Helia Estévez-Fernández, Isaías García

Abstract:

This paper presents an approach to reduce some of its current flaws in the requirements phase inside the software development process. It takes the software requirements of an application, makes a conceptual modeling about it and formalizes it within JSON documents. This formal model is lodged in a NoSQL database which is document-oriented, that is, MongoDB, because of its advantages in flexibility and efficiency. In addition, this paper underlines the contributions of the detailed approach and shows some applications and benefits for the future work in the field of automatic code generation using model-driven engineering tools.

Keywords: conceptual modelling, JSON, NoSQL databases, requirements engineering, software development

Procedia PDF Downloads 278
546 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: hierarchical process control, knowledge discovery from databases, neural network, process control

Procedia PDF Downloads 346
545 De-Novo Structural Elucidation from Mass/NMR Spectra

Authors: Ismael Zamora, Elisabeth Ortega, Tatiana Radchenko, Guillem Plasencia

Abstract:

The structure elucidation based on Mass Spectra (MS) data of unknown substances is an unresolved problem that affects many different fields of application. The recent overview of software available for structure elucidation of small molecules has shown the demand for efficient computational tool that will be able to perform structure elucidation of unknown small molecules and peptides. We developed an algorithm for De-Novo fragment analysis based on MS data that proposes a set of scored and ranked structures that are compatible with the MS and MSMS spectra. Several different algorithms were developed depending on the initial set of fragments and the structure building processes. Also, in all cases, several scores for the final molecule ranking were computed. They were validated with small and middle databases (DB) with the eleven test set compounds. Similar results were obtained from any of the databases that contained the fragments of the expected compound. We presented an algorithm. Or De-Novo fragment analysis based on only mass spectrometry (MS) data only that proposed a set of scored/ranked structures that was validated on different types of databases and showed good results as proof of concept. Moreover, the solutions proposed by Mass Spectrometry were submitted to the prediction of NMR spectra in order to elucidate which of the proposed structures was compatible with the NMR spectra collected.

Keywords: De Novo, structure elucidation, mass spectrometry, NMR

Procedia PDF Downloads 186
544 Integrating a Universal Forensic DNA Database: Anticipated Deterrent Effects

Authors: Karen Fang

Abstract:

Investigative genetic genealogy has attracted much interest in both the field of ethics and the public eye due to its global application in criminal cases. Arguments have been made regarding privacy and informed consent, especially with law enforcement using consumer genetic testing results to convict individuals. In the case of public interest, DNA databases have the strong potential to significantly reduce crime, which in turn leads to safer communities and better futures. With the advancement of genetic technologies, the integration of a universal forensic DNA database in violent crimes, crimes against children, and missing person cases is expected to deter crime while protecting one’s privacy. Rather than collecting whole genomes from the whole population, STR profiles can be used to identify unrelated individuals without compromising personal information such as physical appearance, disease risk, and geographical origin, and additionally, reduce cost and storage space. STR DNA profiling is already used in the forensic science field and going a step further benefits several areas, including the reduction in recidivism, improved criminal court case turnaround time, and just punishment. Furthermore, adding individuals to the database as early as possible prevents young offenders and first-time offenders from participating in criminal activity. It is important to highlight that DNA databases should be inclusive and tightly governed, and the misconception on the use of DNA based on crime television series and other media sources should be addressed. Nonetheless, deterrent effects have been observed in countries like the US and Denmark with DNA databases that consist of serious violent offenders. Fewer crimes were reported, and fewer people were convicted of those crimes- a favorable outcome, not even the death penalty could provide. Currently, there is no better alternative than a universal forensic DNA database made up of STR profiles. It can open doors for investigative genetic genealogy and fostering better communities. Expanding the appropriate use of DNA databases is ethically acceptable and positively impacts the public.

Keywords: bioethics, deterrent effects, DNA database, investigative genetic genealogy, privacy, public interest

Procedia PDF Downloads 80
543 Autonomic Threat Avoidance and Self-Healing in Database Management System

Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik

Abstract:

Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.

Keywords: autonomic computing, self-healing, threat avoidance, security

Procedia PDF Downloads 265
542 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 339
541 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation

Authors: Bubai Maji, Monorama Swain

Abstract:

Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.

Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition

Procedia PDF Downloads 14
540 Applying Spanning Tree Graph Theory for Automatic Database Normalization

Authors: Chetneti Srisa-an

Abstract:

In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.

