Search results for: breathing crack
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 614

Search results for: breathing crack

224 Flow-Oriented Incentive Spirometry in the Reversal of Diaphragmatic Dysfunction in Bariatric Surgery Postoperative Period

Authors: Eli Maria Forti-Pazzianotto, Carolina Moraes Da Costa, Daniela Faleiros Berteli Merino, Maura Rigoldi Simões Da Rocha, Irineu Rasera-Junior

Abstract:

There is no conclusive evidence to support the use of one type or brand of incentive espirometry over others. The decision as to which equipment is best, have being based on empirical assessment of patient acceptance, ease of use, and cost. The aim was to evaluate the effects of use of two methodologies of breathing exercises, performed by flow-oriented incentive spirometry, in the reversal of diaphragmatic dysfunction in postoperative bariatric surgery. 38 morbid obese women were selected. Respiratory muscle strength was evaluated through the nasal inspiratory pressure (NIP), and the respiratory muscles endurance, through incremental test by measurement of sustained maximal inspiratory pressure (SMIP). They were randomized in 2 groups: 1- Respiron® Classic (RC) the inspirations were slow, deep and sustained for as long as possible (5 sec). 2- Respiron® Athletic1 (RA1) - the inspirations were explosive, quick and intense, raising balls by the explosive way. 6 sets of 15 repetitions with intervals of 30 to 60 seconds were performed in groups. At the end of the intervention program (second PO), the volunteers were reevaluated. The groups were homogeneous with regard to initial assessment. However on reevaluating there was a significant decline of the variable PIN (p= < 0.0001) and SMIP (p=0.0004) in RC. In the RA1 group there was a maintenance of SMIP (p=0.5076) after surgery. The use of the Respiron Athletic 1, as well as the methodology of application used, can contribute positively to preserve the inspiratory muscle endurance and improve the diaphragmatic dysfunction in postoperative period.

Keywords: bariatric surgery, incentive spirometry, respiratory muscle, physiotherapy

Procedia PDF Downloads 374
223 Role of Social Support in Drug Cessation among Male Addicts in the West of Iran

Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh, Fazel Zinat Motlagh

Abstract:

Social support is an important benchmark of health for people in avoidance conditions. The main goal of this study was to determine the three kinds of social support (family, friend and other significant) to drug cessation among male addicts, in Kermanshah, the west of Iran. This cross-sectional study was conducted among 132 addicts, randomly selected to participate voluntarily in the study. Data were collected from conduct interviews based on standard questionnaire and analyzed by using SPSS-18 at 95% significance level. The majority of addicts were young (Mean: 30.4 years), and with little education. Opium (36.4%), Crack (21.2%), and Methamphetamine (12.9%) were the predominant drugs. Inabilities to reject the offer and having addict friends are the most often reasons for drug usage. Almost, 18.9% reported history of drug injection. 43.2% of the participants already did drug cessation at least once. Logistic regression showed the family support (OR = 1.110), age (OR = 1.106) and drug use initiation age (OR = 0.918) was predicting drug cessation. Our result showed; family support is a more important effect among types of social support in drug cessation. It seems that providing educational program to addict’s families for more support of patients at drug cessation can be beneficial.

Keywords: drug cessation, family support, drug use, initiation age

Procedia PDF Downloads 554
222 Application of Envelope Spectrum Analysis and Spectral Kurtosis to Diagnose Debris Fault in Bearing Using Acoustic Signals

Authors: Henry Ogbemudia Omoregbee, Mabel Usunobun Olanipekun

Abstract:

Debris fault diagnosis based on acoustic signals in rolling element bearing running at low speed and high radial loads are more of low amplitudes, particularly in the case of debris faults whose signals necessitate high sensitivity analyses. As the rollers in the bearing roll over debris trapped in grease used to lubricate the bearings, the envelope signal created by amplitude demodulation carries additional diagnostic information that is not available through ordinary spectrum analysis of the raw signal. The kurtosis value obtained for three different scenarios (debris induced, outer crack induced, and a normal good bearing) couldn't be used to easily identify whether the used bearings were defective or not. It was established in this work that the envelope spectrum analysis detected the fault signature and its harmonics induced in the debris bearings when bandpass filtering of the raw signal with the frequency band specified by kurtogram and spectral kurtosis was made.

Keywords: rolling bearings, rolling element bearing noise, bandpass filtering, harmonics, envelope spectrum analysis, spectral kurtosis

Procedia PDF Downloads 91
221 A Probabilistic Study on Time to Cover Cracking Due to Corrosion

Authors: Chun-Qing Li, Hassan Baji, Wei Yang

Abstract:

Corrosion of steel in reinforced concrete structures is a major problem worldwide. The volume expansion of corrosion products causes concrete cover cracking, which could lead to delamination of concrete cover. The time to cover cracking plays a key role to the assessment of serviceability of reinforced concrete structures subjected to corrosion. Many analytical, numerical, and empirical models have been developed to predict the time to cracking initiation due to corrosion. In this study, a numerical model based on finite element modeling of corrosion-induced cracking process is used. In order to predict the service life based on time to cover initiation, the numerical approach is coupled with a probabilistic procedure. In this procedure, all the influential factors affecting time to cover cracking are modeled as random variables. The results show that the time to cover cracking is highly variables. It is also shown that rust product expansion ratio and the size of more porous concrete zone around the rebar are the most influential factors in predicting service life of corrosion-affected structures.

