Search results for: nutrient starvation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 676

Search results for: nutrient starvation

316 Development IoT System for Smart Maize Production in Nigeria

Authors: Oyenike M. Olanrewaju, Faith O. Echobu, Aderemi G. Adesoji, Emmy Danny Ajik, Joseph Nda Ndabula, Stephen Luka

Abstract:

Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. In this research, an Internet of Things test kit was developed to fill in the gaps created by wet soil analysis. The kit comprises components that were used to measure Nitrogen, Phosphorous and potassium (N, P, K) soil content, soil temperature and soil moisture at a series of intervals. In this implementation, the fieldwork was carried out within 0.2 hectares of land divided into smaller plots. Nitrogen values from the three reps range from 14.8 – 15mg/kg, Phosphorous 20.2-21.4 mg/kg, and Potassium 50.2-53 mg/kg. This information with soil moisture information obtained enabled the farmers to make informed and precise decisions on fertilizer applications, and wastage was avoided.

Keywords: internet of things, soil Nutrients, test kit, soil temperature

Procedia PDF Downloads 33
315 Microbes in Aquaculture: New Trends and Application in Freshwater Fish Culture

Authors: Muhammad Younis Laghari

Abstract:

Microbial communities play the most important role in aquatic ecosystems. These microbes have a great role in fish growth and aquaculture production. Unfortunately, the farmers are unaware of these useful creatures. Nowadays, the trend of fish farming is developed to re-circulatory aquaculture system (RAS) to increase production and reduce the investment/management cost to increase the profit. However, sometimes, it has been observed that even the growth of fish is decreased in RAS without apparent changes in water quality. There is a great importance of microorganisms in aquaculture, where they occur naturally. However, they can be added artificially by applying different roles. Even these microbes play an important role in the degradation of organic matter and recycling nutrients, along with nutritional support to fish. Even some microorganisms may protect fish and larvae against diseases. But if not managed/utilized properly, they may cause to infect or kill the fish and their larvae. However, manipulating the microbes and monitoring them in aquaculture systems hold great potential to assess and improve the water quality as well as to control the development of microbial infections. While there is an utmost need for research to determine the microbiomes of healthy aquaculture systems, we also need to develop authentic methods for the successful manipulation of microbes as well as engineer these microbiomes. Hence, we should develop a plan to utilize and get full advantage from these microbial interactions for the successful management of aquaculture through advanced research and technology.

Keywords: aquaculture, ecology system, degradation, microbes, nutrient recycling, water quality

Procedia PDF Downloads 57
314 Green Technologies Developed by JSC “NIUIF”

Authors: Andrey Norov

Abstract:

In the recent years, Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF”, the oldest (established in September 1919) industry-oriented institute in Russia, has developed a range of sustainable, environment-friendly, zero-waste technologies that ensure minimal consumption of materials and energy resources and fully consistent with the principles of Green Chemistry that include: - Ecofriendly energy and resource saving technology of sulfuric acid from sulfur according to DC-DA scheme (double conversion - double absorption); - Improved zero-waste technology of wet phosphoric acid (WPA) by dihydrate-hemihydrate process applicable to various types of phosphate raw materials; - Flexible, efficient, zero-waste, universal technology of NP / NPS / NPK / NPKS fertilizers with maximum heat recovery from chemical processes; - Novel, zero-waste, no-analogue technology of granular PK / PKS / NPKS fertilizers with controlled dissolution rate and nutrient supply into the soil, which allows to process a number of wastes and by-products; - Innovative resource-saving joint processing of wastes from the production of phosphogypsum and fluorosilicic acid (FSA) into ammonium sulfate with simultaneous neutralization of fluoride compounds with no lime used. - New fertilizer technology of increased environmental and agrochemical efficiency (currently under development). All listed green technologies are patented with Russian and Eurasian patents. The development of ecofriendly, safe, green technologies is ongoing in JSC “NIUIF”.

Keywords: NPKS fertilizers, FSA, sulfuric acid, WPA

Procedia PDF Downloads 68
313 Reviving Arid Lands: The Transformative Potential of Biochar in Arab Countries' Agriculture

Authors: Ahmed Azizeldein Abubaker Abdelhafez

Abstract:

This review explores the application of biochar as a strategy for enhancing soil fertility in arid regions, with a focus on Arab countries. Biochar, derived from the carbonization of biomass under low-oxygen conditions, has shown promise in improving the physical and chemical properties of soil, such as increasing water retention and nutrient availability. Despite the challenging conditions of arid and semi-arid regions, characterized by poor soil fertility and severe land degradation, biochar application has emerged as a viable method to enhance agricultural productivity and mitigate environmental issues. This paper examines various aspects of biochar, including production methods, such as pyrolysis and gasification, and the effects of biochar on soil fertility. It discusses different application techniques and presents case studies from Arab countries like Egypt, the United Arab Emirates, Saudi Arabia, Qatar, Oman, and Kuwait, highlighting the successes and challenges faced in implementing biochar technology. The review also addresses the limitations of biochar use in arid regions and suggests future research directions to optimize its effectiveness. Overall, this study underscores the potential of biochar to contribute significantly to sustainable agriculture and ecological restoration in arid environments, advocating for integrated strategies that combine biochar application with other innovative agricultural practices.