Keywords: relational database, functional dependency, automatic normalization, primary key, spanning tree

Procedia PDF Downloads 281
539 BiLex-Kids: A Bilingual Word Database for Children 5-13 Years Old

Authors: Aris R. Terzopoulos, Georgia Z. Niolaki, Lynne G. Duncan, Mark A. J. Wilson, Antonios Kyparissiadis, Jackie Masterson

Abstract:

As word databases for bilingual children are not available, researchers, educators and textbook writers must rely on monolingual databases. The aim of this study is thus to develop a bilingual word database, BiLex-kids, an online open access developmental word database for 5-13 year old bilingual children who learn Greek as a second language and have English as their dominant one. BiLex-kids is compiled from 120 Greek textbooks used in Greek-English bilingual education in the UK, USA and Australia, and provides word translations in the two languages, pronunciations in Greek, and psycholinguistic variables (e.g. Zipf, Frequency per million, Dispersion, Contextual Diversity, Neighbourhood size). After clearing the textbooks of non-relevant items (e.g. punctuation), algorithms were applied to extract the psycholinguistic indices for all words. As well as one total lexicon, the database produces values for all ages (one lexicon for each age) and for three age bands (one lexicon per age band: 5-8, 9-11, 12-13 years). BiLex-kids provides researchers with accurate figures for a wide range of psycholinguistic variables, making it a useful and reliable research tool for selecting stimuli to examine lexical processing among bilingual children. In addition, it offers children the opportunity to study word spelling, learn translations and listen to pronunciations in their second language. It further benefits educators in selecting age-appropriate words for teaching reading and spelling, while special educational needs teachers will have a resource to control the content of word lists when designing interventions for bilinguals with literacy difficulties.

Keywords: bilingual children, psycholinguistics, vocabulary development, word databases

Procedia PDF Downloads 231
538 Algorithm for Information Retrieval Optimization

Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran

Abstract:

When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (

Keywords: information retrieval, document relevance, performance measures, personalization

Procedia PDF Downloads 158
537 Dynamic Environmental Impact Study during the Construction of the French Nuclear Power Plants

Authors: A. Er-Raki, D. Hartmann, J. P. Belaud, S. Negny

Abstract:

This paper has a double purpose: firstly, a literature review of the life cycle analysis (LCA) and secondly a comparison between conventional (static) LCA and multi-level dynamic LCA on the following items: (i) inventories evolution with time (ii) temporal evolution of the databases. The first part of the paper summarizes the state of the art of the static LCA approach. The different static LCA limits have been identified and especially the non-consideration of the spatial and temporal evolution in the inventory, for the characterization factors (FCs) and into the databases. Then a description of the different levels of integration of the notion of temporality in life cycle analysis studies was made. In the second part, the dynamic inventory has been evaluated firstly for a single nuclear plant and secondly for the entire French nuclear power fleet by taking into account the construction durations of all the plants. In addition, the databases have been adapted by integrating the temporal variability of the French energy mix. Several iterations were used to converge towards the real environmental impact of the energy mix. Another adaptation of the databases to take into account the temporal evolution of the market data of the raw material was made. An identification of the energy mix of the time studied was based on an extrapolation of the production reference values of each means of production. An application to the construction of the French nuclear power plants from 1971 to 2000 has been performed, in which a dynamic inventory of raw material has been evaluated. Then the impacts were characterized by the ILCD 2011 characterization method. In order to compare with a purely static approach, a static impact assessment was made with the V 3.4 Ecoinvent data sheets without adaptation and a static inventory considering that all the power stations would have been built at the same time. Finally, a comparison between static and dynamic LCA approaches was set up to determine the gap between them for each of the two levels of integration. The results were analyzed to identify the contribution of the evolving nuclear power fleet construction to the total environmental impacts of the French energy mix during the same period. An equivalent strategy using a dynamic approach will further be applied to identify the environmental impacts that different scenarios of the energy transition could bring, allowing to choose the best energy mix from an environmental viewpoint.