Keywords: corrosion, crack width, probabilistic, service life

Procedia PDF Downloads 207
220 Evaluating the Impact of Landscape Values Associated With the Landscape Developemnt Approach of Neighbourhood Gardens; In Tier Two Cities of India; On Users’ Perception Towards the Space. Case: City of Nashik, Maharashtra, India

Authors: Anandi Anant Lale, Pooja Sadananda Patil

Abstract:

Neighbourhood gardens (NGs), in the rapidly growing tier two cities of India, play a pivotal role in maintaining and enhancing the quality of life of the dwellers in terms of mental, physical and socio- cultural well-being. They are the breathing areas which avail the opportunity of accessing nature while being in the close proximity of modern infrastructural provisions of the neighbourhood. In this article, the landscape values (viz. Cultural, Functional, Environmental and Perceptual) associated with the landscape development approach of neighbourhood gardens in the city of Nashik; one of the major tier two cities of Maharashtra; India, are studied through physical survey of selected NGs and the respective neighborhoods. Contextual study of the selected neighbourhood with the emphasis on dwellers' response in terms of physical as well as mental associations with the NGs is recorded through visitors' interviews. Analysis of interrelation of the landscape values and the users' response to the NGs revealed that each landscape value associated with the landscape development approach, has impact of diverse intensity on the users' perception, in different neighbourhoods. Contextual needs of selected neighbourhoods govern the user's perception towards the respective NGs and eventually define the role of landscape value/s associated with the landscape development approach of NG in deciding the competence of the space. The findings of the study can form the basis to redefine the landscape development approach for the future NGs in tier two cities of India that will justify the contextual needs of every neighbourhood through the emphasis of landscape values.

Keywords: neighbourhood garden, landscape value, user’s perception, context, landscape development

Procedia PDF Downloads 121
219 About the Interface Bonding Safety of Adhesively Bonded Concrete Joints Under Cracking: A Fracture Energetic Approach

Authors: Brandtner-Hafner Martin

Abstract:

Adhesives are increasingly being used in the construction sector. On the one hand, this concerns dowel reinforcements using chemical anchors. On the other hand, the sealing and repair of cracks in structural concrete components are still on the rise. In the field of bonding, the interface between the joined materials is the most critical area. Therefore, it is of immense importance to characterize and investigate this section sufficiently by fracture analysis. Since standardized mechanical test methods are not sufficiently capable of doing this, recourse is made to an innovative concept based on fracture energy. Therefore, a series of experimental tests were performed using the so-called GF-principle to study the interface bonding safety of adhesively bonded concrete joints. Several different structural adhesive systems based on epoxy, CA/A hybrid, PUR, MS polymer, dispersion, and acrylate were selected for bonding concrete substrates. The results show that stable crack propagation and prevention of uncontrolled failure in bonded concrete joints depend very much on the adhesive system used, and only fracture analytical evaluation methods can provide empirical information on this.

Keywords: interface bonding safety, adhesively bonded concrete joints, GF-principle, fracture analysis

Procedia PDF Downloads 310
218 Environment-Friendly Biogas Technology: Comparative Analysis of Benefits as Perceived by Biogas Users and Non-User Livestock Farmers of Tehsil Jhang

Authors: Anees Raza, Liu Chunyan

Abstract:

Renewable energy technologies are need of the time and are already making the big impact in the climatic outlook of the world. Biogas technology is one of those, and it has a lot of benefits for its users. It is cost effective because it is produced from the raw material which is available free of cost to the livestock farmers. Bio-slurry, a by-product of biogas, is being used as fertilizer for the crops production and increasing soil fertility. There are many other household benefits of technology. Research paper discusses the benefits of biogas as perceived by the biogas users as well as non-users of Tehsil Jhang. Data were collected from 60 respondents (30 users and 30 non-users) selected purposively through validated and pre-tested interview schedule from the respondents. Collected data were analyzed by using Statistical Package for Social Sciences (SPSS). Household benefits like ‘makes cooking easy,’ ‘Less breathing issues for working women in kitchens’ and ‘Use of bio-slurry as organic fertilizer’ had the highly significant relationship between them with t-values of 3.24, 4.39 and 2.80 respectively. Responses of the respondents about environmental benefits of biogas technology showed that ‘less air pollution’ had a significant relationship between them while ‘less temperature rise up than due to the burning of wood /dung’ had the non-significant relationship in the responses of interviewed respondents. It was clear from the research that biogas users were becoming influential in convincing non-users to adopt this technology due to its noticeable benefits. Research area where people were depending on wood to be used as fire fuel could be helped in reduction of cutting of trees which will help in controlling deforestation and saving the environment.People should be encouraged in using of biogas technology through providing them subsidies and low mark up loans.