Keywords: biochar, soil fertility, arid region, Arab countries, challenges and limitations

Procedia PDF Downloads 17
312 Closed Greenhouse Production Systems for Smart Plant Production in Urban Areas

Authors: U. Schmidt, D. Dannehl, I. Schuch, J. Suhl, T. Rocksch, R. Salazar-Moreno, E. Fitz-Rodrigues, A. Rojano Aquilar, I. Lopez Cruz, G. Navas Gomez, R. A. Abraham, L. C. Irineo, N. G. Gilberto

Abstract:

The integration of agricultural production systems into urban areas is a challenge for the coming decades. Because of increasing greenhouse gas emission and rising resource consumption as well as costs in animal husbandry, the dietary habits of people in the 21st century have to focus on herbal foods. Intensive plant cultivation systems in large cities and megacities require a smart coupling of information, material and energy flow with the urban infrastructure in terms of Horticulture 4.0. In recent years, many puzzle pieces have been developed for these closed processes at the Humboldt University. To compile these for an urban plant production, it has to be optimized and networked with urban infrastructure systems. In the field of heat energy production, it was shown that with closed greenhouse technology and patented heat exchange and storage technology energy can be provided for heating and domestic hot water supply in the city. Closed water circuits can be drastically reducing the water requirements of plant production in urban areas. Ion sensitive sensors and new disinfection methods can help keep circulating nutrient solutions in the system for a longer time in urban plant production greenhouses.

Keywords: semi closed, greenhouses, urban farming, solar heat collector, closed water cycles, aquaponics

Procedia PDF Downloads 305
311 Potential Role of Arbuscular Mycorrhizal (AM) Fungi in CO₂-Sequestration During Bipartite Interaction with Host Plant Oryza Sativa

Authors: Sadhana Shukla, Pushplata Singh, Nidhi Didwania

Abstract:

Arbuscular mycorrhizal (AM) fungi are a highly advantageous and versatile group of fungi that significantly contribute to the formation of soil organic matter by creating a demand for plant carbon (C) and distributing it through below-ground hyphal biomass, regardless of their substantial contribution in enhancing net primary productivity and accumulating additional photosynthetic fixed C in the soil. The genetic role of AM fungi in carbon cycling is largely unexplored. In our study, we propose that AM fungi significantly interact with the soil, particularly: the provision of photosynthates by plants. We have studied the expression of AM fungi genes involved in CO₂ sequestration during host-plant interaction was investigated by qPCR studies. We selected Rhizophagus proliferus (AM fungi) and Oryza sativa (Rice) (inoculated with or without 200ppg AMF inoculums per plant) and investigated the effect of AM fungi on soil organic carbon (SOC) and rice growth under field conditions. Results thus provided faster SOC turnover, 35% increased nutrient uptake in plants and pronounced hyphal biomass of AM fungi which enhanced soil carbon storage by 15% in comparison to uninoculated plants. This study will offer a foundation for delving into various carbon-soil studies while also advancing our comprehension of the relationship between AM fungi and the sustainability of agricultural ecosystems.

Keywords: arbuscular mycorrhizal (AM) fungi, carbon sequestration, gene expression, soil health, plant development.

Procedia PDF Downloads 50
310 Lipidomic Profiling of Chlorella sp. and Scenedesmus abundans towards Deciphering Phospholipids and Glycolipids under Nitrogen Limited Condition

Authors: J. Singh, Swati Dubey, R. P. Singh

Abstract:

Microalgal strains can accumulate greatly enhanced levels of lipids under nitrogen-deficient condition, making these as one of the most promising sustainable sources for biofuel production. High-grade biofuel production from microalgal biomass could be facilitated by analysing the lipid content of the microalgae and enumerating its dynamics under varying nutrient conditions. In the present study, a detailed investigation of changes in lipid composition in Chlorella species and Scenedesmus abundans in response to nitrogen limited condition was performed to provide novel mechanistic insights into the lipidome during stress conditions. The mass spectroscopic approaches mainly LC-MS and GC-MS were employed for lipidomic profiling in both the microalgal strains. The analyses of lipid profiling using LC-MS revealed distinct forms of lipids mainly phospho- and glycolipids, including betaine lipids, and various other forms of lipids in both the microalgal strains. As detected, an overall decrease in polar lipids was observed. However, GC-MS analyses had revealed that the synthesis of the storage lipid i.e. triacylglycerol (TAG) was substantially stimulated in both the strains under nitrogen limited conditions. The changes observed in the overall fatty acid profile were primarily due to the decrease in proportion of polar lipids to TAGs. This study had enabled in analysing a detailed and orchestrated form of lipidomes in two different microalgal strains having potential for biodiesel production.

Keywords: biofuel, GC-MS, LC-MS, lipid, microalgae

Procedia PDF Downloads 351
309 Paleoproductivity during the Younger Dryas off Northeastern Luzon, Philippines

Authors: Jay Mar D. Quevedo, Fernando P. Siringan, Cesar L. Villanoy

Abstract:

The influence of the Younger Dryas (YD) event on primary production off the northeast shelf of Luzon, Philippines is examined using sediment cores from two deep sea sites north of the Bicol shelf and with varying relative influence from terrestrial sediment input and the Kuroshio Current. Core A is immediately west of the Kuroshio feeder current and is off the slope while Core B is from a bathymetric high located almost west of Core A. XRF-, CHN- and LOI- derived geochemical proxies are utilized for reconstruction. A decrease in sediment input from ~12.9 to ~11.6 kyr BP corresponding to the YD event is indicated by the proxies, Ti, Al, and Al/Ti, in both cores. This is consistent with the drier climate during this period. Primary productivity indicators in the cores show opposing trends during the YD; Core A shows an increasing trend while Core B shows a decreasing trend. The decreasing trend in Core B can be due to a decrease in terrestrial nutrient input due to a decrease in precipitation. On the other hand, the increasing trend in Core A can be due to a swifter Kuroshio Current caused by a swifter and more southerly NEC bifurcation which in turn is due to a southerly shift of the ITCZ during YD. A stronger Kuroshio feeder would have enhanced upwelling induced by steeper sea surface across the current and by more intense cyclonic gyres due to flow separation where the shelf width suddenly decreases north of the Bicol Shelf.