Keywords: LCA, static, dynamic, inventory, construction, nuclear energy, energy mix, energy transition

Procedia PDF Downloads 36
536 Electrocardiogram Classification with Deep Learning Models – A Comparative Study

Authors: Luís C. N. Barbosa, António Real, António H. J. Moreira, Vítor Carvalho, João L. Vilaça, Pedro Morais

Abstract:

The electrocardiogram (ECG) is the most common cardiological procedure to monitor non-invasively the electrical activity of the heart. It is a complex and non-linear signal, which is the first option to preliminary identify specific pathologies/conditions (e.g. arrhythmias). However, its processing is frequently performed manually, making it operator dependent. A multitude of algorithms to automatically process the ECG were presented. Recently, Artificial Intelligence (AI), namely deep learning models, were proposed, achieving state-of-the-art results in a multitude of applications. However, these models are frequently trained/tested in one specific database, not evaluating its result in other sources, as expected in the clinical practice. In this paper, we intend to study the robustness of the already described DL methods to the variation of data source. Moreover, we intend to evaluate the performance of these methods to classify different pathologies. Three public databases of ECG signals were chosen, namely: MIT-BIH Arrhythmia Database (D1), European ST-T Database (D2), PTB Diagnostic ECG Database (D3). Three methods were considered for this study, namely: Convolutional Neural Network 1D paired with a Multilayer Perceptron (CNN 1D+MLP), Dense Model, Convolutional Neural Network 1D (CNN 1D). The performance of the selected methods in terms of accuracy was assessed. Overall, only the CNN 1D+MLP architecture demonstrated high robustness to the variation of the data accuracy, with similar accuracy to the databases D1 and D2. The remaining methods achieved unsatisfactory results when changing the database. No method was considered successful to the D3. As a conclusion, further studies to really evaluate the performance of state-of-the-art AI networks in real clinical situations are required.

Keywords: deep learning methods, ECG classification, ECG databases, artificial intelligence

Procedia PDF Downloads 19
535 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 267
534 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system

Procedia PDF Downloads 191
533 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 261
532 Content-Based Mammograms Retrieval Based on Breast Density Criteria Using Bidimensional Empirical Mode Decomposition

Authors: Sourour Khouaja, Hejer Jlassi, Nadia Feddaoui, Kamel Hamrouni

Abstract:

Most medical images, and especially mammographies, are now stored in large databases. Retrieving a desired image is considered of great importance in order to find previous similar cases diagnosis. Our method is implemented to assist radiologists in retrieving mammographic images containing breast with similar density aspect as seen on the mammogram. This is becoming a challenge seeing the importance of density criteria in cancer provision and its effect on segmentation issues. We used the BEMD (Bidimensional Empirical Mode Decomposition) to characterize the content of images and Euclidean distance measure similarity between images. Through the experiments on the MIAS mammography image database, we confirm that the results are promising. The performance was evaluated using precision and recall curves comparing query and retrieved images. Computing recall-precision proved the effectiveness of applying the CBIR in the large mammographic image databases. We found a precision of 91.2% for mammography with a recall of 86.8%.

Keywords: BEMD, breast density, contend-based, image retrieval, mammography

Procedia PDF Downloads 147
531 Analyzing Medical Workflows Using Market Basket Analysis

Authors: Mohit Kumar, Mayur Betharia

Abstract:

Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well.

Keywords: data mining, market basket analysis, healthcare applications, knowledge discovery in healthcare databases, customer relationship management, healthcare systems

Procedia PDF Downloads 77
530 The Role of Cyfra 21-1 in Diagnosing Non Small Cell Lung Cancer (NSCLC)

Authors: H. J. T. Kevin Mozes, Dyah Purnamasari

Abstract:

Background: Lung cancer accounted for the fourth most common cancer in Indonesia. 85% of all lung cancer cases are the Non-Small Cell Lung Cancer (NSCLC). The indistinct signs and symptoms of NSCLC sometimes lead to misdiagnosis. The gold standard assessment for the diagnosis of NSCLC is the histopathological biopsy, which is invasive. Cyfra 21-1 is a tumor marker, which can be found in the intermediate protein structure in the epitel. The accuracy of Cyfra 21-1 in diagnosing NSCLC is not yet known, so this report is made to seek the answer for the question above. Methods: Literature searching is done using online databases. Proquest and Pubmed are online databases being used in this report. Then, literature selection is done by excluding and including based on inclusion criterias and exclusion criterias. The selected literature is then being appraised using the criteria of validity, importance, and validity. Results: From six journals appraised, five of them are valid. Sensitivity value acquired from all five literature is ranging from 50-84.5 %, meanwhile the specificity is 87.8 %-94.4 %. Likelihood the ratio of all appraised literature is ranging from 5.09 -10.54, which categorized to Intermediate High. Conclusion: Serum Cyfra 21-1 is a sensitive and very specific tumor marker for diagnosis of non-small cell lung cancer (NSCLC).

Keywords: cyfra 21-1, diagnosis, nonsmall cell lung cancer, NSCLC, tumor marker

Procedia PDF Downloads 169