Keywords: biogas technology, deforestation, environmental benefits, renewable energy

Procedia PDF Downloads 267
217 Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Composite Using Alkali Activate Binder

Authors: S. Candamano, A. Iorfida, L. Pagnotta, F. Crea

Abstract:

Basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result in being effective in structural strengthening and eco-efficient. In this study, authors investigate their mechanical behavior when an alkali-activated binder, with tuned properties and containing high amounts of industrial by-products, such as ground granulated blast furnace slag, is used. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST), aimed to the stress-transfer mechanism and failure modes of basalt-FRCM composites, were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, a compressive strength of 32 MPa and a flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline CASH gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. The first linear phase represents the uncracked (I) stage, the second (II) is identified by crack development and the third (III) corresponds to cracked stage, completely developed up to failure. All specimens exhibit a crack pattern throughout the gauge length and failure occurred as a result of sequential tensile failure of the fibre bundles, after reaching the ultimate tensile strength. The behavior is mainly governed by cracks development (II) and widening (III) up to failure. The main average values related to the stages are σI= 173 MPa and εI= 0.026% that are the stress and strain of the transition point between stages I and II, corresponding to the first mortar cracking; σu = 456 MPa and εu= 2.20% that are the ultimate tensile strength and strain, respectively. The tensile modulus of elasticity in stage III is EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa, and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali Activated Binders can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.

Keywords: alkali activated binders, basalt-FRCM composites, direct shear tests, structural strengthening

Procedia PDF Downloads 126
216 The Study of Wetting Properties of Silica-Poly (Acrylic Acid) Thin Film Coatings

Authors: Sevil Kaynar Turkoglu, Jinde Zhang, Jo Ann Ratto, Hanna Dodiuk, Samuel Kenig, Joey Mead

Abstract:

Superhydrophilic, crack-free thin film coatings based on silica nanoparticles were fabricated by dip-coating method. Both thermodynamic and dynamic effects on the wetting properties of the thin films were investigated by modifying the coating formulation via changing the particle-to-binder ratio and weight % of silica in solution. The formulated coatings were characterized by a number of analyses. Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Scanning electron microscope (SEM) images were taken to examine the morphology of the coating surface. Atomic force microscopy (AFM) analysis was done to study surface topography. The presence of hydrophilic functional groups and nano-scale roughness were found to be responsible for the superhydrophilic behavior of the films. In addition, surface chemistry, compared to surface roughness, was found to be a primary factor affecting the wetting properties of the thin film coatings.

Keywords: poly (acrylic acid), silica nanoparticles, superhydrophilic coatings, surface wetting

Procedia PDF Downloads 140
215 SIF Computation of Cracked Plate by FEM

Authors: Sari Elkahina, Zergoug Mourad, Benachenhou Kamel

Abstract:

The main purpose of this paper is to perform a computations comparison of stress intensity factor 'SIF' evaluation in case of cracked thin plate with Aluminum alloy 7075-T6 and 2024-T3 used in aeronautics structure under uniaxial loading. This evaluation is based on finite element method with a virtual power principle through two techniques: the extrapolation and G−θ. The first one consists to extrapolate the nodal displacements near the cracked tip using a refined triangular mesh with T3 and T6 special elements, while the second, consists of determining the energy release rate G through G−θ method by potential energy derivation which corresponds numerically to the elastic solution post-processing of a cracked solid by a contour integration computation via Gauss points. The SIF obtained results from extrapolation and G−θ methods will be compared to an analytical solution in a particular case. To illustrate the influence of the meshing kind and the size of integration contour position simulations are presented and analyzed.

Keywords: crack tip, SIF, finite element method, concentration technique, displacement extrapolation, aluminum alloy 7075-T6 and 2024-T3, energy release rate G, G-θ method, Gauss point numerical integration

Procedia PDF Downloads 340
214 Dynamic Damage Analysis of Carbon Fiber Reinforced Polymer Composite Confinement Vessels

Authors: Kamal Hammad, Alexey Fedorenko, Ivan Sergeichev

Abstract:

This study uses analytical modeling, experimental testing, and explicit numerical simulations to evaluate failure and spall damage in Carbon Fiber-Reinforced Polymer (CFRP) composite confinement vessels. It investigates the response of composite materials to explosive loading dynamic impact, revealing varied failure modes. Hashin damage was used to model inplane failure, while the Virtual Crack Closure Technique (VCCT) modeled inter-laminar damage. Results show moderate agreement between simulations and experiments regarding free surface velocity and failure stresses, with discrepancies due to wire alignment imperfections and wave reverberations in the experimental test. The findings can improve design and risk-reduction strategies in high-risk scenarios, leading to enhanced safety and economic efficiency in material assessment and structural design processes.