Keywords: paleoproductivity, younger dryas, Philippines, northeastern Luzon

Procedia PDF Downloads 287
308 Growth and Anatomical Responses of Lycopersicon esculentum (Tomatoes) under Microgravity and Normal Gravity Conditions

Authors: Gbenga F. Akomolafe, Joseph Omojola, Ezekiel S. Joshua, Seyi C. Adediwura, Elijah T. Adesuji, Michael O. Odey, Oyinade A. Dedeke, Ayo H. Labulo

Abstract:

Microgravity is known to be a major abiotic stress in space which affects plants depending on the duration of exposure. In this work, tomatoes seeds were exposed to long hours of simulated microgravity condition using a one-axis clinostat. The seeds were sown on a 1.5% combination of plant nutrient and agar-agar solidified medium in three Petri dishes. One of the Petri dishes was mounted on the clinostat and allowed to rotate at the speed of 20 rpm for 72 hours, while the others were subjected to the normal gravity vector. The anatomical sections of both clinorotated and normal gravity plants were made after 72 hours and observed using a Phase-contrast digital microscope. The percentage germination, as well as the growth rate of the normal gravity seeds, was higher than the clinorotated ones. The germinated clinorotated roots followed different directions unlike the normal gravity ones which grew towards the direction of gravity vector. The clinostat was able to switch off gravistimulation. Distinct cellular arrangement was observed for tomatoes under normal gravity condition, unlike those of clinorotated ones. The root epidermis and cortex of normal gravity are thicker than the clinorotated ones. This implied that under long-term microgravity influence, plants do alter their anatomical features as a way of adapting to the stress condition.

Keywords: anatomy, clinostat, germination, lycopersicon esculentum, microgravity

Procedia PDF Downloads 295
307 Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture

Authors: Rupinder Kaur, Parmjit S. Panesar, Ram S. Singh

Abstract:

Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer.

Keywords: β-galactosidase, fungus, yeast, whey

Procedia PDF Downloads 297
306 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.

Keywords: open channel flow, Reynolds Number, roughness, turbulence

Procedia PDF Downloads 385
305 Nutritional Evaluation of Pregnant Women in Nairobi, Kenya for Implementation of a Probiotic Yogurt Program

Authors: Sharareh Hekmat, Michelle Lane

Abstract:

Pregnancy during adolescence affects both the growth and development of mother and baby, particularly in low socioeconomic and food insecure areas. This mixed methods study is aimed at discovering a need for a community-based probiotic yogurt program to assist pregnant women in the Mukuru slum Nairobi, Kenya. Surveys were conducted with pregnant women (14-25 years old, n=43), which included questionnaires on dietary intake, food access, and health/quality of life perception. The frequency and means procedure was used to analyze maternal characteristics, Women’s Dietary Diversity Score (WDDS) and Household Hunger Scale. 24-hour recalls were analyzed via ESHA Food Processor, and median nutrient intakes were reported as a percent of recommendations. An environmental scan was conducted to assess food availability, accessibility, and quality. WDDS reflected a low-moderate diet variation (3.86 food groups out of 9, SD ± 1.3) among the women. The 24-hour recall suggested an inadequate intake of many nutrients, most significantly B12, potassium and calcium. 86% of women reported little to no household hunger. However, the environmental scan revealed low quality and poor sanitation of food. This study provides evidence that a probiotic program would be desirable, and contribute to the nutritional status of women in the Mukuru community.

Keywords: dietary diversity, pregnant women, probiotics, urban slum, Kenya

Procedia PDF Downloads 162
304 Investigating the Environmental Impact of Tourists Activities on Yankari Resort and Safari

Authors: Eldah Ephraim Buba, Sanusi Abubakar Sadiq

Abstract:

Habitat can be degraded by tourism leisure activities for example wildlife viewing can bring abrupt stress for animals and alter their natural behaviors when tourist come too close and wildlife watching have degradation effects on the habitats as they often are accompanied by the noise and commotion created by tourist as they chase wild animals. It is observed that Jos Wild Life Park is usually congested during on-peak periods which causes littering and contamination of the environment by tourist which may lead to changes in the soil nutrient. The issue of unauthorized feeding of animals by a tourist in which the food might be dangerous and harmful to their health and making them be so aggressive is also observed. The aim of the study is to investigate the environmental impact of tourists’ activities in Jos Wild Life Park, Nigeria. The study used survey questionnaires to both tourists and the staff of the wildlife park. One hundred questionnaires were self-administered to randomly selected tourists as the visit the park and some staff. The average mean score of the response was used to show agreement or disagreement. Major findings show the negative impact of tourist’s activities to the environment as air pollution, overcrowding, and congestion, solid littering of the environment, distress to animals and alteration of the ecosystem. Furthermore, the study found the positive impact of tourists activities on the environment to be income generation through tourists activities and infrastructural development. It is recommended that the impact of tourism should be minimized through admitting the right carrying capacity and impact assessment.

Keywords: environmental, impact, investigation, tourists, activities

Procedia PDF Downloads 336
303 Bioflocculation Using the Purified Wild Strain of P. aeruginosa Culture in Wastewater Treatment

Authors: Mohammad Hajjartabar, Tahereh Kermani Ranjbar

Abstract:

P. aeruginosa EF2 was isolated and identified from human infection sources before in our previous study. The present study was performed to determine the characteristics and activity role of bioflocculant produced by the bacterium in flocculation of the wastewater active sludge treatment. The bacterium was inoculated and then was grown in an orbital shaker at 250 rpm for 5 days at 35 °C under TSB and peptone water media. After incubation period, culture broths of the bacterial strain was collected and washed. The concentration of the bacteria was adjusted. For the extraction of the bacterial bioflocculant, culture was centrifuged at 6000 rpm for 20 min at 4 °C to remove bacterial cells. Supernatant was decanted and pellet containing bioflocculant was dried at 105 °C to a constant weight according to APHA, 2005. The chemical composition of the extracted bioflocculant from the bacterial sample was then analyzed. Wastewater active sludge sample obtained from aeration tank from one of wastewater treatment plants in Tehran, was first mixed thoroughly. After addition of bioflocculant, improvements in floc density were observed with an increase in bioflocculant. The results of this study strongly suggested that the extracted bioflucculant played a significant role in flocculation of the wastewater sample. The use of wild bacteria and nutrient regulation techniques instead of genetic manipulation opens wide investigation area in the future to improve wastewater treatment processes. Also this may put a new path in front of us to attain and improve the more effective bioflocculant using the purified microbial culture in wastewater treatment.

Keywords: wastewater treatment, P. aeruginosa, sludge treatment

Procedia PDF Downloads 131
302 Effects of Palm Waste Ash Residues on Acidic Soil in Relation to Physiological Responses of Habanero Chili Pepper (Capsicum chinense jacq.)

Authors: Kalu Samuel Ukanwa, Kumar Patchigolla, Ruben Sakrabani

Abstract:

The use of biosolids from thermal conversion of palm waste for soil fertility enhancement was tested in acidic soil of Southern Nigeria for the growing of Habanero chili pepper (Capsicum chinense jacq.). Soil samples from the two sites, showed pH 4.8 and 4.8 for site A and B respectively, below 5.6-6.8 optimum range and other fertility parameters indicating a low threshold for pepper growth. Nursery planting was done at different weeks to determine the optimum planting period. Ash analysis showed that it contains 26% of total K, 20% of total Ca, 0.27% of total P, and pH 11. The two sites were laid for an experiment in randomized complete block design and setup with three replications side by side. Each plot measured 3 x 2 m and a total of 15 plots for each site, four treatments, and one control. Outlined as control, 2, 4, 6 and 8 tonnes/hectare of palm waste ash, the combined average for both sites with correspondent yield after six harvests in one season are; 0, 5.8, 6, 6, 14.5 tonnes/hectare respectively to treatments. Optimum nursery survival rate was high in July; the crop yield was linear to the ash application. Site A had 6% yield higher than site B. Fruit development, weight, and total yield in relation to the control plot showed that palm waste ash is effective for soil amendment, nutrient delivery, and exchange.

Keywords: ash, palm waste, pepper, soil amendment

Procedia PDF Downloads 109
301 Multifunctional Polydopamine-Silver-Polydopamine Nanofilm With Applications in Digital Microfluidics and SERS

Authors: Yilei Xue, Yat-Hing Ham, Wenting Qiu, Wan Chan, Stefan Nagl

Abstract:

Polydopamine (PDA) is a popular material in biological and medical applications due to its excellent biocompatibility, outstanding physicochemical properties, and facile fabrication. In this project, a new sandwich-structured PDA and silver (Ag) hybrid material named PDA-Ag-PDA was synthesized and characterized layer-by-layer, where silver nanoparticles (Ag NPs) are wrapped in PDA coatings, using SEM, AFM, 3D surface metrology, and contact angle meter. The silver loading capacity is positively proportional to the roughness value of the initial PDA film. This designed film was subsequently integrated within a digital microfluidic (DMF) platform coupling with an oxygen sensor layer for on-chip antibacterial assay. The concentration of E. coli was quantified on DMF by real-time monitoring oxygen consumption during E. coli growth with the optical oxygen sensor layer. The PDA-Ag-PDA coating shows an 99.9% reduction in E. coli population under non-nutritive condition with 1-hour treatment and has a strong growth inhibition of E. coliin nutrient LB broth as well. Furthermore, PDA-Ag-PDA film maintaining a low cytotoxicity effect to human cells. After treating with PDA-Ag-PDA film for 24 hours, 82% HEK 293 and 86% HeLa cells were viable. The SERS enhancement factor of PDA-Ag-PDA is estimated to be 1.9 × 104 using Rhodamine 6G (R6G). Multifunctional PDA-Ag-PDA coating provides an alternative platform to conjugate biomolecules and perform biological applications on DMF, in particular, for the adhesive protein and cell study.