Keywords: explicit, numerical, spall, damage, CFRP, composite, vessels, explosive, dynamic, impact, Hashin, VCCT

Procedia PDF Downloads 57
213 Clinical Profile and Outcome of Type I Diabetes Mellitus at a Tertiary Care-Centre in Eastern Nepal

Authors: Gauri Shankar Shah

Abstract:

Objectives: The Type I diabetes mellitus in children is frequently a missed diagnosis and children presents in emergency with diabetic ketoacidosis having significant morbidity and mortality. The present study was done to find out the clinical presentation and outcome at a tertiary-care centre. Methods: This was retrospective analysis of data of Type I diabetes mellitus reporting to our centre during last one year (2012-2013). Results: There were 12 patients (8 males) and the age group was 4-14 years (mean ± 3.7). The presenting symptoms were fever, vomiting, altered sensorium and fast breathing in 8 (66.6%), 6 (50%), 4 (33.3%), and 4 (33.3%) cases, respectively. The classical triad of polyuria, polydypsia, and polyphagia were present only in two patients (33.2%). Seizures and epigastric pain were found in two cases each (33.2%). The four cases (33.3%) presented with diabetic ketoacidosis due to discontinuation of insulin doses, while 2 had hyperglycemia alone. The hemogram revealed mean hemoglobin of 12.1± 1.6 g/dL and total leukocyte count was 22,883.3 ± 10,345.9 per mm3, with polymorphs percentage of 73.1 ± 9.0%. The mean blood sugar at presentation was 740 ± 277 mg/ dl (544–1240). HbA1c ranged between 7.1-8.8 with mean of 8.1±0.6 %. The mean sodium, potassium, blood ph, pCO2, pO2 and bicarbonate were 140.8 ± 6.9 mEq/L, 4.4 ± 1.8mEq/L, 7.0 ± 0.2, 20.2 ± 10.8 mmHg, 112.6 ± 46.5 mmHg and 9.2 ± 8.8 mEq/L, respectively. All the patients were managed in pediatric intensive care unit as per our protocol, recovered and discharged on intermediate insulin given twice daily. Conclusions: Thus, it shows that these patients have uncontrolled hyperglycemia and often presents in emergency with ketoacidosis and deranged biochemical profile. The regular administration of insulin, frequent monitoring of blood sugar and health education are required to have better metabolic control and good quality of life.

Keywords: type I diabetes mellitus, hyperglycemia, outcome, glycemic control

Procedia PDF Downloads 257
212 A Case of Survival with Self-Draining Haemopericardium Secondary to Stabbing

Authors: Balakrishna Valluru, Ruth Suckling

Abstract:

A 16 year old male was found collapsed on the road following stab injuries to the chest and abdomen and was transported to the emergency department by ambulance. On arrival in the emergency department the patient was breathless and appeared pale. He was maintaining his airway with spontaneous breathing and had a heart rate of 122 beats per minute with a blood pressure of 83/63 mmHg. He was resuscitated initially with three units of packed red cells. Clinical examination identified three incisional wounds each measuring 2 cm. These were in the left para-sternal region, right infra-scapular region and left upper quadrant of the abdomen. The chest wound over the left parasternal area at the level of 4tth intercostal space was bleeding intermittently on leaning forwards and was relieving his breathlessness intermittently. CT imaging was performed to characterize his injuries and determine his management. CT scan of chest and abdomen showed moderate size haemopericardium with left sided haemopneumothorax. The patient underwent urgent surgical repair of the left ventricle and left anterior descending artery. He recovered without complications and was discharged from the hospital. This case highlights the fact that the potential to develop a life threatening cardiac tamponade was mitigated by the left parasternal stab wound. This injury fortuitously provided a pericardial window through which the bleeding from the injured left ventricle and left anterior descending artery could drain into the left hemithorax providing an opportunity for timely surgical intervention to repair the cardiac injuries.

Keywords: stab, incisional, haemo-pericardium, haemo-pneumothorax

Procedia PDF Downloads 205
211 Numerical and Comparative Analysis between Two Composite Plates Notched in Different Shapes and Repaired by Composite

Authors: Amari Khaoula, Berrahou Mohamed

Abstract:

The topic of our article revolves around a numerical and comparative analysis between two notched Boron/epoxy plates that are U-shaped and the other V-shaped, cracked, and repaired by a rectangular patch of the same composite material; the finite element method was used for the analytical study and comparison of the results obtained for determining the optimal shape of notch which will give a longer life to the repair. In this context, we studied the variation of the stress intensity factor, the evolution of the damaged area, and the calculation of the ratio of the damaged area according to the crack length and the concentration of the Von Mises stresses as a function of the lengths of the paths. According to the results obtained, we conclude that the notch plate U is the optimal one than notch plate V because it has lower values either for the stress intensity factor (SIF), damaged area ratio (Dᵣ), or the Von Mises stresses.