Keywords: polydopamine, silver nanoparticles, digital microfluidic, optical sensor, antimicrobial assay, SERS

Procedia PDF Downloads 70
300 Chemical Oxygen Demand Fractionation of Primary Wastewater Effluent for Process Optimization and Modelling

Authors: Thandeka Y. S. Jwara, Paul Musonge

Abstract:

Traditionally, the complexity associated with implementing and controlling biological nutrient removal (BNR) in wastewater works (WWW) has been primarily in terms of balancing competing requirements for nitrogen and phosphorus removal, particularly with respect to the use of influent chemical oxygen demand (COD) as a carbon source for the microorganisms. Successful BNR optimization and modelling using WEST (Worldwide Engine for Simulation and Training) depend largely on the accurate fractionation of the influent COD. The different COD fractions have differing effects on the BNR process, and therefore, the influent characteristics need to be well understood. This study presents the fractionation results of primary wastewater effluent COD at one of South Africa’s wastewater works treating 65ML/day of mixed industrial and domestic effluent. The method used for COD fractionation was the oxygen uptake rate/respirometry method. The breakdown of the results of the analysis is as follows: 70.5% biodegradable COD (bCOD) and 29.5% of non-biodegradable COD (iCOD) in terms of the total COD. Further fractionation led to a readily biodegradable soluble fraction (SS) of 75%, a slowly degradable particulate fraction (XS) of 24%, a particulate non-biodegradable fraction (XI) of 50.8% and a non-biodegradable soluble fraction (SI) of 49.2%. The fractionation results demonstrate that the primary effluent has good COD characteristics, as shown by the high level of the bCOD fraction with Ss being higher than Xs. This means that the microorganisms have sufficient substrate for the BNR process and that these components can now serve as inputs to the WEST Model for the plant under study.

Keywords: chemical oxygen demand, COD fractionation, wastewater modelling, wastewater optimization

Procedia PDF Downloads 122
299 Removal of Nutrients from Sewage Using Algal Photo-Bioreactor

Authors: Purnendu Bose, Jyoti Kainthola

Abstract:

Due to recent advances in illumination technology, artificially illuminated algal-bacterial photo bioreactors are now a potentially feasible option for simultaneous and comprehensive organic carbon and nutrients removal from secondary treated domestic sewage. The experiments described herein were designed to determine the extent of nutrient uptake in photo bioreactors through algal assimilation. Accordingly, quasi steady state data on algal photo bioreactor performance was obtained under 20 different conditions. Results indicated that irrespective of influent N and P levels, algal biomass recycling resulted in superior performance of algal photo bioreactors in terms of both N and P removals. Further, both N and P removals were positively related to the growth of algal biomass in the reactor. Conditions in the reactor favouring greater algal growth also resulted in greater N and P removals. N and P removals were adversely impacted in reactors with low algal concentrations due to the inability of the algae to grow fast enough under the conditions provided. Increasing algal concentrations in reactors over a certain threshold value through higher algal biomass recycling was also not fruitful, since algal growth slowed under such conditions due to reduced light availability due to algal ‘self-shading’. It was concluded that N removals greater than 80% at high influent N concentrations is not possible with the present reactor configuration. Greater than 80% N removals may however be possible in similar reactors if higher light intensity is provided. High P removal is possible only if the influent N: P ratio in the reactor is aligned closely with the algal stoichiometric requirements for P.

Keywords: nutrients, algae, photo, bioreactor

Procedia PDF Downloads 191
298 Oil Extraction from Microalgae Dunalliela sp. by Polar and Non-Polar Solvents

Authors: A. Zonouzi, M. Auli, M. Javanmard Dakheli, M. A. Hejazi

Abstract:

Microalgae are tiny photosynthetic plants. Nowadays, microalgae are being used as nutrient-dense foods and sources of fine chemicals. They have significant amounts of lipid, carotenoids, vitamins, protein, minerals, chlorophyll, and pigments. Oil extraction from algae is a hotly debated topic currently because introducing an efficient method could decrease the process cost. This can determine the sustainability of algae-based foods. Scientific research works show that solvent extraction using chloroform/methanol (2:1) mixture is one of the efficient methods for oil extraction from algal cells, but both methanol and chloroform are toxic solvents, and therefore, the extracted oil will not be suitable for food application. In this paper, the effect of two food grade solvents (hexane and hexane/ isopropanol) on oil extraction yield from microalgae Dunaliella sp. was investigated and the results were compared with chloroform/methanol (2:1) extraction yield. It was observed that the oil extraction yield using hexane, hexane/isopropanol (3:2) and chloroform/methanol (2:1) mixture were 5.4, 13.93, and 17.5 (% w/w, dry basis), respectively. The fatty acid profile derived from GC illustrated that the palmitic (36.62%), oleic (18.62%), and stearic acids (19.08%) form the main portion of fatty acid composition of microalgae Dunalliela sp. oil. It was concluded that, the addition of isopropanol as polar solvent could increase the extraction yield significantly. Isopropanol solves cell wall phospholipids and enhances the release of intercellular lipids, which improves accessing of hexane to fatty acids.

Keywords: fatty acid profile‎, microalgae‎, oil extraction‎, polar solvent‎

Procedia PDF Downloads 347
297 Potential of Macroalgae Ulva lactuca for Municipal Wastewater Treatment and Fruitfly Food

Authors: Shuang Qiu, Lingfeng Wang, Zhipeng Chen, Shijian Ge

Abstract:

Macroalgae are considered a promising approach for wastewater treatment as well as an alternative animal feed in addition to a biofuel feedstock. Their large size and/or tendency to grow as dense floating mats or substrate-attached turfs lead to lower separation and drying costs than microalgae. In this study, the macroalgae species Ulva lactuca (U. lactuca) were used to investigate their capacity for treating municipal wastewaters, and the feasibility of using the harvested biomass as an alternative food source for the fruitfly Drosophila melanogaster, an animal model for biological research. Results suggested that U. lactuca could successfully grow on three types of wastewaters studied with biomass productivities of 8.12-64.3 g DW (dry weight)/(m²∙d). The secondary wastewater (SW) was demonstrated as the most effective wastewater medium for U. lactuca growth. However, both high nitrogen (92.5-98.9%) and phosphorus (64.5-88.6%) removal efficiencies were observed in all wastewaters, particularly in primary wastewater (PW) and SW, however, in central wastewater (CW), the highest removal rates were obtained (N 24.7 ± 0.97 and P 0.69 ± 0.01 mg/(g DW·d)). Additionally, the inclusion of 20% washed U. lactuca with 80% standard fruitfly food (w/w) resulted in a longer lifespan and more stable body weights in flies. On the other hand, similar results were not obtained for the food treatment with the addition of 20 % unwashed U. lactuca. This study suggests a promising method for the macroalgae-based treatment of municipal wastewater and the biomass for animal feed.

Keywords: animal feed, flies, macroalgae, nutrient recovery, Ulva lactuca, wastewater

Procedia PDF Downloads 99
296 Changes of Mitochondrial Potential in the Midgut Epithelium of Lithobius forficatus (Myriapoda, Chilopoda) Exposed to Cadmium Concentrated in Soil

Authors: Magdalena Rost-Roszkowska, Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Malgorzata Lesniewska

Abstract:

Lithobius forficatus, commonly known as the brown centipede, is a widespread European species, which lives in the upper layers of soil, under stones, litter, rocks, and leaves. As the soil organism, it is exposed to numerous stressors such as xenobiotics, including heavy metals, temperature, starvation, pathogens, etc. Heavy metals are treated as the environmental pollutants of the soil because of their toxic effects on plants, animals and human being. One of the heavy metals which is xenobiotic and can be taken up by plants or animals from the soil is cadmium. The digestive system of centipedes is composed of three distinct regions: fore-, mid- and hindgut. The salivary glands of centipedes are the organs which belong to the anterior region of the digestive system and take part in the synthesis, accumulation, and secretion of many substances. The middle region having contact with the food masses is treated as one of the barriers which protect the organism against any stressors which originate from the external environment, e.g., toxic metals. As the material for our studies, we chose two organs of the digestive system in brown centipede, the organs which take part in homeostasis maintenance: the salivary glands and the midgut. The main purpose of the project was to investigate the relationship between the percentage of depolarized mitochondria, mitophagy and ATP level in cells of mentioned above organs. The animals were divided into experimental groups: K – the control group, the animals cultured in a laboratory conditions in a horticultural soil and fed with Acheta domesticus larvae; Cd1 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 12 days – short-term exposure; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 45 days – long-term exposure. The studies were conducted using transmission electron microscopy (TEM), flow cytometry and confocal microscopy. Quantitative analysis revealed that regardless of the organ, a progressive increase in the percentage of cells with depolarized mitochondria was registered, but only in the salivary glands. These were statistically significant changes from the control. In both organs, there were no differences in the level of the analyzed parameter depending on the duration of exposure of individuals to cadmium. Changes in the ultrastructure of mitochondria have been observed. With the extension of the body's exposure time to metal, an increase in the ADP/ATP index was recorded. However, changes statistically significant to the control were demonstrated in the intestine and salivary glands. The size of this intestinal index and salivary glands in the Cd2 group was about thirty and twenty times higher, respectively than in control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, digestive system, ultrastructure, centipede

Procedia PDF Downloads 113
295 Microbial Bioagent Triggered Biochemical Response in Tea (Camellia sinensis) Inducing Resistance against Grey Blight Disease and Yield Enhancement

Authors: Popy Bora, L. C. Bora, A. Bhattacharya, Sehnaz S. Ahmed

Abstract:

Microbial bioagents, viz., Pseudomonas fluorescens, Bacillus subtilis, and Trichoderma viride were assessed for their ability to suppress grey blight caused by Pestalotiopsis theae, a major disease of tea crop in Assam. The expression of defense-related phytochemicals due to the application of these bioagents was also evaluated. The individual bioagents, as well as their combinations, were screened for their bioefficacy against P. theae in vitro using nutrient agar (NA) as basal medium. The treatment comprising a combination of the three bioagents, P. fluorescens, B. subtilis, and T. viride showed significantly the highest inhibition against the pathogen. Bioformulation of effective bioagent combinations was further evaluated under field condition, where significantly highest reduction of grey blight (90.30%), as well as the highest increase in the green leaf yield (10.52q/ha), was recorded due to application of the bioformulation containing the three bioagents. The application of the three bioformulation also recorded an enhanced level of caffeine (4.15%) and polyphenols (22.87%). A significant increase in the enzymatic activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were recorded in the plants treated with the microbial bioformulation of the three bioagents. The present investigation indicates the role of microbial agents in suppressing disease, inducing plant defense response, as well as improving the quality of tea.