Keywords: the notch U, the notch V, the finite element method FEM, comparison, rectangular patch, composite, stress intensity factor, damaged area ratio, Von Mises stresses

Procedia PDF Downloads 103
210 Recognition of Arrest Patients and Application of Basic Life Support by Bystanders in the Field

Authors: Behcet Al, Mehmet Murat Oktay, Suat Zengin, Mustafa Sabak, Cuma Yildirim

Abstract:

Objective: Th Recognition of arrest patients and application of basic life support (BLS) by bystanders in the field and the activation of emergency serves were evaluated in present study. Methodology: The present study was carried out by Emergency Department of Medicine Faculty of Gaziantep University at 33 of Emergency Health center in Gaziantep between December 2012- April 2014 prospectively. Of 539 arrested patients, 171 patients were included in study. Results: 118 (69%) male, and 53 31(%) female with a totlay of 171 patients were included in this study. Of patients, 32.2% had syncope and 24% had shorth breathing just befor being arrested. The majority of arrest cases had occured at home (61.4%) and rural area (11.7%) respectively. Of asking help, %48.5 were constructed by family members. Of announcement, only 15.2% occured within first minute of arrest. The BLS ratio that was applied by bystanders was 22.2%. Of bystanders, 47.4% had a course experience of BLS. The emergency serve had reached to the field with a mean of 8.43 min. Of cases, 55% (n=94) were evaluated as exitus firstly bu emergency staff. The most noticed rythim was asystol (73.1%). BLS and advanced life support (ALS) were applied to 98.8% and 60% respectively at the field. 10.5% (n=18) of cases were defibrilated, and 45 (26.3%) were intubated endotrecealy. The majority (48.5%) of staff who applied BLS and ALS at the fied were emergency medicine technicians. CPR was performed to 86.5% (n=148) cases in ambulance while they were transported. The mean arrival time to mergency department was 9.13 min. When the patients arrived to ED 15.2% needed defirlitation. 91.2% (n =156) of patients resulted in exitus in ED. 15 (8.8%) patients were discharged (9 with recovery, six patients with damage). Conclusion: The ratio of inntervention for arrest patients by bystanders is still low. To optain a high percentage of survival, BLS training should be widened among the puplic especiallyamong the caregivers.

Keywords: arrest patients, cardiopulmonary resuscitation, bystanders, chest compressions, prehospital

Procedia PDF Downloads 391
209 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length

Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.

Keywords: bond strength, climate change, pull-out test, substitution of reinforcement material, textile

Procedia PDF Downloads 478
208 Cognitive Behavioral Training to Enhance Performance and Well-Being in Collegiate Athletes

Authors: Angelina Tarabokija

Abstract:

This study looks into how cognitive behavioral training (CBT) techniques affect collegiate track and field athletes' anxiety related to performance, with a focus on distance runners. The goal of the research is to discover whether consistent use of cognitive behavioral therapy (CBT) methods, such as progressive muscle relaxation, yoga (Y-CBT), visualization, relaxed breathing, and meditation, can reduce performance anxiety and improve sports performance. Six runners from the Rider Track & Field team, aged eighteen to twenty-three, participated in the quantitative research design used in the technique. Prior to employing CBT techniques every day for two weeks, including before competitions or on race day, participants conducted baseline assessments using the Sport Anxiety Scale-2 (SAS-2). The SAS-2 was used in post-competition evaluations to track alterations in performance anxiety. The findings show that participants' total trait anxiety levels significantly decreased after utilizing CBT techniques for one week. However, after two weeks, a few participants' anxiety levels slightly increased, pointing to the need for more research and regular practice. The study indicates that CBT approaches can effectively reduce performance anxiety and increase athletic performance in collegiate track and field athletes, despite constraints related to participant motivation and potential confounding variables. Future areas for research could entail examining the precise impacts of worry, interruption of attention, and bodily anxiety on performance, as well as adding more controls. Overall, by providing insights into evidence-based strategies to maximize mental states and athletic performance in collegiate athletes, this study advances the area of sports psychology.

Keywords: cognitive behavioral training, performance, athletes, anxiety, well-being, SAS-2, Sport, trait anxiety, somatic anxiety

Procedia PDF Downloads 20
207 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 318
206 Seismic Performance of Two-Storey RC Frame Designed EC8 under In-Plane Cyclic Loading

Authors: N. H. Hamid, A. Azmi, M. I. Adiyanto

Abstract:

This main purpose of this paper is to evaluate the seismic performance of double bay two-storey reinforced concrete frame under in-plane lateral cyclic loading which designed using Eurocode 8 (EC8) by taking into account of seismic loading. The prototype model of reinforced concrete frame was constructed in one-half scale tested under in-plane lateral cyclic loading starts with ±0.2% drift, ±0.25% up to ±3.0% drift with the increment of ±0.25%. The performance of the RC frame is evaluated in terms of the hysteresis loop (load vs. displacement), stiffness, ductility, lateral strength, stress-strain relationship and equivalent viscous damping. Visual observation of the crack pattern after testing were observed where the beam- column joint suffer the most severe damage as it is the critical part in moment resisting frame. Spalling of concrete starts occurred at ±2.0% drift and become worse at ±2.5% drift. The experimental result shows that the maximum lateral strength of specimen is 99.98 kN and ductility of the specimen is µ=4.07 which lies between 3≤µ≤6 in order to withstand moderate to severe earthquakes.