Keywords: enzymatic activity, grey blight, microbial bioagents, Pestalotiopsis theae, phytochemicals, plant defense, tea

Procedia PDF Downloads 121
294 Increasing Sustainability of Melanin Bio-Production Using Seawater

Authors: Harsha Thaira, Ritu Raval, Keyur Raval

Abstract:

Melanin has immense applications in the field of agriculture, cosmetics and pharmaceutical industries due to its photo-protective, UV protective and anti- oxidant activities. However, its production is limited to costly chemical methods or harsh extractive methods from hair which ultimately gives poor yields. This makes the cost of melanin very high, to the extent of US Dollar 300 per gram. Some microorganisms are reported to produce melanin under stress conditions. Out of all melanin producing organisms, Pseudomonas stutzeri can grow in sea water and produce melanin under saline stress. The objective of this study was to develop a sea water based bioprocess. Effects of different growth media and process parameters on melanin production using sea water were investigated. The marine bacterial strain Pseudomonas stutzeri HMGM-7(MTCC 11712) was selected and the effect of different media such as Nutrient Broth (NB), Luria Bertini (LB) broth, Bushnell- Haas broth (BHB) and Trypticase Soy broth (TSB) and various medium components were investigated with one factor at a time approach. Parameters like shaking frequency, inoculum age, inoculum size, pH and temperature were also investigated in order to obtain the optimum conditions for maximum melanin production. The highest yield of melanin concentration, 0.306 g/L, was obtained in Trypticase Soy broth at 36 hours. The yield was 1.88 times higher than the melanin obtained before optimization, 0.163 g/L at 36 hours. Studies are underway to optimize medium constituents to further enhance melanin production.

Keywords: melanin, marine, bioprocess, pseudomonas

Procedia PDF Downloads 255
293 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network

Authors: Yasaman Sanayei, Alireza Bahiraie

Abstract:

This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.

Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis

Procedia PDF Downloads 392
292 Tofu Flour as a Protein Sources

Authors: Dicky Eka Putra, S. P. Nadia Chairunissa, Lidia Paramita, Roza Hartati, Ice Yolanda Puri

Abstract:

Background: Soy bean and the products such as tofu, tempeh and soy milk are famous in the community. Moreover, another product is tofu flour which is not familiar in Indonesia yet and it is well known as Okara. There are massive differences of energy, protein and carbohydrate between them which is know as good for protein sources as well. Unfortunately, it is seldom used as food variety. Basically, it can be benefit in order to create many products for example cakes, snacks and some desserts. Aim: the study was in order to promote the benefit of tofu flour as school feeding of elementary school and baby porridge and also to compare the nutrient. Method: Soy pulp was filtered and steamed approximately 30 minutes. Then, it was put at a plate under sunrise or barked on the oven for 10 hours at 800C. When it have dried and milling and tofu flour is ready to be used. Result: Tofu flour could be used as substitute of flour and rice flour when people want to cook some foods. In addition, some references said that soy bean is good for a specific remedy for the proper functioning of the heart, liver, kidneys, stomach, and bowels, constipation, as a stimulant for the lungs, for eradication of poison from the system, improving the complexion by cleaning the skin of impurities, and stimulating the growth and appearance of the hair. Discussion: Comparing between soy bean, tofu and tofu flour which has difference amount of nutrients. For example energy 382 kcal, 79 kcal and 393 kcal respectively and also protein 30.2 kcal, 7.8 kcal, and 17.4 kcal. In addition, carbohydrate of soy pulp was high than soy bean and tofu (30.1 kcal). Finally, local should replace flour, rice and gelatin rice flour with tofu flour.

Keywords: tofu flour, protein, soy bean, school feeding

Procedia PDF Downloads 356
291 Development of Value Added Product Based on Millets and Hemp Seed (cannabis sativa L.)

Authors: Khushi Kashyap, Pratibha Singh

Abstract:

In the recent years increasing interest in vegetarian diets has been observed, a major problem in this type of diet is to provide the appropriate amount of protein .Value addition of food is current most talked topic because of increasing nutritional awareness among consumers today. An investigation was conducted to develop protein rich multi-millet hemp seed khakhra. The seeds of cannabis sativa L. have been a significant source of food for thousand of year. In recent years, hemp has not been thoroughly explored for its nutritional potential due to the mistaken belief regarding the cannabis plants. Methodology- two variations was prepared referencing standard recipe. Variation 1 was prepared using 25g ragi, 25g bajra,40g whole wheat flour with 10g hemp seed powder, variation 2(RF-25g,BF25g,WWF-35g,HS-15g). The product was subjected to sensory evolution by semi trained panel members using 9 point hedonic on 50 panelists. Result- result of the sensory evaluation revealed that the product incorporated with 15g of hemp seed were similar to control I texture, taste and overall quality and was more acceptable by the panelist and was selected as final product seed. On estimation of the nutrient content 30g of khakhra provides 107kcal of energy,12g protein,75g carbohydrate, and 9.6g of fats with shelf life of 3 months. Conclusion- khakhras can be eaten as a snack at any time of the day. hemp seed powder incorporated in it enhances its nutritive value and makes it more nutritious. It is suitable for consumption of all the age group.

Keywords: cannabis sativa, hemp, protein, seed

Procedia PDF Downloads 61
290 Hydrogels Beads of Alginate/Seaweed Powder for Plants Nutrition

Authors: Brenda O. Mazzola, Adriel Larsen, Romina P. Ollier, Leandro N. Ludueña, Vera A. Alvarez, Jimena S. Gonzalez

Abstract:

Seaweed is a natural renewable resource with great potential that is not being used by the domestic industry. Here, it was used a kind of invasive algae U. Pinnatifida that causes serious ecological damage on the Argentinian coasts. Alginate is one of the most widely used materials for encapsulation, and has the advantage that is a natural polysaccharide derived from a marine plant. It can form thermally stable hydrogel in the presence of calcium cation. In addition, the hydrogel can be easily produced into particulate form by using simple and gentle method. The aim of this work was to obtain and to characterize novel compounds (alginate/seaweed powder) for the soil nutrition. Alginate water solutions were prepared by concentrations of 20, 30, 40 and 50 g/L, in those solutions 10g/L of seaweed powder was added. Then the dispersions were transferred from a beaker to the atomizer by a peristaltic pump (with 0.05 to 0.1 L/h flow). A tank was filled with 1 L of calcium chloride solution (4 g/L), and the solution was agitated with a magnetic stirrer. The beads were analyzed by means TGA, FTIR and swelling determinations. In addition, the improvements in the soil were qualitative measured. It was obtained beads with different diameters depend on the initial concentration and the flow used. A better dispersions of seaweed and optimal diameter for the plant nutrition applications were obtained for 40g/L concentration and 0.1 L/h flow. The beads show thermal stability and high swelling degree. It can be successfully obtained alginate beads with seaweed powder with a novelty application as plant nutrient.

Keywords: biodegradable, characterization, hydrogel, plant nutrition, seaweed

Procedia PDF Downloads 254
289 Extracellular Enzymes as Promising Soil Health Indicators: Assessing Response to Different Land Uses Using Long-Term Experiments

Authors: Munisath Khandoker, Stephan Haefele, Andy Gregory

Abstract:

Extracellular enzymes play a key role in soil organic carbon (SOC) decomposition and nutrient cycling and are known indicators for soil health; however, it is not understood how these enzymes respond to different land uses and their relationships to other soil properties have not been extensively reviewed. The relationships among the activities of three soil enzymes: β-glucosaminidase (NAG), phosphomonoesterase (PHO) and β-glucosidase (GLU), were examined. The impact of soil organic amendments, soil types and land management on soil enzyme activities were reviewed, and it was hypothesized that soils with increased SOC have increased enzyme activity. Long-term experiments at Rothamsted Research Woburn and Harpenden sites in the UK were used to evaluate how different management practices affect enzyme activity involved in carbon (C) and nitrogen (N) cycling in the soil. Samples were collected from soils with different organic treatments such as straw, farmyard manure (FYM), compost additions, cover crops and permanent grass cover to assess whether SOC can be linked with increased levels of enzymatic activity and what influence, if any, enzymatic activity has on total C and N in the soil. Investigating the interactions of important enzymes with soil characteristics and SOC can help to better understand the health of soils. Studies on long-term experiments with known histories and large datasets can better help with this. SOC tends to decrease during land use changes from natural ecosystems to agricultural systems; therefore, it is imperative that agricultural lands find ways to increase and/or maintain SOC in the soil.

Keywords: biological soil health indicators, extracellular enzymes, soil health, soil, microbiology

Procedia PDF Downloads 49
288 Nutritional Evaluation and the Importance of Traditional Vegetables That Sustain the Indigenous People of Malaysia

Authors: Rachel Thomas Tharmabalan

Abstract:

The growing unease over the matter of food security in the world is the result of a maturing realization that the genetic base of most human caloric intake from plants is dangerously narrow. Malaysia’s tropical rainforests have the potential to contribute to diet diversification and provide a source of nutrient-rich food as the Orang Asli communities in Malaysia have relied almost entirely on the jungle for food, fodder, medicine and fuel antithetical to what is happening today. This segregation of the Orang Asli from traditional lands and resources leads to severe loss of knowledge of biodiversity. In order to preserve these wild edibles, four different types of vegetables that are frequently consumed by the Orang Asli which consists of Rebu, Meranti, Saya and Pama were selected. These vegetables were then analysed to determine its proximate and mineral content to help ascertain claims and reaffirm the impact it can play in ensuring food and nutrition security, in addition to combating chronic diseases. From the results obtained, the Meranti had the highest crude fiber, iron and calcium content. Other minerals such as potassium, magnesium and copper were also found in varying content. These wild edibles could also contribute to education and bring awareness to younger generations as well as urban populations to start consuming more of these in their daily life as it could prevent various chronic diseases in Malaysia.

Keywords: food and nutrition security, Orang Asli, underutilized plants, wild edible food systems

Procedia PDF Downloads 134
287 Fate of Organic Waste, Refuse and Inert from Municipal Discards as Source of Energy and Nutrient in India: A Brief Review

Authors: Kunwar Paritosh, Vivekanand Vivekanand, Nidhi Pareek

Abstract:

Presently, India depends primarily on fossil fuels for its acute energy demand. The swift in development of India in last two decades is accentuating its natural resources and compelling expenditures to cope energy security for the habitats. A total inhabitant of 1.2 billion, observing growing industrialization; is generating 68.8 million tonnes of municipal solid waste per year, 53.7 million tonnes is collected, and only trifling amount of 10.3 million tonnes of waste is treated per year that integrates to a massive amount of unimaginable land hill. In India, waste is mostly landfilled and/or incinerated with low technology and is poorly managed. Underutilization of this waste not only gulps resources but also stresses environment, public health and bionetwork thus affecting the bioeconomy negatively. It also creates conditions that invoke inevitable expenditures and loss of its renewable energy potential. The non-scientific approach to manage waste may lead to an economy downfall, underutilization and degradation of natural resources. Waste treatment technologies must be scientifically tailored and engineered as per the type of waste where it may be utilized as a source of energy (here biogas) and nutrients employing anaerobic digestion to the sorted waste. This paper presents a brief review on current practices, key achievements and forthcoming aspects of harnessing energy from municipal solid waste in Indian scenario.

Keywords: municipal discards, organic waste, anaerobic digestion, incineration, energy

Procedia PDF Downloads 232