Keywords: ductility, equivalent viscous damping, hysteresis loops, lateral strength, stiffness

Procedia PDF Downloads 361
205 Silver Nanoparticle Application in Food Packaging and Impacts on Food Safety and Consumer’s Health

Authors: Worku Dejene Bekele, András Marczika Csilla Sörös

Abstract:

Silver nanoparticles are silver metal with a size of 1-100nm. The most common source of silver nanoparticles is inorganic salts. Nanoparticles can be ingested through our foods and constitute nanoparticles and silver ions, whether as an additive or by migrants and, in some cases, as a pollutant. Silver nanoparticles are the most widely applicable engineered nanomaterials, especially for antimicrobial function. Ag nanoparticles give different advantages in the case of food safety, quality, and overall acceptability; however, they affect the health of humans and animals, putting them at risk of health problems and environmental pollution. Silver nanoparticles have been used widely in food packaging technologies, especially in water treatments, meat and meat products, fruit, and many other food products. This is for bio-preservation from food products. The primary goal of this review is to determine the safety and health impact of Ag nanoparticles application in food packaging and analysis of the human organs more affected by this preservative technology, to assess the implications of a nanoparticle on food safety, to determine the effects of nanoparticles on consumers health and to determine the impact of nanotechnology on product acceptability. But currently, much research has demonstrated that there is cause to believe that silver nanoparticles may have toxicological effects on biological organs and systems. The silver nanoparticles affect DNA expression, gastrointestinal barriers, lungs, and other breathing organs illness. Silver particles and molecules are very toxic. During its application in food packaging, food industries used the thinnest particle. This particle can potentially affect the gastrointestinal tracts-it suffers from mucus production, DNA, lungs, and other breezing organs. This review is targeted to demonstrate the knowledge gap that industrials use in the application of silver nanoparticles in food packaging and preservation and its health effects on the consumer.

Keywords: food preservatives, health impact, nanoparticle, silver nanoparticle

Procedia PDF Downloads 76
204 The Effect of Heating-Liquid Nitrogen Cooling on Fracture Toughness of Anisotropic Rock

Authors: A. Kavandi, K. Goshtasbi, M. R. Hadei, H. Nejati

Abstract:

In geothermal energy production, the method of liquid nitrogen (LN₂) fracturing in hot, dry rock is one of the most effective methods to increase the permeability of the reservoir. The geothermal reservoirs mainly consist of hard rocks such as granites and metamorphic rocks like gneiss with high temperatures. Gneiss, as a metamorphic rock, experiences a high level of inherent anisotropy. This type of anisotropy is considered as the nature of rocks, which affects the mechanical behavior of rocks. The aim of this study is to investigate the effects of heating-liquid nitrogen (LN₂) cooling treatment and rock anisotropy on the fracture toughness of gneiss. For this aim, a series of semi-circular bend (SCB) tests were carried out on specimens of gneiss with different anisotropy plane angles (0°, 30°, 60°, and 90°). In this study, gneiss specimens were exposed to heating–cooling treatment through gradual heating to 100°C followed by LN₂ cooling. Results indicate that the fracture toughness of treated samples is lower than that of untreated samples, and with increasing the anisotropy plane angle, the fracture toughness increases. The scanning electron microscope (SEM) technique is also implemented to evaluate the fracture process zone (FPZ) ahead of the crack tip.

Keywords: heating-cooling, anisotropic rock, fracture toughness, liquid nitrogen

Procedia PDF Downloads 62
203 Chlorine Pretreatment Effect on Mechanical Properties of Optical Fiber Glass

Authors: Abhinav Srivastava, Hima Harode, Chandan Kumar Saha

Abstract:

The principal ingredient of an optical fiber is quartz glass. The quality of the optical fiber decreases if impure foreign substances are attached to its preform surface. If residual strain inside a preform is significant, it cracks with a small impact during drawing or transporting. Furthermore, damages and unevenness on the surface of an optical fiber base material break the fiber during drawing. The present work signifies that chlorine pre-treatment enhances mechanical properties of the optical fiber glass. FTIR (Fourier-Transform Infrared Spectroscopy) results show that chlorine gas chemically modifies the structure of silica clad; chlorine is known to soften glass. Metallic impurities on the preform surface likely formed volatile metal chlorides due to chlorine pretreatment at elevated temperature. The chlorine also acts as a drying agent, and therefore the preform surface is anticipated to be water deficient and supposedly avoids particle adhesion on the glass surface. The Weibull analysis of long length tensile strength demarcates a substantial shift in its knee. The higher dynamic fatigue n-value also indicated surface crack healing.

Keywords: mechanical strength, optical fiber glass, FTIR, Weibull analysis

Procedia PDF Downloads 179
202 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC

Authors: Yu-Zhou Zheng, Wen-Wei Wang

Abstract:

In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.

Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening

Procedia PDF Downloads 350
201 Comprehensive Evaluation of Oral and Maxillofacial Radiology in "COVID-19"

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

The recent coronavirus disease 2019 (COVID-19) occurrence has carried considerabletrials to the world health system, comprising the training of dental and maxillofacial radiology (DMFR). DMFR will keep avital role in healthcare throughout this disaster. Severe acute breathing disease coronavirus 2 (SARS-CoV-2), the virus producing the current coronavirus disease 2019 (COVID-19) pandemic, is not only extremely contagious but can make solemn consequences in susceptible persons comprising dental patients and dental health care personnel (DHCPs). Reactions to COVID-19 have been available by the Cores for Infection Switch and Inhibition and the American Dental Association, but a more detailed answer is necessary for the harmless preparation of oral and maxillofacial radiology. Our goal is to evaluation the existing information just how the illness threatens patients and DHCPs and how to define which patients are possible to be SARS-CoV-2 infected; study how the usage of private shielding utensils and contamination control measures based on recent top observes, and knowledge can decrease the danger of virus spread in radiologic trials; and scrutinize how intraoral radiography, with its actually superior danger of scattering the infection, might be changed by extraoralradiographic methods for definite diagnostic jobs. In the pandemic, teleradiology has been extensively recycled for diagnostic determinations of COVID-19 patients, for discussions with radiologists in crisis cases, or managing of distance among radiology clinics. Dentists can have the digital radiographic images of their emergency patients through online service area also by electronic message or messaging applications to view in their smart phones, laptops, or other electronic devices.

Keywords: radiology, dental, oral, COVID-19, infection

Procedia PDF Downloads 176
200 The Moderating Roles of Bedtime Activities and Anxiety and Depression in the Relationship between Attention-Deficit/Hyperactivity Disorder and Sleep Problems in Children

Authors: Lian Tong, Yan Ye, Qiong Yan

Abstract:

Background: Children with attention-deficit/hyperactivity disorder (ADHD) often experience sleep problems, but the comorbidity mechanism has not been sufficiently studied. This study aimed to determine the comorbidity of ADHD and sleep problems as well as the moderating effects of bedtime activities and depression/anxiety symptoms on the relationship between ADHD and sleep problems. Methods: We recruited 934 primary students from third to fifth grade and their parents by stratified random sampling from three primary schools in Shanghai, China. This study used parent-reported versions of the ADHD Rating Scale-IV, Children’s Sleep Habits Questionnaire, and Achenbach Child Behavior Checklist. We used hierarchical linear regression analysis to clarify the moderating effects of bedtime activities and depression/anxiety symptoms. Results: We found that children with more ADHD symptoms had shorter sleep durations and more sleep problems on weekdays. Screen time before bedtime strengthened the relationship between ADHD and sleep-disordered breathing. Children with more screen time were more likely to have sleep onset delay, while those with less screen time had more sleep onset problems with increasing ADHD symptoms. The high bedtime eating group experienced more night waking with increasing ADHD symptoms compared with the low bedtime eating group. Anxiety/depression exacerbated total sleep problems and further interacted with ADHD symptoms to predict sleep length and sleep duration problems. Conclusions: Bedtime activities and emotional problems had important moderating effects on the relationship between ADHD and sleep problems. These findings indicate that appropriate bedtime management and emotional management may reduce sleep problems and improve sleep duration for children with ADHD symptoms.

Keywords: ADHD, sleep problems, anxiety/depression, bedtime activities, children

Procedia PDF Downloads 207
199 Superior Wear Performance of CoCrNi Matrix Composite Reinforced with Quasi-Continuously Networked Graphene Nanosheets and In-Situ Carbide

Authors: Wenting Ye

Abstract:

The biological materials evolved in nature generally exhibit interpenetrating network structures, which may offer useful inspiration for the architectural design of wear-resistant composites. Here, a strategy for designing self-lubricating medium entropy alloy (MEA) composites with high strength and excellent anti-wear performance was proposed through quasi-continuously networked in-situ carbides and graphene nanosheets. The discontinuous coating of graphene on the MEA powder surface inhibits continuous metallurgy bonding of the MEA powders during sintering, generating the typical quasi-continuously networked architecture. A good combination of mechanical properties with high fracture strength over 2 GPa and large compressive plasticity over 30% benefits from metallurgy bonding that prevents crack initiation and extension. The wear rate of an order of 10-6 m3N-1m-1 ascribing to an amorphous-crystalline nanocomposite surface, tribo-film induced by graphene, as well as the gradient worn subsurface during friction was achieved by the MEA composite, which is an order of magnitude lower than the unreinforced MEA matrix.

Keywords: in-situ carbide, tribological behavior, medium entropy alloy matrix composite, graphene

Procedia PDF Downloads 44
198 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings

Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch

Abstract:

It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.

Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry

Procedia PDF Downloads 171
197 Nursing System Development in Patients Undergoing Operation in 3C Ward: Early Ambulation in Patients with Head and Neck Cancer

Authors: Artitaya Sabangbal, Darawan Augsornwan, Palakorn Surakunprapha, Lalida Petphai

Abstract:

Background: Srinagarind Hospital Ward 3C has about 180 cases of patients with head and neck cancer per year. Almost all of these patients suffer with pain, fatigue, low self image, swallowing problem and when the tumor is larger they will have breathing problem. Many of them have complication after operation such as pressure sore, pneumonia, deep vein thrombosis. Nursing activity is very important to prevent the complication especially promoting patients early ambulation. The objective of this study was to develop early ambulation protocol for patients with head and neck cancer undergoing operation. Method: this study is one part of nursing system development in patients undergoing operation in Ward 3C. It is a participation action research divided into 3 phases Phase 1 Situation review: In this phase we review the clinical outcomes, process of care, from document such as nurses note and interview nurses, patients and family about early ambulation. Phase 2 Searching nursing intervention about early ambulation from previous study then establish protocol . This phase we have picture package of early ambulation. Phase 3 implementation and evaluation. Result: Patients with head and neck cancer after operation can follow early ambulation protocol 100%, 85 % of patients can follow protocol within 2 days after operation and 100% can follow protocol within 3 days. No complications occur. Patients satisfaction in very good level is 58% and in good level is 42% Length of hospital stay is 6 days in patients with wide excision and 16 day in patients with flap coverage. Conclusion: The early ambulation protocol is appropriate for patients with head and neck cancer who undergo operation. This can restore physical health, reduce complication and increase patients satisfaction.

Keywords: nursing system, early ambulation, head and neck cancer, operation

Procedia PDF Downloads 232
196 University Students Sport’s Activities Assessment in Harsh Weather Conditions

Authors: Ammar S. M. Moohialdin, Bambang T. Suhariadi, Mohsin Siddiqui

Abstract:

This paper addresses the application of physiological status monitoring (PSM) for assessing the impact of harsh weather conditions on sports activities in universities in Saudi Arabia. Real sports measurement was conducted during sports activities such that the physiological status (HR and BR) of five students were continuously monitored by using Zephyr BioHarnessTM 3.0 sensors in order to identify the physiological bonds and zones. These bonds and zones were employed as indicators of the associated physiological risks of the performed sports activities. Furthermore, a short yes/no questionnaire was applied to collect information on participants’ health conditions and opinions of the applied PSM sensors. The results show the absence of a warning system as a protective aid for the hazardous levels of extremely hot and humid weather conditions that may cause dangerous and fatal circumstances. The applied formulas for estimating maximum HR provides accurate estimations for Maximum Heart Rate (HRmax). The physiological results reveal that the performed activities by the participants are considered the highest category (90–100%) in terms of activity intensity. This category is associated with higher HR, BR and physiological risks including losing the ability to control human body behaviors. Therefore, there is a need for immediate intervention actions to reduce the intensity of the performed activities to safer zones. The outcomes of this study assist the safety improvement of sports activities inside universities and athletes performing their sports activities. To the best of our knowledge, this is the first paper to represent a special case of the application of PSM technology for assessing sports activities in universities considering the impacts of harsh weather conditions on students’ health and safety.

Keywords: physiological status monitoring (PSM), heart rate (HR), breathing rate (BR), Arabian Gulf

Procedia PDF Downloads 203
195 The Effect of Eight Weeks of Aerobic Training on Indices of Cardio-Respiratory and Exercise Tolerance in Overweight Women with Chronic Asthma

Authors: Somayeh Negahdari, Mohsen Ghanbarzadeh, Masoud Nikbakht, Heshmatolah Tavakol

Abstract:

Asthma, obesity and overweight are the main factors causing change within the heart and respiratory airways. Asthma symptoms are normally observed during exercising. Epidemiological studies have indicated asthma symptoms occurring due to certain lifestyle habits; for example, a sedentary lifestyle. In this study, eight weeks of aerobic exercises resulted in a positive effect overall in overweight women experiencing mild chronic asthma. The quasi-experimental applied research has been done based on experimental and control groups. The experimental group (seven patients) and control group (n = 7) were graded before and after the test. According to the Borg dyspnea and fatigue Perception Index, the training intensity has determined. Participants in the study performed a sub-maximal aerobic activity schedule (45% to 80% of maximum heart rate) for two months, while the control group (n = 7) stayed away from aerobic exercise. Data evaluation and analysis of covariance compared both the pre-test and post-test with paired t-test at significance level of P≤ 0.05. After eight weeks of exercise, the results of the experimental group show a significant decrease in resting heart rate, systolic blood pressure, minute ventilation, while a significant increase in maximal oxygen uptake and tolerance activity (P ≤ 0.05). In the control group, there was no significant difference in these parameters ((P ≤ 0.05). The results indicate the aerobic activity can strengthen the respiratory muscles, while other physiological factors could result in breathing and heart recovery. Aerobic activity also resulted in favorable changes in cardiovascular parameters, and exercise tolerance of overweight women with chronic asthma.

Keywords: asthma, respiratory cardiac index, exercise tolerance, aerobic, overweight

Procedia PDF Downloads 236